Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731895

RESUMO

UVB radiation is known to induce photodamage to the skin, disrupt the skin barrier, elicit cutaneous inflammation, and accelerate the aging process. Agaricus blazei Murill (ABM) is an edible medicinal and nutritional fungus. One of its constituents, Agaricus blazei Murill polysaccharide (ABP), has been reported to exhibit antioxidant, anti-inflammatory, anti-tumor, and immunomodulatory effects, which suggests potential effects that protect against photodamage. In this study, a UVB-induced photodamage HaCaT model was established to investigate the potential reparative effects of ABP and its two constituents (A1 and A2). Firstly, two purified polysaccharides, A1 and A2, were obtained by DEAE-52 cellulose column chromatography, and their physical properties and chemical structures were studied. A1 and A2 exhibited a network-like microstructure, with molecular weights of 1.5 × 104 Da and 6.5 × 104 Da, respectively. The effects of A1 and A2 on cell proliferation, the mitochondrial membrane potential, and inflammatory factors were also explored. The results show that A1 and A2 significantly promoted cell proliferation, enhanced the mitochondrial membrane potential, suppressed the expression of inflammatory factors interleukin-1ß (IL-1ß), interleukin-8 (IL-8), interleukin-6 (IL-6), and tumor necrosis factor α (TNF-α), and increased the relative content of filaggrin (FLG) and aquaporin-3 (AQP3). The down-regulated JAK-STAT signaling pathway was found to play a role in the response to photodamage. These findings underscore the potential of ABP to ameliorate UVB-induced skin damage.


Assuntos
Agaricus , Proliferação de Células , Proteínas Filagrinas , Células HaCaT , Raios Ultravioleta , Agaricus/química , Humanos , Raios Ultravioleta/efeitos adversos , Proliferação de Células/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Polissacarídeos Fúngicos/farmacologia , Polissacarídeos Fúngicos/química , Polissacarídeos/farmacologia , Polissacarídeos/química , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Queratinócitos/efeitos da radiação , Citocinas/metabolismo
2.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1015826

RESUMO

Polysaccharide is one of the functional components of the raspberry, which has various pharmacological effects such as anti-inflammatory, antioxidant, anti-fatigue, hypoglycemic and immunomodulatory. However, whether raspberry polysaccharides have protective effects on UV-induced photodamage to skin cells has not been reported. This study aims to investigate the protective effect of Raspberry Crude Polysaccharide on Ultraviolet B (UVB) -induced photodamage of human immortalized keratinocytes (H a C a T). The photodamage model of HaCaT cells was established by UVB irradiation. To evaluate the anti-UVB activity of R C P, the cell viability was determined by the CCK-8 method, and the Enzyme-linked immunosorbent assays (ELISA) and microplate method were used to measure the contents of matrix metalloproteinase, inflammatory and antioxidant factors in the photodamaged HaCaT cells. The antioxidant activity of RCP was detected by radical scavenging assays against D P P H radical (D P P H •) and ABTS radical (ABTS •

3.
R Soc Open Sci ; 6(10): 191184, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31824727

RESUMO

Astaxanthin is a xanthophyll carotenoid with high beneficial biological activities, such as antioxidant function and scavenging oxygen free radicals, but its application is limited because of poor water solubility and low bioavailability. Here, we prepared and optimized poly(lactic-co-glycolic acid) (PLGA) nanoparticles loaded with astaxanthin using the emulsion solvent evaporation technique and investigated the anti-photodamage effect in HaCaT cells. The four-factor three-stage Box-Behnken design was used to optimize the nanoparticle formulation. The experimental determination of the optimal nanoparticle size was 154.4 ± 0.35 nm, the zeta potential was 22.07 ± 0.93 mV, encapsulation efficiency was 96.42 ± 0.73% and drug loading capacity was 7.19 ± 0.12%. The physico-chemical properties of the optimized nanoparticles were characterized by dynamic light scattering, scanning electron microscopy, transmission electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, differential scanning calorimetry and thermo-gravimetric analyser. In vitro study exhibited the excellent cell viability and cellular uptake of optimized nanoparticles on HaCaT cells. The anti-photodamage studies (cytotoxicity assay, reactive oxygen species content and JC-1 assessment) demonstrated that the optimized nanoparticles were more effective and safer than pure astaxanthin in HaCaT cells. These results suggest that our PLGA-coated astaxanthin nanoparticles synthesis method was highly feasible and can be used in cosmetics or the treatment of skin diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...