Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Bioorg Chem ; 144: 107147, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38280357

RESUMO

The strategy of bioactivity-guided isolation is widely used to obtain active compounds as quickly as possible. Thus, the inhibitory effects on human erythroleukemia cells (HEL) were applied to guide the isolation of the anti-leukemic compounds from Aglaia abbreviata. As a result, 19 compounds (16 steroids, two phenol derivatives, and a rare C12 chain nor-sesquiterpenoid), including 13 new compounds, were isolated and identified based on spectroscopic data analysis, single-crystal X-ray diffraction data, and electronic circular dichroism (ECD) calculations. Among them, 9 steroids exhibited good selective anti-leukemic activity against HEL and K562 (human chronic myeloid leukemia cells) cells with IC50 values between 2.29 ± 0.18 µM and 19.58 ± 0.13 µM. Notably, all the active compounds had relatively lower toxicity on the normal human liver cell line (HL-7702). Furthermore, five compounds (1, 4, 8, 10, and 19) displayed good anti-inflammatory effects, with IC50 values between 7.15 ± 0.16 and 27.1 ± 0.37 µM. An α,ß-unsaturated ketone or a 5,6Δ double bond was crucial for improving anti-leukemic effect from the structure-activity relationship analysis. The compound with the most potential, 14 was selected for the preliminary mechanistic study. Compound 14 can induce apoptosis and cause cell cycle arrest. The expression of the marker proteins, such as PARP and caspase 3, were notably effected by this compound, thus inducing apoptosis. In conclusion, our investigation implied that compound 14 may serve as a potential anti-leukemia agent.


Assuntos
Aglaia , Humanos , Aglaia/química , Apoptose , Bioensaio , Estrutura Molecular , Esteroides/farmacologia , Relação Estrutura-Atividade , Antineoplásicos/química , Antineoplásicos/farmacologia
2.
Front Pharmacol ; 14: 1271252, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026987

RESUMO

Leukemia encompasses a group of highly heterogeneous diseases that pose a serious threat to human health. The long-term outcome of patients with leukemia still needs to be improved and new effective therapeutic strategies continue to be an unmet clinical need. Shikonin (SHK) is a naphthoquinone derivative that shows multiple biological function includes anti-tumor, anti-inflammatory, and anti-allergic effects. Numerous studies have reported the anti-leukemia activity of SHK during the last 3 decades and there are studies showing that SHK is particularly effective towards various leukemia cells compared to solid tumors. In this review, we will discuss the anti-leukemia effect of SHK and summarize the underlying mechanisms. Therefore, SHK may be a promising agent to be developed as an anti-leukemia drug.

3.
Cytotherapy ; 25(12): 1251-1258, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37665303

RESUMO

Medium-dose etoposide (ETP), cyclophosphamide (CY) and total body irradiation (TBI) is a beneficial conditioning regimen for allogeneic hematopoietic cell transplantation (allo-HCT) in adults with acute lymphoblastic leukemia (ALL), especially with high-risk ALL, as compared with CY and TBI conditioning. ETP may enhance immunogenicity of leukemia-associated antigens through increased expression of major histocompatibility antigen complex class I, leading to cross-priming of T cells by dendritic cells and generating leukemia-specific cytotoxic T cells. Furthermore, ETP can eliminate activated effector T cells, sparing naïve and memory T cells, accompanied with depletion of regulatory T cells. These mechanisms are supposed to lead to inhibit immune escape of leukemia cells and enhance anti-leukemia immunity in addition to direct cytotoxicity of ETP, followed by an efficient eradication of leukemia cells. According to the findings of pharmacokinetics studies, spreading the administration of low-dose ETP may be more efficacious than non-spreading administration, to induce a potent anti-leukemia immunity without aggravating graft-versus-host disease and transplant-related toxicity. In the present review, I discuss the immunological aspects elicited by the addition of medium-dose ETP to the CY/TBI conditioning and the possible positioning of allo-HCT with this conditioning in adults with ALL, considering recent progress in non-HCT treatment including bispecific antibody-based therapy.


Assuntos
Doença Enxerto-Hospedeiro , Leucemia-Linfoma Linfoblástico de Células Precursoras , Adulto , Humanos , Etoposídeo/farmacologia , Etoposídeo/uso terapêutico , Irradiação Corporal Total , Ciclofosfamida/uso terapêutico , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia
4.
Biomolecules ; 13(6)2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37371569

RESUMO

Volatile organic compounds (VOCs) reflect the metabolism in healthy and pathological conditions, and can be collected easily in a noninvasive manner. They are directly measured using electronical nose (eNose), and may qualify as a systemic tool to monitor biomarkers related to disease. Myeloid leukemic blasts can be transformed into leukemia-derived dendritic cells (DCleu) able to improve (anti-leukemic) immune responses. To profile immunological changes in healthy and acute myeloid leukemic (AML) patients' ex vivo cell cultures, we correlated the cell biological data with the profiles of cell culture supernatant-derived VOCs. DC/DCleu from leukemic or healthy whole blood (WB) were generated without (Control) or with immunomodulatory Kit M (Granulocyte macrophage-colony-stimulating-factor (GM-CSF) + prostaglandin E1 (PGE1)) in dendritic cell cultures (DC culture). Kit-pretreated/not pretreated WB was used to stimulate T cell-enriched immunoreactive cells in mixed lymphocyte cultures (MLC culture). Leukemia-specific adaptive and innate immune cells were detected with a degranulation assay (Deg) and an intracellular cytokine assay (InCyt). Anti-leukemic cytotoxicity was explored with a cytotoxicity fluorolysis assay (CTX). VOCs collected from serum or DC- and MLC culture supernatants (with vs. without Kit M pretreatment and before vs. after culture) were measured using eNose. Compared to the Control (without treatment), Kit M-pretreated leukemic and healthy WB gave rise to higher frequencies of mature (leukemia-derived) DC subtypes of activated and (memory) T cells after MLC. Moreover, antigen (leukemia)-specific cells of several lines (innate and adaptive immunity cells) were induced, giving rise to blast-lysing cells. The eNose could significantly distinguish between healthy and leukemic patients' serum, DC and MLC culture supernatant-derived volatile phases and could significantly separate several supernatant (with vs. without Kit M treatment, cultured vs. uncultured)-derived VOCs within subgroups (healthy DC or leukemic DC, or healthy MLC or leukemic MLC supernatants). Interestingly, the eNose could indicate a Kit M- and culture-associated effect. The eNose may be a prospective option for the deduction of a VOC-based profiling strategy using serum or cell culture supernatants and could be a useful diagnostic tool to recognize or qualify AML disease.


Assuntos
Leucemia Mieloide Aguda , Compostos Orgânicos Voláteis , Humanos , Células Dendríticas , Compostos Orgânicos Voláteis/metabolismo , Leucemia Mieloide Aguda/metabolismo , Estudos Prospectivos , Ativação Linfocitária
5.
J Oleo Sci ; 71(10): 1469-1480, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36184461

RESUMO

Flavonoid compounds are a group of polyphenolic molecules that are in vegetables, fruit, and grain. Laboratory studies and epidemiological investigations have indicated diverse beneficial biochemical properties of flavonoids, including anticancer, anti-inflammation, anti-oxidation, and anti-osteoporosis. We have recorded results for the 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) Reductase and urease enzymes at the µM level. In this search, inhibition results of Panicolin on HMG-CoA reductase and tyrosinase enzymes recorded lower values of 113.98±14.38 and 2.57±0.20 µg /mL, respectively. Additionally, inhibition results of Panicolin on urease and α-amylase showed good values of 64.20±7.43 and 15.92±2.81 µg/mL, respectively. The chemical activities of panicolin against α-amylase, urease, tyrosinase, and HMG-CoA reductase, were determined by performing the molecular modeling study. The anti-cancer activities of panicolin were investigated against HL-60, THP-1, K562, and Molt-4 cell lines and IC50 values of Panicolin on these cell lines were obtained 12.94±1.04, 63.17±5.81, 15.05±1.02, and 10.84±0.65 µg/mL, respectively. The chemical activities of this compound against some of the expressed surface receptor proteins (Platelet-activating factor receptor, CD13, transferrin receptor, and CD44) in the cell lines were evaluated using molecular modeling calculations. The results revealed the possible interactions and their features at an atomic level. The docking scores suggested that panicolin has a significant binding affinity to the enzymes and proteins. Moreover, this compound constructed strong contacts with the enzymes and receptors. Therefore, panicolin could be a potential inhibitor for enzymes and cancer cells.


Assuntos
Leucemia , Neoplasias , Coenzima A , Coenzimas , Flavonoides , Humanos , Monofenol Mono-Oxigenase , Oxirredutases , Receptores da Transferrina , Urease , alfa-Amilases
6.
J Oleo Sci ; 71(6): 863-873, 2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35584958

RESUMO

In this study, some phenolic compounds including 4-Hexylresorcinol, 5-Pentadecylresorcinol, 5-Tricosylresorcinol, Bilobol, and Urushiol were tested against α-glycosidase enzyme from Saccharomyces cerevisiae and sorbitol dehydrogenase enzymes from sheep liver. These compounds determined good inhibition properties against α-glycosidase and sorbitol dehydrogenase (SDH) enzymes. IC50 values were record in the range of 1.45±0.20-24.532±3.83 µM for α-glycosidase and 6.20±0.96-108.22±18.02 µM for SDH. These inhibitor compounds can be selective drug candidates as anti-diabetic agents, because of they have inhibition properties against both enzymes. In this study, the anti-oxidant activities of the molecules were compared with density functional theory (DFT) calculations. Comparison was made with the experimental enzymes by molecular modeling calculations. In the cellular and molecular part of the recent study, the treated cells with some phenolic compounds were assessed by molecularly targeted therapy (MTT) assay for cytotoxicity and anti-acute lymphoblastic leukemia potentials on Clone 15 HL-60, HL-60, HL-60/MX1, and HL-60/MX2 cell lines. The IC50 of these compounds were µg/mL level against these cell lines.


Assuntos
Neoplasias , alfa-Glucosidases , Animais , Inibidores de Glicosídeo Hidrolases/farmacologia , Glicosídeo Hidrolases , Hipoglicemiantes/farmacologia , L-Iditol 2-Desidrogenase , Fenóis/farmacologia , Saccharomyces cerevisiae/metabolismo , Ovinos , alfa-Glucosidases/metabolismo
7.
Biochim Biophys Acta Mol Basis Dis ; 1868(5): 166357, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35143932

RESUMO

The epigenetic treatment by 3-Deazaneplanocin A (DZNep), a histone methyltransferase inhibitor, shows great potential against acute myeloid leukemia (AML). However, the variant sensitivity and incomplete response to DZNep are commonly observed. Here, we reveal that vitamin C (Vc) dramatically promotes DZNep response against leukemic cells in different cell lines and primary AML samples. Vc enhances apoptosis and differentiation induced by DZNep in different AML cell lines in vitro and reduces leukemia progression in vivo. At the molecular level, Vc downregulates an enzyme of serine synthesis named D-3-phosphoglycerate dehydrogenase (PHGDH), as well as BCL2, an anti-apoptotic gene. Over-expression of PHGDH reverses the Vc-enhanced anti-leukemic effect of DZNep in AML cells. Therefore, our findings provide an effective approach to reduce the resistance against epigenetic treatment by Vc, which shows a potential improvement of their combination in AML patients.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste , Leucemia Mieloide Aguda , Adenosina/análogos & derivados , Ácido Ascórbico/farmacologia , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Histona Metiltransferases , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo
8.
ChemMedChem ; 17(9): e202200005, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35187791

RESUMO

The newly emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cause life-threatening diseases in millions of people worldwide, in particular, in patients with cancer, and there is an urgent need for antiviral agents against this infection. While in vitro activities of artemisinins against SARS-CoV-2 and cancer have recently been demonstrated, no study of artemisinin and/or synthetic peroxide-based hybrid compounds active against both cancer and SARS-CoV-2 has been reported yet. However, the hybrid drug's properties (e. g., activity and/or selectivity) can be improved compared to its parent compounds and effective new agents can be obtained by modification/hybridization of existing drugs or bioactive natural products. In this study, a series of new artesunic acid and synthetic peroxide based new hybrids were synthesized and analyzed in vitro for the first time for their inhibitory activity against SARS-CoV-2 and leukemia cell lines. Several artesunic acid-derived hybrids exerted a similar or stronger potency against K562 leukemia cells (81-83 % inhibition values) than the reference drug doxorubicin (78 % inhibition value) and they were also more efficient than their parent compounds artesunic acid (49.2 % inhibition value) and quinoline derivative (5.5 % inhibition value). Interestingly, the same artesunic acid-quinoline hybrids also show inhibitory activity against SARS-CoV-2 in vitro (EC50 13-19 µm) and no cytotoxic effects on Vero E6 cells (CC50 up to 110 µM). These results provide a valuable basis for design of further artemisinin-derived hybrids to treat both cancer and SARS-CoV-2 infections.


Assuntos
Artemisininas , Tratamento Farmacológico da COVID-19 , Leucemia , Neoplasias , Quinolinas , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Artemisininas/farmacologia , Chlorocebus aethiops , Humanos , Leucemia/tratamento farmacológico , Neoplasias/tratamento farmacológico , Peróxidos , Quinolinas/uso terapêutico , SARS-CoV-2 , Células Vero
9.
Molecules ; 27(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35164038

RESUMO

Essential oils (EOs) of Clausena indica fruits, Zanthoxylum rhetsa fruits, and Michelia tonkinensis seeds were analyzed for their phytochemical profiles and biological activities, including anti-diabetes, anti-gout, and anti-leukemia properties. Sixty-six volatile compounds were identified by gas chromatography-mass spectrometry (GC-MS), in which, myristicin (68.3%), limonene (44.2%), and linalool (49.3%) were the most prominent components of EOs extracted from C. indica, Z. rhetsa, and M. tonkinensis, respectively. In addition, only EOs from C. indica inhibited the activities of all tested enzymes comprising α-amylase (IC50 = 7.73 mg/mL), α-glucosidase (IC50 = 0.84 mg/mL), and xanthine oxidase (IC50 = 0.88 mg/mL), which are related to type 2 diabetes and gout. Remarkably, all EOs from C. indica, Z. rhetsa (IC50 = 0.73 mg/mL), and M. tonkinensis (IC50 = 1.46 mg/mL) showed a stronger anti-α-glucosidase ability than acarbose (IC50 = 2.69 mg/mL), a known anti-diabetic agent. Moreover, the growth of leukemia cell Meg-01 was significantly suppressed by all EOs, of which, the IC50 values were recorded as 0.32, 0.64, and 0.31 mg/mL for EOs from C. indica, Z. rhetsa, and M. tonkinensis, respectively. As it stands, this is the first report about the inhibitory effects of EOs from C. indica and Z. rhetsa fruits, and M. tonkinensis seeds on the human leukemia cell line Meg-01 and key enzymes linked to diabetes and gout. In conclusion, the present study suggests that EOs from these natural spices may be promising candidates for pharmaceutical industries to develop nature-based drugs to treat diabetes mellitus or gout, as well as malignant hematological diseases such as leukemia.


Assuntos
Antineoplásicos/uso terapêutico , Clausena/química , Supressores da Gota/uso terapêutico , Hipoglicemiantes/uso terapêutico , Leucemia/tratamento farmacológico , Magnoliaceae/química , Óleos Voláteis/uso terapêutico , Zanthoxylum/química , Humanos , Óleos Voláteis/química
10.
Iran J Pharm Res ; 21(1): e129251, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36942064

RESUMO

Background: Proteolysis-targeting chimera (PROTAC) is a bifunctional molecule comprising a ligand to recognize the targeted protein to be degraded. Objectives: To use the advantages of the PROTAC technique, we have synthesized novel compounds to degrade inosine monophosphate dehydrogenase (IMPDH) by the proteasome system. Methods: We describe the synthesis of new PROTACs based on a combination of mycophenolic acid (MPA) as the potent IMPDH inhibitor and pomalidomide as a ligand of E3 ubiquitin ligase via linkers formed from Cu(I)-catalyzed cycloaddition reaction. Results: All synthesized compounds were investigated against Jurkat cells as acute T-cell leukemia and were potent apoptosis inducers at 50 nM. Conclusion: The effect of compound 2 in 0.05 µM on IMPDH degradation can be almost prevented by competition with bortezomib as the proteasome inhibitor at 0.1 and 0.5 µM.

11.
Oncol Lett ; 23(1): 7, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34820006

RESUMO

Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL) is triggered by breakpoint cluster region-abelson leukemia virus (BCR/ABL) kinase. Targeting BCR/ABL kinase with tyrosine kinase inhibitors combined with chemotherapy is the standard first-line therapy for Ph+ ALL. Imatinib and dasatinib are the preferred agents for the treatment of Ph+ ALL. Dasatinib treatment can induce a faster and deeper remission than imatinib treatment; however, the side effects of dasatinib, especially the cardiovascular side effects, are markedly greater than those of imatinib. Patients will benefit from treatments that improve the efficacy of imatinib without increasing its side effects. The present study revealed that tanshinone IIA markedly potentiated the cytotoxic and apoptotic induction effects of imatinib by regulating the AKT-MDM2-P53 signaling pathway and inhibiting the anti-apoptotic proteins BCL2 and MCL1 apoptosis regulator, BCL2 family member in Ph+ ALL cell lines. In vitro studies, MTT assay, flow cytometry, western blotting and reverse transcription-quantitative PCR were performed in the present study to detect cell viability, cell apoptosis, protein expression and gene expression, respectively. In a Ph+ ALL mouse model, imatinib combined with tanshinone IIA also exhibited a synergistic effect on the reduction in leukemia burden without increasing the toxic side effects of imatinib. These results demonstrated that imatinib combined with tanshinone IIA might be a promising treatment strategy for patients with Ph+ ALL.

12.
Bioorg Chem ; 117: 105431, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34688130

RESUMO

Based on the structural study of previously known CDK2 inhibitors, a new series of pyrazolo[1,5-a]pyrimidine derivatives was designed and synthesized. The target compounds were biologically assessed as potent CDK2 inhibitors and promising anti-leukemia hits. The 7-(4-Bromo-phenyl)-3-(3-chloro/2-chloro-phenylazo)-pyrazolo[1,5-a]pyrimidin-2-ylamines 5 h and 5i revealed the best CDK2 inhibitory activity with comparable potency (IC50 = 22 and 24 nM, respectively) to that of dinaciclib (IC50 = 18 nM). Additionally, both analogues showed potent activities against CDK1, CDK5 and CDK9 at nanomolar concentrations (IC50 = 28-80 nM). The anti-leukemia screening of the target compounds showed strong to moderate cytotoxicity against the used leukemia cell lines (MOLT-4 and HL-60). Compound 5 h inhibited MOLT-4 and HL-60 by 1.4 and 2.3 folds (IC50 = 0.93 and 0.80 µM), respectively, compared to dinaciclib (IC50 = 1.30 and 1.84 µM). Furthermore, compound 5i was comparable to dinaciclib against MOLT-4 and exhibited twice its activity against HL-60. Besides, the cytotoxicity of the promising analogues on normal human blood cells indicated the safety of 5h and 5i as compared to the reference dinaciclib. The pharmacokinetic properties of 5h and 5i were predicted using ADME calculations revealing good oral bioavailability and high GI absorption. The molecular docking simulations indicated, as expected, that the dinaciclib analogues can well-accommodate the CDK2 binding site, forming a variety of interactions.


Assuntos
Antineoplásicos/farmacologia , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Quinase 2 Dependente de Ciclina/metabolismo , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Pirazóis/síntese química , Pirazóis/química , Pirimidinas/síntese química , Pirimidinas/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
13.
Chin J Nat Med ; 19(7): 528-535, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34247776

RESUMO

In this study, three new germacranolide sesquiterpenes (1-3), together with six related known analogues (4-9) were isolated from the whole plant of Carpesium cernuum. Their structures were established by a combination of extensive NMR spectroscopic analysis, HR-ESIMS data, and ECD calculations. The anti-leukemia activities of all compounds towards three cell lines (HEL, KG-1a, and K562) were evaluated in vitro. Compounds 1-3 exhibited moderate cytotoxicity with IC50 values ranging from 1.59 to 5.47 µmol·L-1. Mechanistic studies indicated that 2 induced apoptosis by decreasing anti-apoptotic protein Bcl-2 and activating the caspase family in K562 cells. These results suggest that compound 2 is a potential anti-leukemia agent.


Assuntos
Antineoplásicos Fitogênicos , Asteraceae , Sesquiterpenos de Germacrano/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Asteraceae/química , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Células K562 , Compostos Fitoquímicos/farmacologia
14.
Molecules ; 26(9)2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34066963

RESUMO

Leukemia is a leukocyte cancer that is characterized by anarchic growth of immature immune cells in the bone marrow, blood and spleen. There are many forms of leukemia, and the best course of therapy and the chance of a patient's survival depend on the type of leukemic disease. Different forms of drugs have been used to treat leukemia. Due to the adverse effects associated with such therapies and drug resistance, the search for safer and more effective drugs remains one of the most challenging areas of research. Thus, new therapeutic approaches are important to improving outcomes. Almost half of the drugs utilized nowadays in treating cancer are from natural products and their derivatives. Medicinal plants have proven to be an effective natural source of anti-leukemic drugs. The cytotoxicity and the mechanisms underlying the toxicity of these plants to leukemic cells and their isolated compounds were investigated. Effort has been made throughout this comprehensive review to highlight the recent developments and milestones achieved in leukemia therapies using plant-derived compounds and the crude extracts from various medicinal plants. Furthermore, the mechanisms of action of these plants are discussed.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Leucemia/tratamento farmacológico , Plantas Medicinais/química , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Linhagem Celular Tumoral , Ensaios Clínicos como Assunto , Humanos
15.
J Oleo Sci ; 70(5): 665-673, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33952791

RESUMO

Cancer is the world's biggest health problem and cancer-induced mortality happened all over the planet after the heart disease. The present study was to scrutinize the anti-leukemia effect of diosmin against Dalton Ascitic Lymphoma (DAL) induced leukemia in mice. DAL cell was used for induction the solid tumor. Body weight, life spans, tumor volume and mean survival time was estimated. Antioxidant, biochemical and pro-inflammatory cytokines were estimated. Diosmin showed the cell viability effect at dose dependent manner against the both cell lines. DAL induced solid tumor mice showed the decreased body weight, mean survival days, non viable cell count and increased the tumor volume, viable cell count and diosmin significantly (p < 0.001) reverse the effect of DAL. Diosmin significantly (p < 0.001) altered the hematological, differential leukocytes, antioxidant, biochemical, pro-inflammatory cytokines at dose dependently. Collectively, we can say that diosmin might alter the DAL induced abnormality via antioxidant and anti-inflammatory effects.


Assuntos
Anti-Inflamatórios , Antineoplásicos Fitogênicos , Ascite/patologia , Sobrevivência Celular/efeitos dos fármacos , Diosmina/farmacologia , Leucemia/patologia , Linfoma/patologia , Animais , Antioxidantes , Células Cultivadas , Citrus/química , Citocinas/metabolismo , Diosmina/administração & dosagem , Diosmina/isolamento & purificação , Relação Dose-Resposta a Droga , Mediadores da Inflamação/metabolismo , Leucemia/tratamento farmacológico , Leucemia/metabolismo , Linfoma/tratamento farmacológico , Linfoma/metabolismo , Camundongos Endogâmicos BALB C , Fitoterapia
16.
Mar Drugs ; 19(4)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917402

RESUMO

The marine sponge of the genus Geodia, Jaspis, Rhabdastrella, and Stelletta are characterized chemically by a variety of isomalabaricane triterpenes. This class of compounds drew spotlights in marine lead discovery due to their profound anti-proliferative properties. Further research on exploring its chemical diversity led to the identifications of two new isomalabaricane-type triterpenes rhabdastin H (1) and rhabdastin I (2). Their structures were unraveled using a series of spectroscopic approaches. These isolates were found to exhibit unique structural features with the only reported tetrahydrofuran functionality among all marine-derived isomalabaricanes. Both compounds 1 and 2 showed activities against K562 (IC50 11.7 and 9.8 µM) and Molt4 (IC50 16.5 and 11.0 µM) leukemic cells in MTT cell proliferative assay.


Assuntos
Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Poríferos/metabolismo , Triterpenos/farmacologia , Animais , Antineoplásicos/isolamento & purificação , Relação Dose-Resposta a Droga , Humanos , Concentração Inibidora 50 , Células K562 , Estrutura Molecular , Neoplasias/patologia , Relação Estrutura-Atividade , Triterpenos/isolamento & purificação
17.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-882066

RESUMO

Objective To synthesize and investigate cytotoxicity of an indole-chalcone derivative FC58. Methods The target compound was synthesized through the Aldol condensation with 1-(3,4,5-trimethoxyphenyl)ethan-1-one and 1H-indole-3-carbaldehyde. The Cell Titer-Blue method was used to determine in vitro cytotoxicity. The cell cycle experiment was performed to analyze the action characteristics of FC58. Results FC58 exhibited high cytotoxicity against various leukemia cells and resulted in G2/M phase arrest. It showed stronger drug resistant index than traditional tubulin inhibitors such as paclitaxel, vinblastine and doxorubicin. Conclusion FC58 represents a promising lead compound for multi-drug resistant leukemia.

18.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-888781

RESUMO

In this study, three new germacranolide sesquiterpenes (1-3), together with six related known analogues (4-9) were isolated from the whole plant of Carpesium cernuum. Their structures were established by a combination of extensive NMR spectroscopic analysis, HR-ESIMS data, and ECD calculations. The anti-leukemia activities of all compounds towards three cell lines (HEL, KG-1a, and K562) were evaluated in vitro. Compounds 1-3 exhibited moderate cytotoxicity with IC


Assuntos
Humanos , Antineoplásicos Fitogênicos/farmacologia , Asteraceae/química , Ensaios de Seleção de Medicamentos Antitumorais , Células K562 , Compostos Fitoquímicos/farmacologia , Sesquiterpenos de Germacrano/farmacologia
19.
Molecules ; 25(23)2020 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-33291428

RESUMO

Leukemia is a blood or bone marrow cancer with increasing incidence in developed regions of the world. Currently, there is an ongoing need for novel and safe anti-leukemic agents, as no fully effective chemotherapy is available to treat this life-threatening disease. Herein, are reported the isolation, structural elucidation, and anti-leukemic evaluation of twenty-nine withanolide-type steroids (1-29) from Withania aristata. Among them, the new isolated withanolides, withaperoxidins A-D (1-4) have an unusual six-membered cyclic peroxide moiety on the withasteroid skeleton as a structural novelty. Their structures have been elucidated by means of spectroscopic analyses, including 2D NMR experiments. In addition, extensive structure-activity relationships and in silico ADME studies were employed to understand the pharmacophore and pharmacokinetic properties of this series of withasteroids. Compounds 15, 16, and 22 together with withaferin A (14) were identified as having improved antiproliferative effect (IC50 ranging from 0.2 to 0.7 µM) on human leukemia HL-60 cell lines compared with the reference drug, etoposide. This cytotoxic potency was also coupled with good selectivity index (SI 33.0-9.2) on non-tumoral Vero cell line and in silico drug likeness. These findings revealed that these natural withasteroids are potential candidates as chemotherapeutic agents in the treatment of leukemia.


Assuntos
Antineoplásicos/farmacologia , Leucemia/tratamento farmacológico , Esteroides/farmacologia , Withania/química , Vitanolídeos/farmacologia , Animais , Linhagem Celular , Linhagem Celular Tumoral , Chlorocebus aethiops , Células HL-60 , Humanos , Relação Estrutura-Atividade , Células Vero
20.
PeerJ ; 8: e10392, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33312768

RESUMO

BACKGROUND: Secondary fungal metabolites are important sources for new drugs against infectious diseases and cancers. METHODS: To obtain a library with enough diversity, we collected about 2,395 soil samples and 2,324 plant samples from 36 regions in Africa, Asia, and North America. The collection areas covered various climate zones in the world. We examined the usability of the global fungal extract library (GFEL) against parasitic malaria transmission, Gram-positive and negative bacterial pathogens, and leukemia cells. RESULTS: Nearly ten thousand fungal strains were isolated. Sequences of nuclear ribosomal internal transcribed spacer (ITS) from 40 randomly selected strains showed that over 80% were unique. Screening GFEL, we found that the fungal extract from Penicillium thomii was able to block Plasmodium falciparum transmission to Anopheles gambiae, and the fungal extract from Tolypocladium album was able to kill myelogenous leukemia cell line K562. We also identified a set of candidate fungal extracts against bacterial pathogens.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...