Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pathogens ; 12(12)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38133266

RESUMO

Trichomonas vaginalis is an extracellular protozoan parasite that causes human trichomoniasis, a sexually transmitted infection (STI) that affects approximately 270 million people worldwide. The phenomenon of T. vaginalis adhesion to inert substrates has been described in several reports. Still, very few studies on cluster formation have been conducted, and more detailed analyses of the contact regions between the parasites' membranes in these aggregate formations have not been carried out. The present study aims to show that T. vaginalis forms a tight monolayer, similar to an epithelium, with parasites firmly adhered to the culture flask bottom by interdigitations and in the absence of host cells. In addition, we analyzed and compared the formation of the clusters, focusing on parasite aggregates that float in the culture flasks. We employed various imaging techniques, including high-resolution scanning electron microscopy, transmission electron microscopy, cytochemistry, TEM tomography, and dye injection. We analyzed whether the monolayer behaves as an epithelium, analyzing cell junctions, cell communication, and ultrastructural aspects, and concluded that monolayer formation differs from cluster formation in many aspects. The monolayers form strong adhesion, whereas the clusters have fragile attachments. We did not find fusion or the passage of molecules between neighbor-attached cells; there is no need for different strains to form filopodia, cytonemes, and extracellular vesicles during cluster and monolayer formation.

2.
Microorganisms ; 10(11)2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36363768

RESUMO

This review presents the main cell organelles and structures of two important protist parasites, Giardia intestinalis, and Trichomonas vaginalis; many are unusual and are not found in other eukaryotic cells, thus could be good candidates for new drug targets aimed at improvement of the chemotherapy of diseases caused by these eukaryotic protists. For example, in Giardia, the ventral disc is a specific structure to this parasite and is fundamental for the adhesion and pathogenicity to the host. In Trichomonas, the hydrogenosome, a double membrane-bounded organelle that produces ATP, also can be a good target. Other structures include mitosomes, ribosomes, and proteasomes. Metronidazole is the most frequent compound used to kill many anaerobic organisms, including Giardia and Trichomonas. It enters the cell by passive diffusion and needs to find a highly reductive environment to be reduced to the nitro radicals to be active. However, it provokes several side effects, and some strains present metronidazole resistance. Therefore, to improve the quality of the chemotherapy against parasitic protozoa is important to invest in the development of highly specific compounds that interfere with key steps of essential metabolic pathways or in the functional macromolecular complexes which are most often associated with cell structures and organelles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA