Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chemistry ; : e202403094, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39289149

RESUMO

We report a solid-acid catalyzed aminolysis of epoxides under continuous-flow conditions. A titania-zirconia supported molybdenum oxide catalyst demonstrated exceptional substrate compatibility, enabling the synthesis of ß-amino alcohols in excellent yields with high catalyst durability. Characterization of the catalyst revealed the crucial role of the titania-zirconia ratio in optimizing its performance. Furthermore, this method was applied to the efficient, sequential-flow synthesis of a rivaroxaban intermediate (an oral anticoagulant and the first direct factor Xa inhibitor), combining a hydrogenation step with the aminolysis reaction without the need for intermediate isolation.

2.
ChemSusChem ; : e202400756, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39150689

RESUMO

Additive free aminolysis method developed for the depolymerization/upcycling of polycarbonates. We report here chemical recycling of polycarbonate under ambient conditions to get its monomer bisphenol A, monoaminocarbamate and biscarbamates in 1:2:1 ratio respectively. By employing the secondary amine as the aminating reagent, facilitates the depolymerization to work under additive/catalyst free conditions. The developed method deals with depolymerization of waste polycarbonates and works even with late-stage amine derivatives such as amoxapine and desloratadine which are drugs molecules known to treat neurotic disorders and allergies respectively. The reaction can be scaled up and works with similar efficacy which depicts the efficiency of the depolymerization of end-of-life polycarbonate plastic waste. The biscarbamate and bisphenol-A was further subjected for the post functionalization to obtain amides and phenol in good yields.

3.
Macromol Biosci ; : e2400229, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39129399

RESUMO

Polyurethane (PU) has a diverse array of customized physical, chemical, mechanical, and structural characteristics, rendering it a superb option for biomedical applications. The current study involves modifying the polyurethane surface by the process of aminolysis (aminolyzed polyurethane; PU-A), followed by covalently immobilizing Carboxymethyl cellulose (CMC) polymer utilizing Schiff base chemistry. Oxidation of CMC periodically leads to the creation of dialdehyde groups along the CMC chain. When the aldehyde groups on the OCMC contact the amine group on a modified PU surface, they form an imine bond. Scanning electron microscopy (SEM), contact angle, and X-ray photoelectron spectroscopy (XPS) techniques are employed to analyze and confirm the immobilization of OCMC on aminolyzed PU film (PU-O). The OCMC gel incorporates Nitrofurantoin (NF) and immobilizes it on the PU surface (PU-ON), creating an antibacterial PU surface. The confirmation of medication incorporation is achieved using EDX analysis. The varying doses of NF have demonstrated concentration-dependent bacteriostatic and bactericidal effects on both Gram-positive and Gram-negative bacteria, in addition to sustained release. The proposed polyurethane (PU-ON) surface exhibited excellent infection resistance in in vivo testing. The material exhibited biocompatibility and is well-suited for biomedical applications.

4.
Biomimetics (Basel) ; 9(6)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38921200

RESUMO

Dialysis membranes are not hemocompatible with human blood, as the patients are suffering from the blood-membrane interactions' side effects. Zwitterionic structures have shown improved hemocompatibility; however, their complicated synthesis hinders their commercialization. The goal of the study is to achieve fast functionalization for carboxybetaine and sulfobetaine zwitterionic immobilization on PES membranes while comparing the stability and the targeted hemocompatibility. The chemical modification approach is based on an aminolysis reaction. Characterization, computational simulations, and clinical analysis were conducted to study the modified membranes. Atomic force microscopy (AFM) patterns showed a lower mean roughness for carboxybetaine-modified (6.3 nm) and sulfobetaine-modified (7.7 nm) membranes compared to the neat membrane (52.61 nm). The pore size of the membranes was reduced from values above 50 nm for the neat PES to values between 2 and 50 nm for zwitterionized membranes, using Brunauer-Emmett-Teller (BET) analysis. More hydrophilic surfaces led to a growth equilibrium water content (EWC) of nearly 6% for carboxybetaine and 10% for sulfobetaine-modified membranes. Differential scanning calorimetry (DSC) measurements were 12% and 16% stable water for carboxybetaine- and sulfobetaine-modified membranes, respectively. Sulfobetaine membranes showed better compatibility with blood with respect to C5a, IL-1a, and IL-6 biomarkers. Aminolysis-based zwitterionization was found to be suitable for the improvement of hemodialysis membranes. The approach introduced in this paper could be used to modify the current dialysis membranes with minimal change in the production facilities.

5.
Int J Biol Macromol ; 266(Pt 1): 130947, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38521313

RESUMO

Biomaterial-based drug-carrying systems have scored enormous focus in the biomedical sector. Poly(lactic acid) (PLA) is a versatile material in this context. A porous and hydrophilic PLA surface can do this job better. We aimed to synthesize pH-responsive PLA-based porous films for uptaking and releasing amikacin sulfate in the aqueous media. The native PLA lacks functional/polar sites for the said purpose. So, we tended to aminolyze it for tailored physicochemical and surface properties. The amino (-NH2) group density on the treated films was examined using the ninhydrin assay. Electron microscopic analyses indicated the retention of porous morphology after aminolysis. Surface wettability and FTIR results expressed that the resultant films became hydrophilic after aminolysis. The thermal analysis expressed reasonable thermal stability of the aminolyzed films. The prepared films expressed pH-responsive behaviour for loading and releasing amikacin sulfate drug at pH 5.5 and 7.4, respectively. The drug release data best-fitted the first-order kinetic model based on Akaike information and model selection criteria. The prepared PLA-based aminolyzed films qualified as potential candidates for pH-responsive drug delivery applications. This study could be the first report on pH-responsive amikacin sulfate uptake and release on the swellable aminolyzed PLA-based porous films for effective drug delivery application.


Assuntos
Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Poliésteres , Poliésteres/química , Concentração de Íons de Hidrogênio , Porosidade , Preparações de Ação Retardada/química , Portadores de Fármacos/química , Interações Hidrofóbicas e Hidrofílicas
6.
ChemSusChem ; 17(9): e202301735, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38183360

RESUMO

The formation of amide bonds via aminolysis of esters by lipases generates a diverse range of amide frameworks in biosynthetic chemistry. Few lipases have satisfactory activity towards bulky aromatic amines despite numerous attempts to improve the efficiency of this transformation. Here, we report the discovery of a new intracellular lipase (Ndbn) with a broad substrate scope. Ndbn turns over a range of esters and aromatic amines in the presence of water (2 %; v/v), producing a high yield of multiple valuable amides. Remarkably, a higher conversion rate was observed for the synthesis of amides from substrates with aromatic amine rather than aliphatic amines. Molecular dynamics (MD) and quantum mechanical/molecular mechanical (QM/MM) studies showcase the mechanism for the preference for aromatic amines, including a more suitable orientation, shorter catalytic distances in the active site pocket and a lower reaction barrier for aromatic than for aliphatic amines. This unique lipase is thus a promising biocatalyst for the efficient synthesis of aromatic amides.


Assuntos
Aminas , Ésteres , Lipase , Lipase/metabolismo , Lipase/química , Aminas/química , Ésteres/química , Simulação de Dinâmica Molecular , Especificidade por Substrato , Amidas/química , Domínio Catalítico , Biocatálise , Sphingomonadaceae/enzimologia
7.
Int J Biol Macromol ; 256(Pt 2): 128525, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38040168

RESUMO

Bio-based drug delivery devices have gained enormous interest in the biomedical field due to their biocompatible attributes. Extensive research is being conducted on chitosan-based devices for drug delivery applications. Chitosan being hydrophobic under neutral conditions makes it difficult to interact with a polar drug of curcumin. We tended to make it polar through sol-gel synthesis and modification via PEGylation, alkaline hydrolysis, and aminolysis. Such alterations could make the chitosan-based scaffolds porous, hydrophilic, amino-functionalized, and pH-responsive. The ninhydrin assay confirmed that a successful aminolysis occurred, and the chemical interaction among the precursors was explained under infrared spectroscopy. The scanning morphology of the optimum aminolyzed membrane appeared to be porous with an average pore size of 320 ± 20 nm. The aminolyzed chitosan membrane was found thermally stable up to 310 °C, hydrophilic with a water contact angle of 23.4°, moderate flowablity, and porous (97 ± 5 %, w/w) against ethanol. The curcumin-loaded chitosan membrane expressed the UV-protection behavior of 99 %. The curcumin-loading and release phenomena were found pH-responsive. The curcumin release results were evaluated through specific kinetic models. This study could be the first report on the amphiphilic, porous, and swellable drug-loaded gelatin/chitosan membrane with pH-responsive loading and release of curcumin for potential drug delivery applications.


Assuntos
Quitosana , Curcumina , Curcumina/química , Quitosana/química , Portadores de Fármacos/química , Gelatina , Porosidade , Concentração de Íons de Hidrogênio
8.
ACS Appl Bio Mater ; 7(1): 379-393, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38141040

RESUMO

A remarkable challenge in the anticancer drug delivery system is developing an implantable system that can improve the chemotherapeutic effect. Polyurethane is an excellent implantable substrate, with flaws in hydrophobicity. We modified polyurethane via the chemical aminolysis technique to enhance the wettability and protein interaction. The created pores can release the rutin complex incorporated in the polyurethane matrix. In this work, the hybrid polymer matrix consists of Mxene synthesized via a sustainable and simple method by introducing a toxic-free MAX phase and etchants. The incorporation of Mxene and PCL can enhance physicochemical and biological compatibility. Sustainable Mxene increases oxidative stress, cell death, and antibacterial activity, which also resulted in the Mxene@APU/PCL film. Meanwhile, the drug release with respect to pH sensitivity was demonstrated in which Mxene and Mxene@APU/PCL films showed the highest release at pH 5.2; this indicates that the prepared Mxene and aminolyzed polyurethane can function according to the biological system and release the drug from the polymer matrix on slow degradation and swellability. The Mxene and Mxene@APU/PCL films showed 93.2% drug release with oxidative stress on THP-1 cells, which causes rupturing and apoptosis of cancerous cells. The Mxene@APU/PCL film can show great potential in future implantable anticancer drug delivery systems.


Assuntos
Sistemas de Liberação de Medicamentos , Nitritos , Poliuretanos , Elementos de Transição , Poliuretanos/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Polímeros , Concentração de Íons de Hidrogênio
9.
Ecotoxicol Environ Saf ; 269: 115758, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38128448

RESUMO

Aminolysis is widely recognized as a valuable chemical route for depolymerizing polymeric materials containing ester, amide, or urethane functional groups, including polyurethane foams. Bio-based polyurethane foams, pristine and reinforced with 40 wt% of sustainable fillers, were depolymerized in the presence of bio-derived butane-1,4-diamine, BDA. A process comparison was made using fossil-derived ethane-1,2-diamine, EDA, by varying amine/polyurethane ratio (F/A, 1:1 and 1:0.6). The obtained depolymerized systems were analyzed by FTIR and NMR characterizations to understand the effect of both diamines on the degradation pathway. The use of bio-based BDA seemed to be more effective with respect to conventional EDA, owing to its stronger basicity (and thus higher nucleophilicity), corresponding to faster depolymerization rates. BDA-based depolymerized systems were then employed to prepare second-generation bio-based composite polyurethane foams by partial replacement of isocyanate components (20 wt%). The morphological, mechanical, and thermal conductivity properties of the second-generation polyurethane foams were evaluated. The best performances (σ10 %=71 ± 9 kPa, λ = 0.042 ± 0.015 W∙ m-1 ∙K-1) were attained by employing the lowest F/A ratio (1:0.6); this demonstrates their potential application in different sectors such as packaging or construction, fulfilling the paradigm of the circular economy.


Assuntos
Diaminas , Poliuretanos , Aminas , Isocianatos , Amidas , Ésteres
10.
Gels ; 9(11)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37998964

RESUMO

Despite the tremendous progress in the development of functional materials from plastic waste to promote its recycling, only a few examples of hydrogel materials from plastic waste were reported. In this study, microwave-assisted depolymerization of waste PET plastic using polyamine was performed to prepare short aminophthalamide oligomers followed by chemically cross-linking into a hydrogel material. Catalyst-free microwave-assisted aminolysis of PET was completed within 30-40 s, demonstrating high efficiency of the depolymerization reaction. Subsequent epoxy cross-linking of the oligomers yielded a hydrogel with a swelling degree of ca. 92.1 times in pure water. The application of the obtained hydrogel for the removal of copper ions (Cu2+) from water was demonstrated. Efficient complexation of NH2 groups of the hydrogel with Cu2+ resulted in high adsorption capacities of the hydrogel material toward Cu2+ removal, which were the highest at neutral pHs and reached ca. 213 mg/g. The proposed type of environmental material is beneficial owing to its waste-derived nature and functionality that can be applied for the high-efficiency removal of a broad scope of known environmental pollutants.

11.
Interface Focus ; 13(5): 20230019, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37577004

RESUMO

Construction of artificial cells requires the development of straightforward methods for mimicking natural phospholipid membrane formation. Here we describe the use of direct aminolysis ligations to spontaneously generate biomimetic phospholipid membranes from water-soluble starting materials. Additionally, we explore the suitability of such biomimetic approaches for driving the in situ formation of native phospholipid membranes. Our studies suggest that non-enzymatic ligation reactions could have been important for the synthesis of phospholipid-like membranes during the origin of life, and might be harnessed as simplified methods to enable the generation of lipid compartments in artificial cells.

12.
Environ Sci Pollut Res Int ; 30(30): 75401-75416, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37217818

RESUMO

The waste management of polyethylene terephthalate (PET)-derived polyester (PES) textile is a global issue, and material recovery through chemical recycling can restore a circular economy. In our investigation, microwave-induced catalytic aminolysis and glycolysis of PES textile wastes using Ag-doped ZnO nanoparticles have been proposed. Ag-doped ZnO is prepared by the sol-gel method and characterised by XRD, FT-IR, UV-Vis, SEM-EDX and TEM. The reaction parameters such as PET-to-catalyst ratio, microwave power and irradiation time, temperature and catalyst recycling have been optimised. The catalyst was found to be more stable and could be recycled up to six times without losing its activity. Both the aminolysis and glycolysis of PES showed 100% conversion and afforded of bis (2-hydroxy ethylene) terephthalamide (BHETA) and bis (2-hydroxy ethylene) terephthalate (BHET), respectively. The depolymerisation of PES wastes using Ag-doped ZnO afforded BHETA and BHET for about 95 and 90%, respectively. The monomers BHET and BHETA confirmed by FT-IR, 1H NMR and mass spectroscopy. According to the findings, 2 mol% Ag-doped ZnO has higher catalytic activity.


Assuntos
Nanopartículas , Óxido de Zinco , Óxido de Zinco/química , Prata/química , Espectroscopia de Infravermelho com Transformada de Fourier , Têxteis , Nanopartículas/química , Polietilenotereftalatos/química
13.
Chemistry ; 29(31): e202300704, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-36914564

RESUMO

Herein we present a nickel-catalyzed regio- and enantioselective ring opening reaction of 3,4-epoxy amides and esters with aromatic amines as nucleophiles. This method features high regiocontrol, diastereospecific SN 2 reaction pathway, broad substrate scope, and mild reaction conditions, furnishing a wide range of γ-amino acid derivatives in a highly enantioselective manner. Notably, the selective nucleophilic attack to the C-4 position of epoxides is controlled by the directing effect of the pendant carbonyl group.

14.
Enzyme Microb Technol ; 165: 110208, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36753877

RESUMO

Acetylcholinesterase (AChE) from Pseudomonas aeruginosa PAO1 has a catalytic Ser residue in its active site. In this study, we examined the aminolysis and alcoholysis reactions of AChE that occurred alongside its hydrolysis reaction. The recombinant AChE recognized ethyl acetate as a substrate. Therefore, we evaluated acetylation of the amine and hydroxyl group by AChE, using acetylcholine and ethyl acetate as the acetyl donor. AChE recognized diaminoalkanes with 4- to 12-carbon chains and aminoalcohols with 4- to 8-carbon chains as acetyl acceptors, resulting in their acetylated products. In the acetylation of 1,6-diaminohexane, AChE preferentially used ethyl acetate as the acetyl donor above pH 8.0 and the efficiency increased with increasing pH. In contrast, the acetylation of 6-amino-1-hexanol was efficient with acetylcholine as the acetyl donor in the pH range of 4-10. In addition, acetylated 6-amino-1-hexanol was decomposed by AChE. The kinetic study indicated that the acetyl donor and acceptor are competitively recognized by AChE as substrates.


Assuntos
Acetilcolina , Acetilcolinesterase , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Acetilação , Pseudomonas aeruginosa/metabolismo , Aminas , Álcoois , Catálise , Hexanóis , Carbono , Cinética
15.
Angew Chem Int Ed Engl ; 62(14): e202217878, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36748100

RESUMO

Amide syntheses remain a key challenging green chemistry reaction. For instance, green synthesis of N-acyl glycines as biosurfactants and therapeutics is highly desirable to replace chemical pathways using toxic phosgene. Herein, we report a novel concept for enzymatic amidation in an aqueous system via glycerol activation of fatty acids and theirsubsequent aminolysis with glycine to synthesize N-acyl glycines. We then engineer an enzyme (proRML) by reshaping its catalytic pocket to enhance its aminolysis activity and catalytic efficiency by 103-fold and 465-fold, respectively. The evolved proRML (D156S/L258K/L267N/S83D/L58K/R86K/W88V) catalyzed the amidation of a fatty acid with glycine to give N-lauroylglycine with high yield (80 %). It accepts a broad range of medium- to long-chain fatty acids (C8 -C18 ), giving high yields of N-decanoyl-, N-myristoyl-, and N-oleoylglycine. The developed amidation concept may be general, and the engineered enzyme is useful for the green synthesis of N-acyl glycines.


Assuntos
Glicina , Lipase , Ácidos Graxos/metabolismo , Catálise , Amidas
16.
Molecules ; 28(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36838787

RESUMO

New fluorinated polyhydroxyurethanes (FPHUs) with various molar weights were synthesized via the polyaddition reaction of a fluorinated telechelic bis(cyclocarbonate) (bis-CC) with a diamine. The fluorinated bis-CC was initially synthesized by carbonylation of a fluorinated diepoxide, 1,4-bis(2',3'-epoxypropyl)perfluorobutane, in the presence of LiBr catalyst, in high yield. Then, several reaction conditions were optimized through the model reactions of the fluorinated bis-CC with hexylamine. Subsequently, fluorinated polymers bearing hydroxyurethane moieties (FPHUs) were prepared by reacting the bis-CC with different hexamethylenediamine amounts in bulk at 80 °C and the presence of a catalyst. The chemoselective polymerization reaction yielded three isomers bearing primary and secondary hydroxyl groups in 61-82% yield. The synthesized fluorinated CCs and the corresponding FPHUs were characterized by 1H, 19F, and 13C NMR spectroscopy. They were compared to their hydrogenated homologues synthesized in similar conditions. The gel permeation chromatography (GPC), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA) data of the FPHUs revealed a higher molar mass and a slight increase in glass transition and decomposition temperatures compared to those of the PHUs.


Assuntos
Polímeros de Fluorcarboneto , Polímeros , Polímeros/química , Temperatura , Polimerização , Isomerismo
17.
Chem Asian J ; 18(5): e202201195, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36577118

RESUMO

A previously reported non-toxic guanidine-iron catalyst active in the ring opening polymerization (ROP) of polylactide (PLA) under industrially relevant conditions was evaluated for its activity in the alcoholysis and aminolysis of PLA under mild conditions. Kinetic and thermodynamic parameters were determined for the methanolysis of PLA with [FeCl2 (TMG5NMe2 asme)] (C1) using 1 H NMR spectroscopy. A comparison with the Zn analog of C1 showed that the metal center has a large impact on the activity for the alcoholysis. Further, the influence of different nucleophiles was tested broadening the scope of products from PLA waste. C1 is the first discrete metal catalyst reported to be active in the selective aminolysis of PLA. Catalyst recycling, scale-up experiments and solvent-free alcoholysis were conducted successfully strengthening the industrial relevance and highlighting aspects of green chemistry. Moreover, the selective depolymerization of PLA in polymer blends was successful. C1 is a promising catalyst for a circular (bio)plastics economy.

18.
J Funct Biomater ; 13(4)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36547532

RESUMO

Polyester-based scaffolds are of research interest for the regeneration of a wide spectrum of tissues. However, there is a need to improve scaffold wettability and introduce bioactivity. Surface modification is a widely studied approach for improving scaffold performance and maintaining appropriate bulk properties. In this study, three methods to functionalize the surface of the poly(lactide-co-ε-caprolactone) PLCL fibres using gelatin immobilisation were compared. Hydrolysis, oxygen plasma treatment, and aminolysis were chosen as activation methods to introduce carboxyl (-COOH) and amino (-NH2) functional groups on the surface before gelatin immobilisation. To covalently attach the gelatin, carbodiimide coupling was chosen for hydrolysed and plasma-treated materials, and glutaraldehyde crosslinking was used in the case of the aminolysed samples. Materials after physical entrapment of gelatin and immobilisation using carbodiimide coupling without previous activation were prepared as controls. The difference in gelatin amount on the surface, impact on the fibres morphology, molecular weight, and mechanical properties were observed depending on the type of modification and applied parameters of activation. It was shown that hydrolysis influences the surface of the material the most, whereas plasma treatment and aminolysis have an effect on the whole volume of the material. Despite this difference, bulk mechanical properties were affected for all the approaches. All materials were completely hydrophilic after functionalization. Cytotoxicity was not recognized for any of the samples. Gelatin immobilisation resulted in improved L929 cell morphology with the best effect for samples activated with hydrolysis and plasma treatment. Our study indicates that the use of any surface activation method should be limited to the lowest concentration/reaction time that enables subsequent satisfactory functionalization and the decision should be based on a specific function that the final scaffold material has to perform.

19.
Polymers (Basel) ; 14(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36559848

RESUMO

The degradation pattern of bacterial poly-3-hydroxybutyrate (PHB) in dimethylformamide (DMF) and dioxane solutions at 100 °C assisted by ethylenediamine, 1,4-diaminobutane and monoaminoethanol was studied. When diamines were introduced into the PHB solution in DMF in the amount of 1 mol of the reagent to 5 or 10 mol of PHB monomers, a rapid decrease in the molecular weight of the polymer was observed. The initial value of the weight average molecular weight (Mw) 840 kDa had decreased by 20-30 times within the first 10-20 min of the experiment, followed by its gradual decrease to several thousand Da. When a similar molar quantity of aminoethanol was added, the molecular weight decreased slower. PHB had been degrading much slower in the dioxane solution than in DMF. By varying the number of reagents, it was possible to reach stabilization of the Mw at 1000-3000 Da when using diamines and 8000-20,000 Da using aminoethanol. 1H NMR analysis of the oligomers revealed of amino and amido groups forming in their structure. From the opposite end of the polymer chain, residues of 3-hydroxybutyric, crotonic and isocrotonic acids were formed during degradation. Differential scanning calorimetry indicated that after oligomerization there was a decrease in the melting point from 178 °C to 140-170 °C depending on the decrease in the molecular weight. The method proposed can be used for obtaining aminated PHB oligomers.

20.
Polymers (Basel) ; 14(19)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36236102

RESUMO

Immobilization of cell adhesive proteins on the scaffold surface has become a widely reported method that can improve the interaction between scaffold and cells. In this study, three nanofibrous scaffolds obtained by electrospinning of poly(caprolactone) (PCL), poly(L-lactide-co-caprolactone) (PLCL) 70:30, or poly(L-lactide) (PLLA) were subjected to chemical immobilization of gelatin based on aminolysis and glutaraldehyde cross-linking, as well as physisorption of gelatin. Two sets of aminolysis conditions were applied to evaluate the impact of amine group content. Based on the results of the colorimetric bicinchoninic acid (BCA) assay, it was shown that the concentration of gelatin on the surface is higher for the chemical modification and increases with the concentration of free NH2 groups. XPS (X-ray photoelectron spectroscopy) analysis confirmed this outcome. On the basis of XPS results, the thickness of the gelatin layer was estimated to be less than 10 nm. Initially, hydrophobic scaffolds are completely wettable after coating with gelatin, and the time of waterdrop absorption was correlated with the surface concentration of gelatin. In the case of all physically and mildly chemically modified samples, the decrease in stress and strain at break was relatively low, contrary to strongly aminolyzed PLCL and PLLA samples. Incubation testing performed on the PCL samples showed that a chemically immobilized gelatin layer is more stable than a physisorbed one; however, even after 90 days, more than 60% of the initial gelatin concentration was still present on the surface of physically modified samples. Mouse fibroblast L929 cell culture on modified samples indicates a positive effect of both physical and chemical modification on cell morphology. In the case of PCL and PLCL, the best morphology, characterized by stretched filopodia, was observed after stronger chemical modification, while for PLLA, there was no significant difference between modified samples. Results of metabolic activity indicate the better effect of chemical immobilization than of physisorption of gelatin.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA