Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Tipo de estudo
Intervalo de ano de publicação
1.
Biomed Mater ; 19(5)2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39121890

RESUMO

This study delves into the potential of amorphous titanium oxide (aTiO2) nano-coating to enhance various critical aspects of non-Ti-based metallic orthopedic implants. These implants, such as medical-grade stainless steel (SS), are widely used for orthopedic devices that demand high strength and durability. The aTiO2nano-coating, deposited via magnetron sputtering, is a unique attempt to improve the osteogenesis, the inflammatory response, and to reduce bacterial colonization on SS substrates. The study characterized the nanocoated surfaces (SS-a TiO2) in topography, roughness, wettability, and chemical composition. Comparative samples included uncoated SS and sandblasted/acid-etched Ti substrates (Ti). The biological effects were assessed using human mesenchymal stem cells (MSCs) and primary murine macrophages. Bacterial tests were carried out with two aerobic pathogens (S. aureusandS. epidermidis) and an anaerobic bacterial consortium representing an oral dental biofilm. Results from this study provide strong evidence of the positive effects of the aTiO2nano-coating on SS surfaces. The coating enhanced MSC osteoblastic differentiation and exhibited a response similar to that observed on Ti surfaces. Macrophages cultured on aTiO2nano-coating and Ti surfaces showed comparable anti-inflammatory phenotypes. Most significantly, a reduction in bacterial colonization across tested species was observed compared to uncoated SS substrates, further supporting the potential of aTiO2nano-coating in biomedical applications. The findings underscore the potential of magnetron-sputtering deposition of aTiO2nano-coating on non-Ti metallic surfaces such as medical-grade SS as a viable strategy to enhance osteoinductive factors and decrease pathogenic bacterial adhesion. This could significantly improve the performance of metallic-based biomedical devices beyond titanium.


Assuntos
Materiais Revestidos Biocompatíveis , Macrófagos , Teste de Materiais , Células-Tronco Mesenquimais , Osteogênese , Aço Inoxidável , Propriedades de Superfície , Titânio , Titânio/química , Aço Inoxidável/química , Animais , Humanos , Células-Tronco Mesenquimais/citologia , Camundongos , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Macrófagos/metabolismo , Osteogênese/efeitos dos fármacos , Diferenciação Celular , Próteses e Implantes , Osteoblastos/citologia , Staphylococcus aureus/efeitos dos fármacos , Biofilmes , Staphylococcus epidermidis/efeitos dos fármacos , Aderência Bacteriana , Molhabilidade
2.
Rev. Asoc. Colomb. Cien. Biol. (En línea) ; 1(32): 42-62, 20200000. ilus
Artigo em Inglês | LILACS, COLNAL | ID: biblio-1379195

RESUMO

El agua es una necesidad universal que ha sido reportada por las Naciones Unidas (ONU) y la Organización Mundial de la Salud (OMS) como una prioridad. Existe una necesidad apremiante de acceso gratuito al agua potable para las poblaciones de los países en desarrollo. Además, las fuentes de agua de los países desarrollados también requieren atención debido a la presencia de un alto nivel de contaminantes emergentes. Por lo tanto, la nanotecnología parece ser una herramienta poderosa que podría usarse como sensores, filtros, superficies antibacterianas y nanoantimicrobianos. En esta revisión, hemos discutido la aplicación de las nanopartículas y los nanocompuestos para el tratamiento de aguas y aguas residuales. Además, el impacto de las nanopartículas libres como contaminantes emergentes en las plantas de tratamiento de agua, así como en las aguas subterráneas, merece más estudios.


The water is a universal need that has been reported by the United Nations (UN) and World Health Organization (WHO) as a priority. There is a pressing need for free access to drinking water for populations from developing countries. Furthermore, the water sources of developed countries also require attention due to the presence of a high level of emergent contaminants. Therefore, nanotechnology appears to be a powerful tool that could be used as sensors, filters, antibacterial surfaces, and nanoantimicrobials. In this review, we have discussed the application of nanoparticles and nanocomposites for water and wastewater treatment. Moreover, the impact of free-nanoparticles as emergent contaminants in water treatment plants as well as groundwater warrants further studies.


Assuntos
Humanos , Nanotecnologia , Poluentes da Água , Controle da Contaminação da Água
3.
AMB Express ; 9(1): 51, 2019 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-30993485

RESUMO

The fast evolution of surface treatments for biomedical implants and the concern with their contact with cells and microorganisms at early phases of bone healing has boosted the development of surface topographies presenting drug delivery potential for, among other features, bacterial growth inhibition without impairing cell adhesion. A diverse set of metal ions and nanoparticles (NPs) present antibacterial properties of their own, which can be applied to improve the implant local response to contamination. Considering the promising combination of nanostructured surfaces with antibacterial materials, this critical review describes a variety of antibacterial effects attributed to specific metals, ions and their combinations. Also, it explains the TiO2 nanotubes (TNTs) surface creation, in which the possibility of aggregation of an active drug delivery system is applicable. Also, we discuss the pertinent literature related to the state of the art of drug incorporation of NPs with antibacterial properties inside TNTs, along with the promising future perspectives of in situ drug delivery systems aggregated to biomedical implants.

4.
ACS Biomater Sci Eng ; 5(10): 4920-4936, 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33455240

RESUMO

Device-associated infections (DAI) remain a serious concern in modern healthcare. Bacterial attachment to a surface is the first step in biofilm formation, which is one of the main causes of DAIs. The development of materials capable of preventing or inhibiting bacterial attachment constitutes a promising approach to deal with this problem. The multifactorial nature of biofilm maturation and antibiotic resistance directs the research for multitargeted or combinatorial therapeutic approaches. One attractive strategy is the modification or the engineering of surfaces in order to provide antiadhesive and/or antimicrobial properties. Currently, several different approaches that involve physical and chemical surface modification deliver some possible alternatives to achieve this goal. The engineered surfaces can be coated with molecules capable of inhibiting the bacterial adhesion or with active agents that kill microorganisms. In addition, surfaces can also be modified in order to be stimuli-responsive, responding to a particular trigger and then delivering the consequent antimicrobial outcome. Here, we review the prevailing strategies to modify surfaces in order to create an antimicrobial surface and discuss how different surface functionalization can affect bacterial adhesion and/or viability.

5.
ACS Appl Mater Interfaces ; 10(33): 28147-28158, 2018 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-30035536

RESUMO

Inhibiting pathogenic bacterial adherence on surfaces is an ongoing challenge to prevent the development of biofilms. Multilayer polyelectrolyte films are feasible antibacterial materials. Here, we have designed new films made of carbohydrate polyelectrolytes to obtain antibacterial coatings that prevent biofilm formation. The polyelectrolyte films were constructed from poly(maleic anhydride- alt-styrene) functionalized with glucofuranose derivatives and quaternized poly(4-vinylpyridine) N-alkyl. These films prevent Pseudomonas aeruginosa and Salmonella Typhimurium, two important bacterial contaminants in clinical environments, from adhering to surfaces. When the film was composed of more than 10 layers, the bacterial population was greatly reduced, while the bacteria remaining on the film were morphologically damaged, as atomic force microscopy revealed. The antibacterial capacity of the polyelectrolyte films was determined by the combination of thickness, wettability, surface energy, and most importantly, the conformation that polyelectrolytes adopt the function of nature of the carbohydrate group. This polyelectrolyte film constitutes the first green approach to preventing pathogenic bacterial surface adherence and proliferation without killing the bacterial pathogen.


Assuntos
Polieletrólitos/química , Antibacterianos , Biofilmes , Microscopia de Força Atômica , Propriedades de Superfície , Molhabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA