Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.541
Filtrar
1.
PeerJ ; 12: e17637, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966207

RESUMO

Background: Prostate cancer (PCa) is one of the causes of death in men worldwide. Although treatment strategies have been developed, the recurrence of the disease and consequential side effects remain an essential concern. Diospyros rhodocalyx Kurz, a traditional Thai medicine, exhibits diverse therapeutic properties, including anti-cancer activity. However, its anti-cancer activity against prostate cancer has not been thoroughly explored. This study aims to evaluate the anti-cancer activity and underlying mechanisms of the ethyl acetate extract of D. rhodocalyx Kurz (EADR) related to apoptosis induction in the LNCaP human prostate cancer cell line. Methods: Ethyl acetate was employed to extract the dried bark of D. rhodocalyx Kurz. The cytotoxicity of EADR on both LNCaP and WPMY-1 cells (normal human prostatic myofibroblast cell line) was evaluated using MTS assay. The effect of EADR on the cell cycle, apoptosis induction, and alteration in mitochondrial membrane potential (MMP) was assessed by the staining with propidium iodide (PI), Annexin V-FITC/PI, and JC-1 dye, respectively. Subsequent analysis was conducted using flow cytometry. The expression of cleaved caspase-3, BAX, and Bcl-2 was examined by Western blotting. The phytochemical profiling of the EADR was performed using gas chromatography-mass spectrometry (GC-MS). Results: EADR exhibited a dose-dependent manner cytotoxic effect on LNCaP cells, with IC50 values of 15.43 and 12.35 µg/mL after 24 and 48 h, respectively. Although it also exhibited a cytotoxic effect on WPMY-1 cells, the effect was comparatively lower, with the IC50 values of 34.61 and 19.93 µg/mL after 24 and 48 h of exposure, respectively. Cell cycle analysis demonstrated that EADR did not induce cell cycle arrest in either LNCaP or WPMY-1 cells. However, it significantly increased the sub-G1 population in LNCaP cells, indicating a potential induction of apoptosis. The Annexin V-FITC/PI staining indicated that EADR significantly induced apoptosis in LNCaP cells. Subsequent investigation into the underlying mechanism of EADR-induced apoptosis revealed a reduction in MMP as evidenced by JC-1 staining. Moreover, Western blotting demonstrated that EADR treatment resulted in the upregulation of BAX, downregulation of BCL-2, and elevation of caspase-3 cleavage in LNCaP cells. Notably, the epilupeol was a prominent compound in EADR as identified by GC-MS. Conclusion: The EADR exhibits anti-cancer activity against the LNCaP human prostate cancer cell line by inducing cytotoxicity and apoptosis. Our findings suggest that EADR promotes apoptosis by upregulating pro-apoptotic BAX, whereas downregulation of anti-apoptotic Bcl-2 results in the reduction of MMP and the activation of caspase-3. Of particular interest is the presence of epilupeol, a major compound identified in EADR, which may hold promise as a candidate for the development of therapeutic agents for prostate cancer.


Assuntos
Apoptose , Caspase 3 , Diospyros , Extratos Vegetais , Neoplasias da Próstata , Proteínas Proto-Oncogênicas c-bcl-2 , Proteína X Associada a bcl-2 , Humanos , Masculino , Apoptose/efeitos dos fármacos , Neoplasias da Próstata/patologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Linhagem Celular Tumoral , Extratos Vegetais/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo , Caspase 3/metabolismo , Diospyros/química , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Antineoplásicos Fitogênicos/farmacologia
2.
Curr Pharm Des ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38963114

RESUMO

INTRODUCTION: Luteolin (LUT), a naturally occurring flavonoid found in vegetables, fruits, and herbal medicines, has been extensively studied for its pharmacological activities, including anti-proliferative and anticancer effects on various cancer lines. It also exhibits potent antioxidant properties and pro-apoptotic activities against human cancers. However, its therapeutic potential is hindered by its poor solubility in water (5 µg/ml at 45°C) and low bioavailability. This research on the development of luteolin-loaded nanocarrier aims to overcome these limitations, thereby opening up new possibilities in cancer treatment. METHODS: This paper covers several nanoformulations studied to increase the solubility and bioavailability of LUT. The physicochemical characteristics of the nanoformulation that influence luteolin's solubility and bioavailability have been the subject of more in-depth investigation. Furthermore, it examines how LUT's anti-inflammatory and antioxidant properties aid in lessening the side effects of chemotherapy. RESULTS: Most nanoformulations, including phytosomes, lipid nanoparticles, liposomes, protein nanoparticles, polymer micelles, nanoemulsions, and metal nanoparticles, have shown promising results in improving the solubility and bioavailability of LUT. This is a significant step forward in enhancing the therapeutic potential of LUT in cancer treatment. Furthermore, the study found that LUT's ability to scavenge free radicals can significantly reduce the side effects of cancer treatment, further highlighting its potential to improve patient outcomes. CONCLUSION: Nanoformulations, because of their unique surface and physiochemical properties, improve the solubility and bioavailability of LUT. However, poor in-vitro and in-vivo correlation and scalability of nanoformulations need to be addressed to achieve good clinical performance of LUT in oncology.

3.
ACS Appl Bio Mater ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958186

RESUMO

Metallic nanoparticles are promising candidates for anticancer therapies. Among the different metallic systems studied, copper is an affordable and biologically available metal with a high redox potential. Copper-based nanoparticles are widely used in anticancer studies owing to their ability to react with intracellular glutathione (GSH) to induce a Fenton-like reaction. However, considering the high metastatic potential and versatility of the tumor microenvironment, modalities with a single therapeutic agent may not be effective. Hence, to enhance the efficiency of chemotherapeutic drugs, repurposing them or conjugating them with other modalities is essential. Omeprazole is an FDA-approved proton pump inhibitor used in clinics for the treatment of ulcers. Omeprazole has also been studied for its ability to sensitize cancer cells to chemotherapy and induce apoptosis. Herein, we report a nanosystem comprising of copper nanoparticles encapsulating omeprazole (CuOzL) against B16 melanoma cells. The developed nanoformulation exerted significant synergistic anticancer activity when compared with either copper nanoparticles or omeprazole alone by inducing cell death through excessive ROS generation and subsequent mitochondrial damage.

4.
Chem Rec ; : e202300347, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38984727

RESUMO

The medicinal chemistry of ferrocene has gained its momentum after the discovery of biological activities of ferrocifen and ferroquine. These ferrocenyl drugs have been designed by replacing the aromatic moiety of the organic drugs, tamoxifen and chloroquine respectively, with a ferrocenyl unit. The promising biological activities of these ferrocenyl drugs have paved a path to explore the medicinal applications of several ferrocenyl conjugates. In these conjugates, the ferrocenyl moiety has played a vital role in enhancing or imparting the anticancer activity to the molecule. The ferrocenyl conjugates induce the cytotoxicity by generating reactive oxygen species and thereby damaging the DNA. In medicinal chemistry, the five membered nitrogen heterocycles (azoles) play a significant role due to their rigid ring structure and hydrogen bonding ability with the biomolecules. Several potent drug candidates with azole groups have been in use as chemotherapeutics. Considering the importance of ferrocenyl moiety and azole groups, several ferrocenyl azole conjugates have been synthesized and screened for their biological activities. Hence, in the view of a wide scope in the development of potent drugs based on ferrocenyl azole conjugates, herein we present the details of synthesis and the anticancer activities of ferrocenyl compounds bearing azole groups such as imidazole, triazoles, thiazole and isoxazoles.

5.
Drug Dev Res ; 85(5): e22230, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38967729

RESUMO

The CDK4/CDK6 inhibitor palbociclib has shown the encouraging promise in the treatment of glioma. Here, we elucidated how palbociclib exerts suppressive functions in the M2 polarization of glioma-related microglia and the progression of glioma. Xenograft experiments were used to evaluate the function in vivo. The mRNA levels of transcription factor 12 (TCF12) and VSIG4 were detected by RT-qPCR, and their protein levels were assessed by immunoblotting. Cell migration was tested by wound-healing assay. Cell cycle distribution and M1/M2 microglia phenotype analysis were performed by flow cytometry. The levels of IFN-γ, TNF-α, IL-6,and TGF-ß were measured by ELISA. The TCF12/VSIG4 association was verified by luciferase reporter and chromatin immunoprecipitation (ChIP) assays. In U251 and LN229 glioma cells, TCF12 and VSIG4 were overexpressed, and palbociclib reduced their expression levels. TCF12 upregulation enhanced the proliferation and migration of glioma cells and the M2 polarization of glioma-associated microglia in vitro as well as the tumorigenicity of U251 glioma cells in vivo, which could be reversed by palbociclib. Mechanistically, TCF12 could enhance VSIG4 transcription and expression by binding to the VSIG4 promoter. TCF12 deficiency led to repression in glioma cell proliferation and migration as well as microglia M2 polarization, which could be abolished by increased VSIG4 expression. Our study reveals the novel TCF12/VSIG4 axis responsible for the efficacy of palbociclib in combating glioma, offering a rationale for the application of palbociclib in glioma treatment.


Assuntos
Movimento Celular , Proliferação de Células , Glioma , Microglia , Piperazinas , Piridinas , Humanos , Glioma/tratamento farmacológico , Glioma/metabolismo , Glioma/patologia , Movimento Celular/efeitos dos fármacos , Piperazinas/farmacologia , Piridinas/farmacologia , Proliferação de Células/efeitos dos fármacos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Animais , Linhagem Celular Tumoral , Camundongos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Camundongos Nus , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Endogâmicos BALB C , Antineoplásicos/farmacologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos
6.
Int J Biol Macromol ; 273(Pt 1): 132737, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38825265

RESUMO

Polysaccharide-based drug delivery systems are in high demand due to their biocompatibility, non-toxicity, and low-cost. In this study, sialic acid receptor targeted 4-carboxy phenylboronic acid modified pullulan-stearic acid conjugate (4-cPBA-PUL-SA) was synthesized and characterized for the delivery of Berberine (BBR). BBR-loaded 4-cPBA-PUL-SA nanoparticles (BPPNPs) were monodispersed (PDI: 0.238 ± 0.07), with an average hydrodynamic particle size of 191.6 nm and 73.6 % encapsulation efficiency. BPPNPs showed controlled BBR release and excellent colloidal stability, indicating their potential for drug delivery application. The cytotoxicity results indicated that BPPNPs exhibited dose and time-dependent cytotoxicity against human epidermoid carcinoma cells (A431) as well as 3D spheroids. Targeted BPPNPs demonstrated significantly higher anticancer activity compared to BBR and non-targeted BPNPs. The IC50 values for BPPNPs (2.29 µg/ml) were significantly lower than BPNPs (4.13 µg/ml) and BBR (19.61 µg/ml), indicating its potential for skin cancer treatment. Furthermore, CSLM images of A431 cells and 3D spheroids demonstrated that BPPNPs have higher cellular uptake and induced apoptosis compared to free BBR and BPNPs. In conclusion, BPPNPs demonstrate promising potential as an effective drug delivery system for skin cancer therapy.


Assuntos
Antineoplásicos , Berberina , Ácidos Borônicos , Glucanos , Nanopartículas , Neoplasias Cutâneas , Esferoides Celulares , Humanos , Berberina/química , Berberina/farmacologia , Glucanos/química , Glucanos/farmacologia , Ácidos Borônicos/química , Nanopartículas/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Esferoides Celulares/efeitos dos fármacos , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/patologia , Tamanho da Partícula , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Sobrevivência Celular/efeitos dos fármacos
7.
Molecules ; 29(12)2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38930825

RESUMO

The current article reports the investigation of three new Ni(II) complexes with ONS-donor dithiocarbazate ligands: [Ni(L1)PPh3] (1), [Ni(L2)PPh3] (2), and [Ni(L2)Py] (3). Single-crystal X-ray analyses revealed mononuclear complexes with a distorted square planar geometry and the metal centers coordinated with a doubly deprotonated dithiocarbazate ligand and coligand pyridine or triphenylphosphine. The non-covalent interactions were investigated by the Hirshfeld surface and the results revealed that the strongest interactions were π⋅⋅⋅π stacking interactions and non-classical hydrogen bonds C-H···H and C-H···N. Physicochemical and spectroscopic methods indicate the same structures in the solid state and solution. The toxicity effects of the free ligands and Ni(II) complexes were tested on the human breast cancer cell line MCF-7 and non-malignant breast epithelial cell line MCF-10A. The half-maximal inhibitory concentration (IC50) values, indicating that the compounds were potent in inhibiting cell growth, were obtained for both cell lines at three distinct time points. While inhibitory effects were evident in both malignant and non-malignant cells, all three complexes demonstrated lower IC50 values for malignant breast cell lines than their non-malignant counterparts, suggesting a stronger impact on cancerous cell lines. Furthermore, molecular docking studies were performed showing the complex (2) as a promising candidate for further therapeutic exploration.


Assuntos
Antineoplásicos , Complexos de Coordenação , Simulação de Acoplamento Molecular , Níquel , Humanos , Níquel/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Ligantes , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/síntese química , Linhagem Celular Tumoral , Cristalografia por Raios X , Células MCF-7 , Estrutura Molecular , Proliferação de Células/efeitos dos fármacos , Desenho de Fármacos
8.
Pharmaceuticals (Basel) ; 17(6)2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38931424

RESUMO

Diabetes, a multifactorial metabolic disorder, demands the discovery of multi-targeting drugs with minimal side effects. This study investigated the multi-targeting antidiabetic potential of quercetin and kaempferol. The druggability and binding affinities of both compounds towards multiple antidiabetic targets were explored using pharmacokinetic and docking software (AutoDock Vina 1.1.2). Our findings showed that quercetin and kaempferol obey Lipinski's rule of five and exhibit desirable ADMET (absorption, distribution, metabolism excretion, and toxicity) profiles. Both compounds showed higher binding affinities towards C-reactive protein (CRP), interleukin-1 (IL-1), dipeptidyl peptidase-4 (DPP-IV), peroxisome proliferator-activated receptor gamma (PPARG), protein tyrosine phosphatase (PTP), and sodium-glucose co-transporter-1 (SGLT-1) compared to metformin (the positive control). Both quercetin and kaempferol inhibited α-amylase activity (in vitro) up to 20.30 ± 0.49 and 37.43 ± 0.42%, respectively. Their oral supplementation significantly reduced blood glucose levels (p < 0.001), improved lipid profile (p < 0.001), and enhanced total antioxidant status (p < 0.01) in streptozotocin-nicotinamide (STZ-NA)-induced diabetic mice. Additionally, both compounds significantly inhibited the proliferation of Huh-7 and HepG2 (cancer cells) (p < 0.0001) with no effect on the viability of Vero cell line (non-cancer). In conclusion, quercetin and kaempferol demonstrated higher binding affinities towards multiple targets than metformin. In vitro and in vivo antidiabetic potential along with the anticancer activities of both compounds suggest promise for further development in diabetes management. The combination of both drugs did not show a synergistic effect, possibly due to their same target on the receptors.

9.
Arch Pharm (Weinheim) ; : e2400197, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38895952

RESUMO

Monocarbonyl analogs of curcumin (MACs) represent structurally modified versions of curcumin. The existing literature indicates that MACs exhibit enhanced anticancer properties compared with curcumin. Numerous research articles in recent years have emphasized the significance of MACs as effective anticancer agents. This review focuses on the latest advances in the anticancer potential of MACs, from 2014 to 2024, including discussions on their mechanism of action, structure-activity relationship (SAR), and in silico molecular docking studies.

10.
Molecules ; 29(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38893569

RESUMO

Oleoresin of Dipterocarpus alatus Roxb. ex G. Don (DA) has been traditionally used for local medicinal applications. Several in vitro studies have indicated its pharmacological potential. However, the low water solubility hinders its use and development for pharmaceutical purposes. The study aimed to (1) formulate oil-in-water (o/w) Pickering emulsions of DA oleoresin and (2) demonstrate its activities in cancer cells. The Pickering emulsions were formulated using biocompatible carboxylated cellulose nanocrystal (cCNC) as an emulsifier. The optimized emulsion comprised 3% (F1) and 4% (v/v) (F2) of oleoresin in 1% cCNC and 0.1 M NaCl, which possessed homogeneity and physical stability compared with other formulations with uniform droplet size and low viscosity. The constituent analysis indicated the presence of the biomarker dipterocarpol in both F1 and F2. The pharmacological effects of the two emulsions were demonstrated in vitro against two cancer cell lines, HepG2 and HCT116. Both F1 and F2 suppressed cancer cell viability. The treated cells underwent apoptosis, as demonstrated by distinct nuclear morphological changes in DAPI-stained cells and Annexin V/PI-stained cells detected by flow cytometry. Our study highlights the prospect of Pickering emulsions for oleoresin, emphasizing enhanced stability and potential pharmacological advantages.


Assuntos
Proliferação de Células , Emulsões , Humanos , Células Hep G2 , Proliferação de Células/efeitos dos fármacos , Emulsões/química , Células HCT116 , Apoptose/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química
11.
J Pharm Bioallied Sci ; 16(Suppl 2): S1207-S1210, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38882728

RESUMO

Objective: The aim of study's goal was to look into the anticancer efficacy of a methanolic extract of Justicia gendarussa against a lung cancer cell line. Materials and Methods: Cell viability assays and cell and nuclear morphology examinations were used to evaluate the anticancer efficacy against methanolic extract of Justicia gendarussa on lung cancer cell lines. The IC50 doses were calculated using different concentrations of Justicia gendarussa extract (0, 10, 20, 40, 60, and 80 µg/mL). Results: The results of MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide) assay revealed that the percentage of viability in treated cells was significantly lower as compared with untreated control groups, which represented as 100%, and an inhibitory concentration of 40 µg/mL was observed. Under a phase-contrast microscope, morphological changes revealed cell shrinkage and cytoplasmic membrane blebbing. The apoptotic nuclei (intensely colored, broken nuclei, and compacted chromatin) were examined under a fluorescence microscope. Conclusions: The outcome of the research work on Justicia gendarussa was investigated for anticancer properties. The results revealed the proapoptotic and cytotoxic effects of Justicia gendarussa extract on lung cancer cell lines. From the above results and findings, it could be concluded that the Justicia gendarussa methanolic leaf extract exhibited potent anticancer activity against a lung cancer cell line. Further study needs to be conducted to investigate the active chemicals in the extract as well as the molecular mechanisms underlying its anticancer benefits.

12.
Environ Res ; 257: 119288, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38823619

RESUMO

The study aimed to analyze the pharmacological properties of medicinal plant Indigofera hochstetteri Baker extracts. Preliminary phytochemical analysis revealed a diverse range of secondary metabolites present in it. TLC analysis detected numerous phytochemicals with varying Rf values, aiding in different solvent systems. GC-MS analysis revealed the presence of 29 bioactive compounds with diverse pharmacological activities, including anti-inflammatory, antioxidant, analgesic and antimicrobial properties. Antimicrobial effect of I. hochstetteri Baker methanolic extract showed significant inhibitory effects against E. coli, E. aerogenes, S. flexneri, P. aeruginosa, S. aureus, E. faecalis, B. cereus, and fungal strain C. albicans. The methanol extract also showed significant antifungal activity by inhibiting the growth of Sclerotium rolfsii in food poisoning method. MTT assays revealed significant cytotoxic activity of methanolic extract against human leukemia HL-60 cancer cells with IC50 of 116.01 µg/mL. In apoptotic study, I. hochstetteri Baker methanolic extract showed 28.84% viable cells, 30.2% early apoptosis, 35.54% late apoptosis, and 5.86% necrosis comparatively similar with standard used. The extract showed significant anti-inflammatory effect on HRBC stabilization, and protein denaturation of BSA and egg albumin denaturation with IC50 of 193.62 µg/mL, 113.94 µg/mL respectively. In anti-diabetic assays like α-amylase, α-glucosidase, and Glucose uptake assay, I. hochstetteri extract showed good anti-diabetic effect with IC50 of 60.64 µg/mL, 169.34 µg/mL, and 205.63 µg/mL respectively. In conclusion I. hochstetteri Baker have promising bioactive metabolites with significant biological activities, it can be good substitute for the chemical drugs after successful clinical studies.

13.
Adv Food Nutr Res ; 110: 327-398, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38906590

RESUMO

Condensed tannins are considered nutritionally undesirable, because they precipitate proteins, inhibit digestive enzymes, and can affect the absorption of vitamins and minerals. From the consumer's point of view, they impart astringency to foods. Yet, they are viewed as a double-edged sword, since they possess antioxidant and anti-inflammatory activities. Intake of a small quantity of the right kind of tannins may in fact be beneficial to human health. This chapter reports on the chemical structure of condensed tannins, their content in plants and food of plant origin, how they are extracted, and methods for their determination. A description of the effects of processing on condensed tannins is discussed and includes soaking, dehulling, thermal processing (i.e., cooking, boiling, autoclaving, extrusion), and germination. The astringency of condensed tannins is described in relation to their interactions with proteins. Finally, details about the biological properties of condensed tannins, including their antimicrobial, anti-inflammatory, anticancer, anti-diabetic, and anti-obesity activities, are reviewed.


Assuntos
Antioxidantes , Manipulação de Alimentos , Proantocianidinas , Antioxidantes/farmacologia , Antioxidantes/química , Proantocianidinas/farmacologia , Proantocianidinas/química , Humanos , Manipulação de Alimentos/métodos , Plantas Comestíveis/química , Anti-Inflamatórios/farmacologia
14.
Mol Divers ; 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38851658

RESUMO

Utilizing microwave heating and an aqueous saturated solution of K2CO3 as a catalyst, a rapidone-pot synthesis of oxospiro[chromene-4.3-indoline] derivatives was produced in high yields. The experimental results confirmed that the saturated solution of K2CO3 gives outstanding yield to dangerous metals and strong bases during investigations into high-performance catalysts. The used catalyst is green, affordable, incredibly mild, and widely accessible. However, it generates samples, reduces the amount of byproducts, and is expected to be used in industrial-scale heterocyclic derivatives. New oxospiro[chromene-4.3-indoline] derivatives have been created from various isatin by condensing with various phenols. The biological activities results showed that when compared to erlotinib, the derivatives 3b, 4b, 5b, and 6b were the most effective analogues on A549, MCF-7, HepG-2, and HCT-116 cells, with an IC50 range of 3.32 to 11.88 µM. In A549 cells, compounds 3b, 4b, 5b, and 6b induced apoptosis, as shown by the up-regulation of Bax, the up-regulation of Bcl-2, and the stimulation of caspase-3 and -9. With IC50 value of 0.19 ± 0.09, compound3b was demonstrated to be the most effective against EGFRWT. Compounds 4b and 6b have good antibacterial activity toward Staphylococcus aureus, comparable to ciprofloxacin, and about half as much activity as ampicillin, according to the MIC value. Compound 6b's MIC is about 25% lower than clotrimazole drug. The in silico molecular docking outcomes of compounds 3b, 4b, 5b, and 6b in the EGFR active site depicted their ability to adopt essential binding interactions compared to the reference Erlotinib. Moreover, the investigation of the physicochemical properties of the most promising dual acting antiproliferative and antimicrobial compounds 4b and 6b through the egg-boiled method illustrated acceptable lipophilicity, GIT absorption, and blood-brain barrier penetration characteristics.

15.
Sci Rep ; 14(1): 13470, 2024 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866790

RESUMO

The growing interest in using plant extracts for the biogenic synthesis of zinc oxide nanoparticles (ZnO NPs) stems from their facile, eco-friendly, and biologically safe approach instead of chemical routes. For the first time, ZnO NPs were successfully biosynthesized using Rhus coriaria fruit aqueous extract as a reducing and capping agent. Characterization revealed that the biosynthesized ZnO NPs possessed a maximum absorbance of approximately 359 nm and closely resembled the hexagonal ZnO wurtzite crystalline structure, with an average crystalline size of 16.69 nm. The transmission electron microscope (TEM) showed the presence of spherical and hexagonal morphologies, with an average grain size of 20.51 ± 3.90 nm. Moreover, the elemental composition of the synthesized ZnO NPs was assessed via energy-dispersive X-ray spectrometry (EDX), and the presence of phytocompounds on their surface was subsequently verified through FT-IR analysis. The ζ-potential of ZnO NPs was recorded at - 19.9 ± 0.1663 mV. Regarding anti-cancer properties, ZnO NPs were found to possess potent anti-tumor effects on MCF-7 and MDA-MB-231 breast cancer cells. Their efficacy was dose-dependent, with IC50 values ranging from 35.04-44.86 µg/mL for MCF-7 and 55.54-63.71 µg/mL for MDA-MB-231 cells. Mechanistic studies in MDA-MB-231 cells revealed apoptosis induction, validated by DAPI staining, confocal microscopy, and Annexin V/PI staining, showing apoptosis by 12.59% and 81.57% at ½ IC50 and IC50 values, respectively. Additionally, ZnO NPs were observed to provoke S-phase arrest and inhibit colony-forming and metastatic potential by modulating apoptosis and metastasis-related genes. This study unravels new insights into how ZnO NPs provoke cancer cell death and inhibit metastasis, revealing new prospects in cancer nanotechnology.


Assuntos
Química Verde , Nanopartículas Metálicas , Extratos Vegetais , Rhus , Neoplasias de Mama Triplo Negativas , Óxido de Zinco , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Humanos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Rhus/química , Química Verde/métodos , Nanopartículas Metálicas/química , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Feminino , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Células MCF-7 , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos
16.
Chem Biodivers ; : e202400701, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829745

RESUMO

This study aims to combat breast cancer, which is a significant health concern for women worldwide. By targeting aromatase, an enzyme crucial in estrogen synthesis, the research focuses on breast cancer cases, emphasizing the importance of hormonal therapy. The innovative approach of this study involves the synthesis of novel bis-triazolopyridopyrimidines, designed to amplify the combined pharmacological advantages of the pyridopyrimidine and 1,2,4-triazole structures known for their aromatase inhibition and anti-cancer capabilities. Through the synthesis and characterization of these compounds using 1H-NMR, 13C-NMR, and MS spectral analyses, and evaluating their anticancer efficacy with MTT assays against MCF-7 breast cancer cell lines in vitro, the research endeavors to develop potent aromatase inhibitors as viable anti-breast cancer agents. Identifying compounds with strong binding energies to aromatase through molecular docking analyses further supports their potential effectiveness in inhibiting aromatase activity, a key mechanism in breast cancer progression. The findings, particularly regarding compounds 5b, 5c, 10a, and 10b, which exhibited the strongest binding energies with aromatase, highlight promising candidates for further development and testing as potential therapeutic agents against breast cancer. This approach showcases the potential of these synthesized compounds in combating breast cancer by inhibiting aromatase activity.

17.
Pharmaceutics ; 16(6)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38931857

RESUMO

The phytochemical diversity and potential health benefits of V. oxycoccos and V. macrocarpon fruits call for further scientific inquiry. Our study aimed to determine the phytochemical composition of extracts from these fruits and assess their antioxidant, antibacterial, and anticancer properties in vitro. It was found that the ethanolic extracts of V. oxycoccos and V. macrocarpon fruits, which contained more lipophilic compounds, had 2-14 times lower antioxidant activity compared to the dry aqueous extracts of cranberry fruit, which contained more hydrophilic compounds. All tested cranberry fruit extracts (OE, OW, ME, and MW) significantly inhibited the growth of bacterial strains S. aureus, S. epidermidis, E. coli, and K. pneumoniae in vitro compared to the control. Cytotoxic activity against the human prostate carcinoma PPC-1 cell line, human renal carcinoma cell line (CaKi-1), and human foreskin fibroblasts (HF) was determined using an MTT assay. Furthermore, the effect of the cranberry fruit extract samples on cell migration activity, cancer spheroid growth, and viability was examined. The ethanolic extract from V. macrocarpon fruits (ME) showed higher selectivity in inhibiting the viability of prostate and renal cancer cell lines compared to fibroblasts. It also effectively hindered the migration of these cancer cell lines. Additionally, the V. macrocarpon fruit extract (ME) demonstrated potent cytotoxicity against PPC-1 and CaKi-1 spheroids, significantly reducing the size of PPC-1 spheroids compared to the control. These findings suggest that cranberry fruit extracts, particularly the ethanolic extract from V. macrocarpon fruits, have promising potential as natural remedies for bacterial infections and cancer therapy.

18.
J Basic Microbiol ; : e2400153, 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38922993

RESUMO

Magnetic nanoparticles (MNPs), particularly iron oxide nanoparticles (IONPs), are a fascinating group of nanoparticles that have been considerably investigated for biomedical applications because of their superparamagnetic properties, biodegradable nature, and biocompatibility. A novel Gram-positive moderately thermophilic bacterial strain, namely Bacillus tequilensis ASFS.1, was isolated and identified. This strain is capable of producing superparamagnetic Fe3O4 nanoparticles and exhibiting magnetotaxis behavior. This strain swimming behavior was investigated under static and dynamic environments, where it behaved very much similar to the magnetotaxis in magnetotactic bacteria. This study is the first report of a bacterium from the Bacillaceae family that has the potential to intracellular biosynthesis of IONPs. MNPs were separated by a magnetic and reproducible method which was designed for the first time for this study. In addition, UV-visible spectrophotometer, Fourier-transform infrared spectroscopy, vibrating sample magnetometer, field emission scanning electron microscopy (FESEM), X-ray diffraction, and thermal gravimetric analysis were utilized to characterize the bio-fabricated magnetite nanoparticles. Analysis of the particle size distribution pattern of the biogenic MNPs by FESEM imaging revealed the size range of 10-100 nm with the size range of 10-40 nm MNPs being the most frequent particles. VSM analysis demonstrated that biogenic MNPs displayed superparamagnetic properties with a high saturation magnetization value of 184 emu/g. After 24 h treatment of 3T3, U87, A549, MCF-7, and HT-29 cell lines with the biogenic MNPs, IC50 values were measured to be 339, 641, 582, 149, and 184 µg mL-1, respectively. This study presents the novel strain ASFS.1 capable of magnetotaxis by the aid of its magnetite nanoparticles and paving information on isolation, characterization, and in vitro cytotoxicity of its MNPs. The MNPs showed promising potential for biomedical applications, obviously subject to additional studies.

19.
Int J Biol Macromol ; 272(Pt 1): 132873, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38838890

RESUMO

The decoctions of sunflower (Helianthus annuus L. HAL) stalk pith have been used to treat advanced cancer, and polysaccharide of sunflower stalk pith (HSPP) was key ingredient of the decoctions. To forage specially structured HSPP with anti-tumor effects and to uncover its mechanisms of anticancer activity, syngeneic mouse model of lung carcinoma metastasis was established and the HSPP was found to contain long-chain fatty acid. Encouragingly, the mean survival of the polysaccharide group (47.3 ± 12.8 d) and its sub-fractions group HSPP-4 (50.7 ± 13.0 d) was significantly increased compared with control group (38.7 ± 12.7 d) or positive control group (41.8 ± 13.4 d), (n = 20, P < 0.01 vs. the control group or positive control group). Furthermore, the HSPP exerted inhibitory effects on the tumor cells' metastasis. Eventually, it is postulated that the polysaccharide could inhibit tumor proliferation and metastasis by reduction of TNF-α from the macrophage.


Assuntos
Proliferação de Células , Helianthus , Metástase Neoplásica , Polissacarídeos , Fator de Necrose Tumoral alfa , Helianthus/química , Animais , Polissacarídeos/farmacologia , Polissacarídeos/química , Fator de Necrose Tumoral alfa/metabolismo , Camundongos , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Transdução de Sinais/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/tratamento farmacológico
20.
Int J Biol Macromol ; 273(Pt 1): 133121, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38876229

RESUMO

GFP1, a sulfated polysaccharide extracted from Grateloupia filicina, exhibits remarkable immunomodulatory activity. To reduce the side effects of 5-fluorouracil (5-FU), GFP1 was employed as a macromolecular carrier to synthesize of GFP1-C-5-FU by reacting with carboxymethyl-5-fluorouracil (C-5-FU). Subsequently, this new compound was reacted with folic acid (FA) through an ester bond, forming novel conjugates named GFP1-C-5-FU-FA. Nuclear magnetic resonance analysis confirmed the formation of GFP1-C-5-FU-FA. In vitro drug release studies revealed that the cumulative release rate of C-5-FU reached 46.9 % in phosphate buffer (pH 7.4) after 96 h, a rate significantly higher than that of the control groups, indicating the controlled drug release behavior of GFP1-C-5-FU-FA. Additionally, in vitro anticancer assays demonstrated the potent anticancer activity of GFP1-C-5-FU-FA conjugates, as evidenced by the reduced viability of HeLa and AGS cancer cells, along with increased levels of apoptosis and cellular uptake. Western blot analysis indicated that the GFP1-C-5-FU-FA conjugate effectively enhanced phosphorylation in cancer cells through the NF-kB and MAPK pathways, thereby promoting apoptosis. These findings highlight the potential of folate-targeted conjugates in efficiently treating HeLa and AGS cancer cells in vitro and lay a robust theoretical groundwork for future in vivo anti-cancer research involving these cells.


Assuntos
Antineoplásicos , Fluoruracila , Ácido Fólico , Polissacarídeos , Fluoruracila/farmacologia , Fluoruracila/química , Humanos , Ácido Fólico/química , Ácido Fólico/farmacologia , Polissacarídeos/química , Polissacarídeos/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Sulfatos/química , Células HeLa , Liberação Controlada de Fármacos , Sistemas de Liberação de Medicamentos , Portadores de Fármacos/química , Sobrevivência Celular/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...