Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 628
Filtrar
1.
Mass Spectrom Rev ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958096

RESUMO

Liquid chromatography paired with tandem mass spectrometry (LC-MS/MS) is the gold standard in measurement of endocannabinoid concentrations in biomatrices. We conducted a systematic review of literature to identify advances in targeted LC-MS/MS methods in the period 2017-2024. We found that LC-MS/MS methods for endocannabinoid quantification are relatively consistent both across time and across biomatrices. Recent advances have primarily been in three areas: (1) sample preparation techniques, specific to the chosen biomatrix; (2) the range of biomatrices tested, recently favoring blood matrices; and (3) the breadth of endocannabinoid and endocannabinoid-like analytes incorporated into assays. This review provides a summary of the recent literature and a guide for researchers looking to establish the best methods for quantifying endocannabinoids in a range of biomatrices.

2.
Front Immunol ; 15: 1423776, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38979427

RESUMO

Introduction: The endocannabinoid system (ECS), named after the chemical compounds found in the cannabis plant, is a regulatory network of neurotransmitters, receptors, and enzymes that plays crucial roles in skin health and disease. Endogenous ligands of the ECS, called endocannabinoids, have proven to be important regulators of immune responses. One of the most prevalent endocannabinoids, arachidonoylethanolamide (also known as anandamide), is known for its anti-inflammatory effects. Langerhans cells (LCs) are the sole antigen-presenting cells present in the human epidermis. They serve as the first line of defense against pathogens and are essential for the skin's specific immune responses and play a critical role in maintaining tissue homeostasis; however, little is known about the effect of endocannabinoids on these cells. Our research aimed to provide the connection between monocyte-derived Langerhans cells (moLCs) and the ECS, shedding light on their collaborative roles in immune homeostasis and inflammation. Methods: Human monocytes were differentiated into moLCs using established protocols. Anandamide was applied during the differentiation process to test its effect on the viability, marker expression, and cytokine production of the cells, as well as in short term treatments for intracellular calcium measurement. TLR ligands applied after the differentiation protocol were used to activate moLCs. The impact of anandamide on the functionality of moLCs was further assessed using differential gene expression analysis of bulk RNA-Seq data, moLC-T cell cocultures, while ELISpot was employed to determine polarization of T cells activated in the aforementioned cocultures. Results: Anandamide did not significantly affect the viability of moLCs up to 10 µM. When applied during the differentiation process it had only a negligible effect on CD207 expression, the prototypic marker of LCs; however, there was an observed reduction in CD1a expression by moLCs. Anandamide had no significant effects on the maturation status of moLCs, nor did it affect the maturation induced by TLR3 and TLR7/8 agonists. MoLCs differentiated in the presence of anandamide did however show decreased production of CXCL8, IL-6, IL-10 and IL-12 cytokines induced by TLR3 and TLR7/8 activation. Anandamide-treated moLCs showed an increased capability to activate naïve T cells; however, not to the level seen with combined TLR agonism. RNA sequencing analysis of moLCs differentiated with anandamide showed modest changes compared to control cells but did reveal an inhibitory effect on oxidative phosphorylation specifically in activated moLCs. Anandamide also promoted the polarization of naïve T cells towards a Th1 phenotype. Discussion: Our results show that anandamide has nuanced effects on the differentiation, maturation, cytokine secretion, metabolism and function of activated moLCs. Among these changes the decrease in CD1a expression on moLCs holds promise to selectively dampen inflammation induced by CD1a restricted T cells, which have been implicated as drivers of inflammation in common inflammatory skin conditions such as psoriasis, atopic dermatitis and contact dermatitis.


Assuntos
Ácidos Araquidônicos , Endocanabinoides , Homeostase , Células de Langerhans , Monócitos , Alcamidas Poli-Insaturadas , Endocanabinoides/farmacologia , Endocanabinoides/metabolismo , Humanos , Alcamidas Poli-Insaturadas/farmacologia , Células de Langerhans/imunologia , Células de Langerhans/metabolismo , Células de Langerhans/efeitos dos fármacos , Ácidos Araquidônicos/farmacologia , Monócitos/imunologia , Monócitos/metabolismo , Monócitos/efeitos dos fármacos , Citocinas/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/imunologia , Células Cultivadas , Pele/imunologia , Pele/metabolismo , Inflamação/imunologia , Inflamação/metabolismo
3.
Allergy ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38935036

RESUMO

BACKGROUND: Hereditary angioedema (HAE) is a rare genetic disorder characterized by local, self-limiting edema due to temporary increase in vascular permeability. HAE with normal C1 esterase inhibitor (C1INH) activity includes the form with mutations in the F12 gene encoding for coagulation factor XII (FXII-HAE) causing an overproduction of bradykinin (BK) leading to angioedema attack. BK binding to B2 receptors (BK2R) leads to an activation of phospholipase C (PLC) and subsequent generation of second messengers: diacylglycerols (DAGs) and possibly the endocannabinoids (eCBs), 2-arachidonoylglycerol (2-AG) and anandamide (AEA), and eCB-related N-acylethanolamines [palmitoylethanolamide (PEA) and oleoylethanolamide (OEA)]. To date, there are no data on the role of these lipid mediators in FXII-HAE. METHODS: Here, we analyzed plasma levels of PLC, DAGs, and eCBs in 40 patients with FXII-HAE and 40 sex- and age-matched healthy individuals. RESULTS: Plasma PLC activity was increased in FXII-HAE patients compared to controls. Concentrations of DAG 18:1-20:4, a lipid second messenger produced by PLC, were higher in FXII-HAE compared to controls, and positively correlated with PLC activity and cleaved high molecular kininogen (cHK). Also the concentrations of the DAG metabolite, 2-AG were altered in FXII-HAE. AEA and OEA were decreased in FXII-HAE patients compared to controls; by contrast, PEA, was increased. The levels of all tested mediators did not differ between symptomatic and asymptomatic patients. Moreover, C1INH-HAE patients had elevated plasma levels of PLC, which correlated with cHK, but the levels of DAGs and eCBs were the same as controls. CONCLUSIONS: BK overproduction and BKR2 activation are linked to alteration of PLCs and their metabolites in patients with FXII-HAE. Our results may pave way to investigations on the functions of these mediators in the pathophysiology of FXII-HAE, and provide new potential biomarkers and therapeutic targets.

4.
Neurochem Res ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847909

RESUMO

Understanding the endocannabinoid system in C. elegans may offer insights into basic biological processes and potential therapeutic targets for managing pain and inflammation in human. It is well established that anandamide modulates pain perception by binding to cannabinoid and vanilloid receptors, regulating neurotransmitter release and neuronal activity. One objective of this study was to demonstrate the suitability of C. elegans as a model organism for assessing the antinociceptive properties of bioactive compounds and learning about the role of endocannabinoid system in C. elegans. The evaluation of the compound anandamide (AEA) revealed antinociceptive activity by impeding C. elegans nocifensive response to noxious heat. Proteomic and bioinformatic investigations uncovered several pathways activated by AEA. Enrichment analysis unveiled significant involvement of ion homeostasis pathways, which are crucial for maintaining neuronal function and synaptic transmission, suggesting AEA's impact on neurotransmitter release and synaptic plasticity. Additionally, pathways related to translation, protein synthesis, and mTORC1 signaling were enriched, highlighting potential mechanisms underlying AEA's antinociceptive effects. Thermal proteome profiling identified NPR-32 and NPR-19 as primary targets of AEA, along with OCR-2, Cathepsin B, Progranulin, Transthyretin, and ribosomal proteins. These findings suggest a complex interplay between AEA and various cellular processes implicated in nociceptive pathways and inflammation modulation. Further investigation into these interactions could provide valuable insights into the therapeutic potential of AEA and its targets for the management of pain-related conditions.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38715461

RESUMO

BACKGROUND: The endocannabinoid system plays important roles in various systems, including the genitourinary system; however, its mechanism of action is not fully understood. OBJECTIVES: This study aimed to investigate the direct relaxant effects of anandamide and its possible mechanisms in isolated rat bladder and vas deferens tissues. METHODS: Twenty-one adult male Wistar albino rats were used. Bladder and vas deferens (prostatic and epididymal portions) tissues were mounted in 10 mL of organ baths. Relaxation responses to anandamide were recorded at 3 and 10 µM concentrations. After the rest period, the procedures were repeated in the presence of cannabinoid (CB) and vanilloid receptor antagonists, various potassium channel blockers, cyclo-oxygenase, and nitric oxide synthase inhibitors. In different tissues to investigate the Ca2+-channel antagonistic effect of anandamide, concentration-response curves to CaCl2 were obtained in the absence and presence of anandamide. RESULTS: Anandamide caused a significant relaxation response in the bladder and epididymal vas deferens tissues, but not in the prostatic portion. The effect of anandamide was antagonized in the presence of the CB1 antagonist AM251 or the non-selective potassium channel blocker tetraethylammonium in bladder tissue. In the epididymal vas deferens, anandamide significantly inhibited the calcium contraction responses, especially at high concentrations. The CB2 antagonist AM630 reversed this inhibition. CONCLUSIONS: The results show that anandamide has a direct relaxant effect on the isolated rat bladder and epididymal vas deferens. Anandamide triggers different mechanisms in different types of tissues, and further studies are needed to elucidate the mechanism of action of anandamide.

6.
Artigo em Inglês | MEDLINE | ID: mdl-38770686

RESUMO

Background: Cannabidiol (CBD) has been proposed to have a therapeutic potential over a wide range of neuropsychiatric disorders, including substance use disorders. Pre-clinical evidence suggests that CBD can increase anandamide (AEA) plasma concentration, possibly mediating some of its therapeutic properties. Whether CBD exerts such an effect on AEA in individuals with cocaine use disorder (CUD) remains unknown. Aims: To explore the sustained effects of daily CBD administration on AEA plasma concentrations compared with placebo in CUD. Methods: We used data from a randomized, double-blind, placebo-controlled trial evaluating CBD's efficacy in CUD. Seventy-eight individuals were randomized to receive a daily oral dose of 800 mg CBD (n = 40) or a placebo (n = 38). Participants stayed in an inpatient detoxification setting for 10 days, after which they were followed in an outpatient setting for 12 weeks. AEA plasma concentration was measured at baseline and at 23-h post CBD ingestion on day 8 and week 4. A generalized estimating equation model was used to assess CBD's effects on AEA, and sensitivity analyses were computed using Bayesian linear regressions. Results: Sixty-four participants were included in the analysis. Similar mean AEA plasma concentrations in both treatment groups (p = 0.357) were observed. At day 8, mean AEA plasma concentrations (± standard deviation) were 0.26 (± 0.07) ng/mL in the CBD group and 0.29 (± 0.08) ng/mL in the placebo group (p = 0.832; Bayes factor [BF] = 0.190). At week 4, they were 0.27 (± 0.09) ng/mL in the CBD group and 0.30 (± 0.09) ng/mL in the placebo group (p = 0.181; BF = 0.194). Conclusion: While not excluding any potential acute and short-term effect, daily CBD administration did not exert a sustained impact on AEA plasma concentrations in individuals with CUD compared with placebo. Registration: clinicaltrials.gov (NCT02559167).

7.
Res Sq ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38699363

RESUMO

The endocannabinoid system plays a critical role in modulating both peripheral and central nervous system function. Despite being present throughout the animal kingdom, there has been relatively little investigation of the endocannabinoid system beyond the traditional animal model systems. In this study, we report on the identification and characterization of a fatty acid aminohydrolase (FAAH) in the medicinal leech, Hirudo verbana. FAAH is the primary enzyme responsible for metabolizing the endocannabinoid signaling molecule arachidonoyl ethanolamide (anandamide or AEA) and therefore plays a critical role in regulating AEA levels in the nervous system. This Hirudo FAAH (HirFAAH) is expressed in the leech central nervous system (CNS) and is an orthologue of FAAH-2 observed in vertebrates. Functionally, HirFAAH has serine hydrolase activity based on activity-based protein profiling (ABPP) studies using the fluorophosphonate probe TAMRA-FP. HirFAAH also hydrolyzes arachidonyl 7-amino, 4-methyl coumarin amide (AAMCA), a substrate specific to FAAH. Hydrolase activity during both the ABPP and AAMCA assays was eliminated by mutation at a conserved activity-binding site. Activity was also blocked by the known FAAH inhibitor, URB597. Treatment of Hirudo ganglia with URB597 potentiated synapses made by the pressure-sensitive mechanosensory neuron (P cell), mimicking the effects of exogenously applied AEA. The Hirudo CNS has been a useful system in which to study properties of endocannabinoid modulation of nociception relevant to vertebrates. Therefore, this characterization of HirFAAH is an important contribution to comparative studies of the endocannabinoid system.

8.
Infect Immun ; 92(6): e0002024, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38775488

RESUMO

The endocannabinoid system (ECS), initially identified for its role in maintaining homeostasis, particularly in regulating brain function, has evolved into a complex orchestrator influencing various physiological processes beyond its original association with the nervous system. Notably, an expanding body of evidence emphasizes the ECS's crucial involvement in regulating immune responses. While the specific role of the ECS in bacterial infections remains under ongoing investigation, compelling indications suggest its active participation in host-pathogen interactions. Incorporating the ECS into the framework of bacterial pathogen infections introduces a layer of complexity to our understanding of its functions. While some studies propose the potential of cannabinoids to modulate bacterial function and immune responses, the outcomes inherently hinge on the specific infection and cannabinoid under consideration. Moreover, the bidirectional relationship between the ECS and the gut microbiota underscores the intricate interplay among diverse physiological processes. The ECS extends its influence far beyond its initial discovery, emerging as a promising therapeutic target across a spectrum of medical conditions, encompassing bacterial infections, dysbiosis, and sepsis. This review comprehensively explores the complex roles of the ECS in the modulation of bacteria, the host's response to bacterial infections, and the dynamics of the microbiome. Special emphasis is placed on the roles of cannabinoid receptor types 1 and 2, whose signaling intricately influences immune cell function in microbe-host interactions.


Assuntos
Infecções Bacterianas , Canabinoides , Endocanabinoides , Microbioma Gastrointestinal , Interações Hospedeiro-Patógeno , Endocanabinoides/metabolismo , Humanos , Infecções Bacterianas/imunologia , Infecções Bacterianas/microbiologia , Animais , Interações Hospedeiro-Patógeno/imunologia , Canabinoides/metabolismo , Canabinoides/farmacologia
9.
Neuromolecular Med ; 26(1): 20, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744725

RESUMO

The salient features of autism spectrum disorder (ASD) encompass persistent difficulties in social communication, as well as the presence of restricted and repetitive facets of behavior, hobbies, or pursuits, which are often accompanied with cognitive limitations. Over the past few decades, a sizable number of studies have been conducted to enhance our understanding of the pathophysiology of ASD. Preclinical rat models have proven to be extremely valuable in simulating and analyzing the roles of a wide range of established environmental and genetic factors. Recent research has also demonstrated the significant involvement of the endocannabinoid system (ECS) in the pathogenesis of several neuropsychiatric diseases, including ASD. In fact, the ECS has the potential to regulate a multitude of metabolic and cellular pathways associated with autism, including the immune system. Moreover, the ECS has emerged as a promising target for intervention with high predictive validity. Particularly noteworthy are resent preclinical studies in rodents, which describe the onset of ASD-like symptoms after various genetic or pharmacological interventions targeting the ECS, providing encouraging evidence for further exploration in this area.


Assuntos
Transtorno do Espectro Autista , Modelos Animais de Doenças , Endocanabinoides , Endocanabinoides/fisiologia , Endocanabinoides/metabolismo , Transtorno do Espectro Autista/tratamento farmacológico , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Animais , Humanos , Ratos , Receptores de Canabinoides/fisiologia , Camundongos , Criança
10.
Artigo em Inglês | MEDLINE | ID: mdl-38683635

RESUMO

Background: Dysregulation of the endocannabinoid (eCB) system is implicated in various stress-related neuropsychiatric disorders (SRDs), including anxiety, depression, and post-traumatic stress disorder (PTSD). In this systematic review and meta-analysis, our objectives were to characterize circulating anandamide (AEA) and 2-arachidonoylglycerol (2-AG) concentrations at rest and in response to acute laboratory-based psychosocial stress in individuals with SRDs and without (controls). Our primary aims were to assess the effects of acute psychosocial stress on eCB concentrations in controls (Aim 1), compare baseline (prestress) eCB concentrations between individuals with SRDs and controls (Aim 2), and explore differential eCB responses to acute psychosocial stress in individuals with SRDs compared with controls (Aim 3). Methods: On June 8, 2023, a comprehensive review of the MEDLINE (PubMed) database was conducted to identify original articles meeting inclusion criteria. A total of 1072, 1341, and 400 articles were screened for inclusion in Aims 1, 2, and 3, respectively. Results: Aim 1, comprised of seven studies in controls, revealed that most studies reported stress-related increases in AEA (86%, with 43% reporting statistical significance) and 2-AG (83%, though none were statistically significant except for one study in saliva). However, meta-analyses did not support these patterns (p's>0.05). Aim 2, with 20 studies, revealed that most studies reported higher baseline concentrations of both AEA (63%, with 16% reporting statistical significance) and 2-AG (60%, with 10% reporting statistical significance) in individuals with SRDs compared with controls. Meta-analyses confirmed these findings (p's<0.05). Aim 3, which included three studies, had only one study that reported statistically different stress-related changes in 2-AG (but not AEA) between individuals with PTSD (decrease) and controls (increase), which was supported by the meta-analysis (p<0.001). Meta-analyses showed heterogeneity across studies and aims (I2=14-97%). Conclusion: Despite substantial heterogeneity in study characteristics, samples, and methodologies, consistent patterns emerged, including elevated baseline AEA and 2-AG in individuals with SRDs compared with controls, as well as smaller stress-related increases in 2-AG in individuals with SRDs compared with controls. To consider eCBs as reliable biomarkers and potential intervention targets for SRDs, standardized research approaches are needed to clarify the complex relationships between eCBs, SRDs, and psychosocial stress.

11.
Eur J Ophthalmol ; : 11206721241247419, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38613316

RESUMO

PURPOSE: To compare the levels of endocannabinoids (EC) in plasma, aqueous humor and tears, cortisol in plasma and aqueous, in primary angle closure glaucoma (PACG) and controls, while comparing the quality of life in both groups. METHODS: A total of 60 patients, ≥40years of age, with a diagnosis of PACG or cataract, 30 in each group were recruited. They were subjected to a detailed ophthalmic evaluation, a WHO Quality of Life Brief Version (WHOQOL-BREF) questionnaire answering and collection of tear, aqueous and blood samples. The levels of endocannabinoids-anandamide (AEA), 2-arachidonoylglycerol (2AG) in plasma, aqueous humor and tears; cortisol in plasma and aqueous humor; and WHO-QOL score in each group were noted. RESULTS: Plasma AEA (p = 0.01) and plasma 2-AG, (p = 0.002) levels were significantly higher in the control group as compared to the PACG group. WHO-QOL score was better in controls (p < 0.001). The EC were in undetectable levels in aqueous. Plasma and aqueous cortisol were significantly higher in PACG and both had the highest Area under the receiver operating characteristics (AUROC) curve value for differentiating PACG from controls. Tear 2AG and tear AEA had a moderately strong positive correlation with plasma 2-AG. Females had insignificantly higher levels of plasma and tear endocannabinoids. CONCLUSIONS: Tear endocannabinoids were determined for the first time in PACG and normal with no difference between the two groups. Plasma and aqueous cortisol levels are a differentiating factor between normal and glaucoma patients with plasma endocannabinoids being remarkably higher in normals. Quality of life in glaucoma patients with high cortisol levels is poorer.

12.
Brain Behav Immun ; 119: 301-316, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38608740

RESUMO

Maternal obesity is associated with an increased risk of psychiatric disorders such as anxiety, depression, schizophrenia and autism spectrum disorder in the offspring. While numerous studies focus on preventive measures targeting the mothers, only a limited number provide practical approaches for addressing the damages once they are already established. We have recently demonstrated the interplay between maternal obesity and treatment with cannabidiol (CBD) on hypothalamic inflammation and metabolic disturbances, however, little is known about this relationship on behavioral manifestations and neurochemical imbalances in other brain regions. Therefore, here we tested whether CBD treatment could mitigate anxiety-like and social behavioral alterations, as well as neurochemical disruptions in both male and female offspring of obese dams. Female Wistar rats were fed a cafeteria diet for 12 weeks prior to mating, and during gestation and lactation. Offspring received CBD (50 mg/kg) from weaning for 3 weeks. Behavioral tests assessed anxiety-like manifestations and social behavior, while neuroinflammatory and neurochemical markers were evaluated in the prefrontal cortex (PFC) and hippocampus. CBD treatment attenuated maternal obesity-induced anxiety-like and social behavioral alterations, followed by rescuing effects on imbalanced neurotransmitter and endocannabinoid concentrations and altered expression of glial markers, CB1, oxytocin and dopamine receptors, with important differences between sexes. Overall, the findings of this study provide insight into the signaling pathways for the therapeutic benefits of CBD on neuroinflammation and neurochemical imbalances caused by perinatal maternal obesity in the PFC and the hippocampus, which translates into the behavioral manifestations, highlighting the sexual dimorphism encompassing both the transgenerational effect of obesity and the endocannabinoid system.


Assuntos
Ansiedade , Comportamento Animal , Canabidiol , Hipocampo , Obesidade Materna , Córtex Pré-Frontal , Efeitos Tardios da Exposição Pré-Natal , Ratos Wistar , Animais , Feminino , Canabidiol/farmacologia , Gravidez , Ratos , Masculino , Obesidade Materna/metabolismo , Ansiedade/metabolismo , Ansiedade/tratamento farmacológico , Ansiedade/etiologia , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , Comportamento Social , Obesidade/metabolismo , Endocanabinoides/metabolismo
13.
Artigo em Inglês | MEDLINE | ID: mdl-38502208

RESUMO

Determining peripheral modulation of the endocannabinoid system (ECS) may be important for differentiating individuals with schizophrenia. Such differentiation can also be extended to subgroups of individuals, those who use cannabis and antipsychotic medications, particularly those who are treatment resistant. Patients and controls were recruited from the outpatient clinic of the Psychosis Group of the University of São Paulo, Brazil. A final sample of 93 individuals was divided into 3 groups: patients with schizophrenia using clozapine (treatment-resistant) (n = 29), patients with schizophrenia using another antipsychotic (n = 31), and controls (n = 33). By measuring the proteins and metabolites involved in the ECS pathways in the peripheral blood, AEA (anandamide), 2-AG (2-arachidonoyl ethanolamine), and CB2 receptor (peripheral) were quantified. Individuals reporting lifetime cannabis use had lower 2-AG plasma levels (p = 0.011). Regarding the CB2 receptor, the values of patients with schizophrenia and controls were similar, but those of patients using antipsychotics other than clozapine differed (p = 0.022). In generalized linear models to control for confounders, the use of cannabis remained the only factor that significantly influenced 2-AG levels. The relationship for non-clozapine antipsychotics as the only factor related to CB2 changes was marginally significant. We found for the first time that cannabis use and non-clozapine antipsychotic medication are potentially involved in the modulation of the ECS, specifically influencing 2-AG endocannabinoid and CB2 receptor levels. More studies regarding the ECS are needed since it has been increasingly related to the physiopathology of schizophrenia.

14.
Pharmaceuticals (Basel) ; 17(3)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38543105

RESUMO

Sleep disruption is an expected component of aging and neurodegenerative conditions, including Alzheimer's disease (AD). Sleep disruption has been demonstrated as a driver of AD pathology and cognitive decline. Therefore, treatments designed to maintain sleep may be effective in slowing or halting AD progression. However, commonly used sleep aid medications are associated with an increased risk of AD, highlighting the need for sleep aids with novel mechanisms of action. The endocannabinoid system holds promise as a potentially effective and novel sleep-enhancing target. By using pharmacology and genetic knockout strategies, we evaluated fatty acid amide hydrolase (FAAH) as a therapeutic target to improve sleep and halt disease progression in a transgenic Tau P301S (PS19) model of Tauopathy and AD. We have recently shown that PS19 mice exhibit sleep disruption in the form of dark phase hyperarousal as an early symptom that precedes robust Tau pathology and cognitive decline. Acute FAAH inhibition with PF3845 resulted in immediate improvements in sleep behaviors in male and female PS19 mice, supporting FAAH as a potentially suitable sleep-promoting target. Moreover, sustained drug dosing for 5-10 days resulted in maintained improvements in sleep. To evaluate the effect of chronic FAAH inhibition as a possible therapeutic strategy, we generated FAAH-/- PS19 mice models. Counter to our expectations, FAAH knockout did not protect PS19 mice from progressive sleep loss, neuroinflammation, or cognitive decline. Our results provide support for FAAH as a novel target for sleep-promoting therapies but further indicate that the complete loss of FAAH activity may be detrimental.

15.
Front Immunol ; 15: 1331210, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38464529

RESUMO

Introduction: Microglia and macrophages can influence the evolution of myelin lesions through the production of extracellular vesicles (EVs). While microglial EVs promote in vitro differentiation of oligodendrocyte precursor cells (OPCs), whether EVs derived from macrophages aid or limit OPC maturation is unknown. Methods: Immunofluorescence analysis for the myelin protein MBP was employed to evaluate the impact of EVs from primary rat macrophages on cultured OPC differentiation. Raman spectroscopy and liquid chromatography-mass spectrometry was used to define the promyelinating lipid components of myelin EVs obtained in vitro and isolated from human plasma. Results and discussion: Here we show that macrophage-derived EVs do not promote OPC differentiation, and those released from macrophages polarized towards an inflammatory state inhibit OPC maturation. However, their lipid cargo promotes OPC maturation in a similar manner to microglial EVs. We identify the promyelinating endocannabinoids anandamide and 2-arachidonoylglycerol in EVs released by both macrophages and microglia in vitro and circulating in human plasma. Analysis of OPC differentiation in the presence of the endocannabinoid receptor antagonists SR141716A and AM630 reveals a key role of vesicular endocannabinoids in OPC maturation. From this study, EV-associated endocannabinoids emerge as important mediators in microglia/macrophage-oligodendrocyte crosstalk, which may be exploited to enhance myelin repair.


Assuntos
Vesículas Extracelulares , Microglia , Ratos , Animais , Humanos , Microglia/metabolismo , Endocanabinoides/metabolismo , Macrófagos , Oligodendroglia/metabolismo
16.
Biomed Pharmacother ; 173: 116369, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38452657

RESUMO

Anandamide (AEA) is an important modulator of nociception in the spinal dorsal horn, acting presynaptically through Cannabinoid (CB1) and Transient receptor potential vanilloid (TRPV1) receptors. The role of AEA (1 µM, 10 µM, and 30 µM) application on the modulation of nociceptive synaptic transmission under control and inflammatory conditions was studied by recording miniature excitatory postsynaptic currents (mEPSCs) from neurons in spinal cord slices. Inhibition of the CB1 receptors by PF514273, TRPV1 by SB366791, and the fatty acid amide hydrolase (FAAH) by URB597 was used. Under naïve conditions, the AEA application did not affect the mEPSCs frequency (1.43±0.12 Hz) when all the recorded neurons were considered. The mEPSC frequency increased (180.0±39.2%) only when AEA (30 µM) was applied with PF514273 and URB597. Analysis showed that one sub-population of neurons had synaptic input inhibited (39.1% of neurons), the second excited (43.5%), whereas 8.7% showed a mixed effect and 8.7% did not respond to the AEA. With inflammation, the AEA effect was highly inhibitory (72.7%), while the excitation was negligible (9.1%), and 18.2% were not modulated. After inflammation, more neurons (45.0%) responded even to low AEA by mEPSC frequency increase with PF514273/URB597 present. AEA-induced dual (excitatory/inhibitory) effects at the 1st nociceptive synapse should be considered when developing analgesics targeting the endocannabinoid system. These findings contrast the clear inhibitory effects of the AEA precursor 20:4-NAPE application described previously and suggest that modulation of endogenous AEA production may be more favorable for analgesic treatments.


Assuntos
Ácidos Araquidônicos , Benzamidas , Carbamatos , Endocanabinoides , Nociceptividade , Humanos , Endocanabinoides/farmacologia , Alcamidas Poli-Insaturadas/farmacologia , Corno Dorsal da Medula Espinal , Analgésicos/farmacologia , Inflamação/tratamento farmacológico , Amidoidrolases
17.
Int J Mol Sci ; 25(4)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38396948

RESUMO

Endocannabinoid anandamide (AEA) and paracannabinoid lysophosphatidylinositol (LPI) play a significant role in cancer cell proliferation regulation. While anandamide inhibits the proliferation of cancer cells, LPI is known as a cancer stimulant. Despite the known endocannabinoid receptor crosstalk and simultaneous presence in the cancer microenvironment of both molecules, their combined activity has never been studied. We evaluated the effect of LPI on the AEA activity in six human breast cancer cell lines of different carcinogenicity (MCF-10A, MCF-7, BT-474, BT-20, SK-BR-3, MDA-MB-231) using resazurin and LDH tests after a 72 h incubation. AEA exerted both anti-proliferative and cytotoxic activity with EC50 in the range from 31 to 80 µM. LPI did not significantly affect the cell viability. Depending on the cell line, the response to the LPI-AEA combination varied from a decrease in AEA cytotoxicity to an increase in it. Based on the inhibitor analysis of the endocannabinoid receptor panel, we showed that for the former effect, an active GPR18 receptor was required and for the latter, an active CB2 receptor. The data obtained for the first time are important for the understanding the manner by which endocannabinoid receptor ligands acting simultaneously can modulate cancer growth at different stages.


Assuntos
Ácidos Araquidônicos , Neoplasias da Mama , Endocanabinoides , Lisofosfolipídeos , Humanos , Feminino , Endocanabinoides/farmacologia , Neoplasias da Mama/tratamento farmacológico , Alcamidas Poli-Insaturadas/farmacologia , Morte Celular , Receptor CB1 de Canabinoide , Microambiente Tumoral
18.
Psychol Med ; : 1-11, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38389452

RESUMO

BACKGROUND: Interactions between the endocannabinoid system (ECS) and neurotransmitter systems might mediate the risk of developing a schizophrenia spectrum disorder (SSD). Consequently, we investigated in patients with SSD and healthy controls (HC) the relations between (1) plasma concentrations of two prototypical endocannabinoids (N-arachidonoylethanolamine [anandamide] and 2-arachidonoylglycerol [2-AG]) and (2) striatal dopamine synthesis capacity (DSC), and glutamate and y-aminobutyric acid (GABA) levels in the anterior cingulate cortex (ACC). As anandamide and 2-AG might reduce the activity of these neurotransmitters, we hypothesized negative correlations between their plasma levels and the abovementioned neurotransmitters in both groups. METHODS: Blood samples were obtained from 18 patients and 16 HC to measure anandamide and 2-AG plasma concentrations. For all subjects, we acquired proton magnetic resonance spectroscopy scans to assess Glx (i.e. glutamate plus glutamine) and GABA + (i.e. GABA plus macromolecules) concentrations in the ACC. Ten patients and 14 HC also underwent [18F]F-DOPA positron emission tomography for assessment of striatal DSC. Multiple linear regression analyses were used to investigate the relations between the outcome measures. RESULTS: A negative association between 2-AG plasma concentration and ACC Glx concentration was found in patients (p = 0.008). We found no evidence of other significant relationships between 2-AG or anandamide plasma concentrations and dopaminergic, glutamatergic, or GABAergic measures in either group. CONCLUSIONS: Our preliminary results suggest an association between peripheral 2-AG and ACC Glx levels in patients.

19.
J Lipid Res ; 65(3): 100520, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38369184

RESUMO

Lipid amidases of therapeutic relevance include acid ceramidase (AC), N-acylethanolamine-hydrolyzing acid amidase, and fatty acid amide hydrolase (FAAH). Although fluorogenic substrates have been developed for the three enzymes and high-throughput methods for screening have been reported, a platform for the specific detection of these enzyme activities in intact cells is lacking. In this article, we report on the coumarinic 1-deoxydihydroceramide RBM1-151, a 1-deoxy derivative and vinilog of RBM14-C12, as a novel substrate of amidases. This compound is hydrolyzed by AC (appKm = 7.0 µM; appVmax = 99.3 nM/min), N-acylethanolamine-hydrolyzing acid amidase (appKm = 0.73 µM; appVmax = 0.24 nM/min), and FAAH (appKm = 3.6 µM; appVmax = 7.6 nM/min) but not by other ceramidases. We provide proof of concept that the use of RBM1-151 in combination with reported irreversible inhibitors of AC and FAAH allows the determination in parallel of the three amidase activities in single experiments in intact cells.


Assuntos
Amidoidrolases , Corantes Fluorescentes , Etanolaminas/química , Lipídeos
20.
Cannabis Cannabinoid Res ; 9(2): 581-590, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36656312

RESUMO

Introduction: Cannabidiol (CBD) has gained considerable public and scientific attention because of its known and potential medicinal properties, as well as its commercial success in a wide range of products. Although CBD lacks cannabimimetic intoxicating side effects in humans and fails to substitute for cannabinoid type-1 receptor (CB1R) agonists in laboratory animal models of drug discrimination paradigm, anecdotal reports describe it as producing a "pleasant" subjective effect in humans. Thus, we speculated that this phytocannabinoid may elicit distinct subjective effects. Accordingly, we investigated whether mice would learn to discriminate CBD from vehicle. Additionally, we examined whether CBD may act as a CB1R allosteric and whether it would elevate brain endocannabinoid concentrations. Materials and Methods: C57BL/6J mice underwent discrimination training of either CBD or the high-efficacy CB1R agonist CP55,940 from vehicle. Additionally, we examined whether CBD or the CB1R-positive allosteric modulator ZCZ011 would alter the CP55,940 discriminative cue. Finally, we tested whether an acute CBD injection would elevate endocannabinoid levels in brain, and also quantified blood and brain levels of CBD. Results: Mice failed to discriminate high doses of CBD from vehicle following 124 training days, though the same subjects subsequently acquired CP55,940 discrimination. In a second group of mice trained to discriminate CP55,940, CBD neither elicited substitution nor altered response rates. A single injection of 100 or 200 mg/kg CBD did not affect brain levels of endogenous cannabinoids and related lipids and resulted in high drug concentrations in blood and whole brain at 0.5 h and continued to increase at 3 h. Discussion: CBD did not engender an interoceptive stimulus, did not disrupt performance in a food-motivated operant task, and lacked apparent effectiveness in altering brain endocannabinoid levels or modulating the pharmacological effects of a CB1R agonist. These findings support the assertions that CBD lacks abuse liability and its acute administration does not appear to play a functional role in modulating key components of the endocannabinoid system in whole animals.


Assuntos
Canabidiol , Humanos , Camundongos , Animais , Canabidiol/farmacologia , Endocanabinoides , Camundongos Endogâmicos C57BL , Cicloexanóis/farmacologia , Agonistas de Receptores de Canabinoides
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...