Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Plants (Basel) ; 13(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38931078

RESUMO

Blueberries (Vaccinium corymbosum L.) are cultivated worldwide and are among the best dietary sources of bioactive compounds with beneficial health effects. This study aimed to investigate the components of Peruvian blueberry using high-performance liquid chromatography coupled to electrospray ionization and quadrupole time-of-flight mass spectrometry (HPLC-ESI-QTOF-MS/MS), identifying 11 compounds. Furthermore, we assessed in vitro the antioxidant activity and in vivo the antidepressant effect using a rat model and protective effect on lipid peroxidation (in the serum, brain, liver, and stomach). We also conducted molecular docking simulations with proteins involved in oxidative stress and depression for the identified compounds. Antioxidant activity was assessed by measuring total phenolic and flavonoid contents, as well as using 1,1-diphenyl-2-picrylhydrazin (DPPH), 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic) acid (ABTS•+), and ferric-reducing antioxidant power (FRAP) assays. Peruvian blueberries demonstrated higher antioxidant activity than Vaccinium corymbosum fruits from Chile, Brazil, the United States, Turkey, Portugal, and China. The results showed that oral administration of Peruvian blueberries (10 and 20 mg/kg) for 28 days significantly (p < 0.001) increased swimming and reduced immobility in the forced swimming test (FST). Additionally, at doses of 40 and 80 mg/kg, oxidative stress was reduced in vivo (p < 0.001) by decreasing lipid peroxidation in brain, liver, stomach, and serum. Molecular docking and absorption, distribution, metabolism, excretion, and toxicity (ADMET) predictions were performed. In the molecular docking studies, quercitrin and 3,5-di-O-caffeoylquinic acid showed the best docking scores for nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, superoxide dismutase, and xanthine oxidase; while 3,5-dicaffeoylquinic acid methyl ester and caffeoyl coumaroylquinic acid had the best docking scores for monoamine oxidase and serotonin receptor 5-HT2. In summary, our results suggest that the antidepressant and protective effects against lipid peroxidation might be related to the antioxidant activity of Peruvian Vaccinium corymbosum L.

2.
Neurotherapeutics ; : e00377, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38777742

RESUMO

Chronic pain is a prevalent and persistent ailment that affects individuals worldwide. Conventional medications employed in the treatment of chronic pain typically demonstrate limited analgesic effectiveness and frequently give rise to debilitating side effects, such as tolerance and addiction, thereby diminishing patient compliance with medication. Consequently, there is an urgent need for the development of efficacious novel analgesics and innovative methodologies to address chronic pain. Recently, a growing body of evidence has suggested that multireceptor ligands targeting opioid receptors (ORs) are favorable for improving analgesic efficacy, decreasing the risk of adverse effects, and occasionally yielding additional advantages. In this study, the intrathecal injection of a recently developed peptide (VYWEMEDKN) at nanomolar concentrations decreased pain sensitivity in naïve mice and effectively reduced pain-related behaviors in nociceptive pain model mice with minimal opioid-related side effects. Importantly, the compound exerted significant rapid-acting antidepressant effects in both the forced swim test and tail suspension test. It is possible that the rapid antihyperalgesic and antidepressant effects of the peptide are mediated through the OR pathway. Overall, this peptide could both effectively provide pain relief and alleviate depression with fewer side effects, suggesting that it is a potential agent for chronic pain and depression comorbidities from the perspective of pharmaceutical development.

3.
Proc Natl Acad Sci U S A ; 121(22): e2402732121, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38768339

RESUMO

Ketamine is an N-methyl-D-aspartate (NMDA)-receptor antagonist that produces sedation, analgesia, and dissociation at low doses and profound unconsciousness with antinociception at high doses. At high and low doses, ketamine can generate gamma oscillations (>25 Hz) in the electroencephalogram (EEG). The gamma oscillations are interrupted by slow-delta oscillations (0.1 to 4 Hz) at high doses. Ketamine's primary molecular targets and its oscillatory dynamics have been characterized. However, how the actions of ketamine at the subcellular level give rise to the oscillatory dynamics observed at the network level remains unknown. By developing a biophysical model of cortical circuits, we demonstrate how NMDA-receptor antagonism by ketamine can produce the oscillatory dynamics observed in human EEG recordings and nonhuman primate local field potential recordings. We have identified how impaired NMDA-receptor kinetics can cause disinhibition in neuronal circuits and how a disinhibited interaction between NMDA-receptor-mediated excitation and GABA-receptor-mediated inhibition can produce gamma oscillations at high and low doses, and slow-delta oscillations at high doses. Our work uncovers general mechanisms for generating oscillatory brain dynamics that differs from ones previously reported and provides important insights into ketamine's mechanisms of action as an anesthetic and as a therapy for treatment-resistant depression.


Assuntos
Ketamina , Receptores de N-Metil-D-Aspartato , Ketamina/farmacologia , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Animais , Humanos , Cinética , Eletroencefalografia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Modelos Neurológicos
4.
bioRxiv ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38617266

RESUMO

Ketamine is an NMDA-receptor antagonist that produces sedation, analgesia and dissociation at low doses and profound unconsciousness with antinociception at high doses. At high and low doses, ketamine can generate gamma oscillations (>25 Hz) in the electroencephalogram (EEG). The gamma oscillations are interrupted by slow-delta oscillations (0.1-4 Hz) at high doses. Ketamine's primary molecular targets and its oscillatory dynamics have been characterized. However, how the actions of ketamine at the subcellular level give rise to the oscillatory dynamics observed at the network level remains unknown. By developing a biophysical model of cortical circuits, we demonstrate how NMDA-receptor antagonism by ketamine can produce the oscillatory dynamics observed in human EEG recordings and non-human primate local field potential recordings. We have discovered how impaired NMDA-receptor kinetics can cause disinhibition in neuronal circuits and how a disinhibited interaction between NMDA-receptor-mediated excitation and GABA-receptor-mediated inhibition can produce gamma oscillations at high and low doses, and slow-delta oscillations at high doses. Our work uncovers general mechanisms for generating oscillatory brain dynamics that differs from ones previously reported, and provides important insights into ketamine's mechanisms of action as an anesthetic and as a therapy for treatment-resistant depression.

5.
Psychiatry Res ; 335: 115865, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38518518

RESUMO

Individuals with major depressive disorder and treatment resistant depression (MDD-TRD) have limited and sometimes poorly tolerated therapeutic options. Low dose ketamine has presented promising and potent antidepressant effects in this population. To support the existent literature, we conducted a longitudinal study examining five years of real-world clinical data on the use of IV low-dose ketamine alongside standard care for MDD-TRD outpatients. For this study we collected demographic information, clinical scale scores, side effects and dropout data. The data was analyzed using descriptive statistics, effect size using Cohen's D analysis, and multivariate ANOVA (MANOVA) to determine the impact of sociodemographic variables. 71 outpatients (50.28 years old, SD: 14.26; female 74.65%) were included in the analysis. The results showed a significant reduction in depressive symptoms and suicide ideation (SI) by treatment endpoint. 54.93% of patients responded to the treatment, 78.26% experienced transient and mild side effects, and 11.27% of dropped out of the treatment. Multivariate analysis showed that the demographic variables did not impact treatment effect or tolerability. The results of this study suggest that IV low dose ketamine treatment is effective, fast-acting, and well tolerated for the management of depressive symptoms and SI in patients with MDD-TRD in naturalistic clinical practice.


Assuntos
Transtorno Depressivo Maior , Transtorno Depressivo Resistente a Tratamento , Ketamina , Humanos , Feminino , Pessoa de Meia-Idade , Transtorno Depressivo Resistente a Tratamento/tratamento farmacológico , Transtorno Depressivo Resistente a Tratamento/diagnóstico , Transtorno Depressivo Maior/diagnóstico , Estudos Longitudinais , Infusões Intravenosas , Ideação Suicida , Depressão/tratamento farmacológico
6.
Phytomedicine ; 128: 155433, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38547621

RESUMO

BACKGROUND: Post-stroke depression (PSD) affects approximately one-third of stroke survivors, leading to adverse outcomes in rehabilitation, reduced quality of life, and increased mortality rates. Despite these implications, the underlying causes of PSD remain unclear, posing challenges for prevention and treatment. Echinacoside (ECH), a natural compound with known neuroprotective and antidepressant properties, holds significant therapeutic potential for PSD. However, the precise mechanism of its action remains unknown. PURPOSE: To unravel the specific mechanism through which ECH alleviates PSD by exploring the intricate interplay between ECH and Nrf2, as well as its impact on the BDNF/TrkB signaling axis. STUDY DESIGN AND METHODS: A rat PSD model was established though middle cerebral artery occlusion coupled with chronic unpredictable mild stress, followed by ECH treatment. The rats' depressive state was evaluated using the sucrose preference test and force swimming test. Brain damage was assessed through TTC staining, Nissl staining, and TUNEL assay. The multifaceted mechanism of ECH in PSD was investigated using immunofluorescence, immunohistochemistry, RT-qPCR, dual-luciferase assay, and western blotting. Additionally, the interaction between ECH and Nrf2 was explored through molecular docking and microscale thermophoresis. RESULTS: Our findings unveiled a novel facet of ECH action, demonstrating its unique ability to upregulate Nrf2 through acetylation within the hippocampus of PSD-affected rats (p < 0.05). Moreover, ECH showcased its distinctive potential by enhancing BDNF transcriptional activity, activating the BDNF/TrkB signaling axis, and orchestrating a comprehensive response against oxidative stress and apoptosis, thereby alleviating PSD symptoms in rats (p < 0.05). CONCLUSIONS: This study not only provides insights into the pivotal role of Nrf2 in mediating the BDNF/TrkB axis activation by ECH but also highlights the novelty of ECH's mechanism in addressing PSD. The elucidation of these unique aspects positions ECH as a groundbreaking candidate for further exploration and development in the realm of PSD intervention.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Depressão , Glicosídeos , Fator 2 Relacionado a NF-E2 , Ratos Sprague-Dawley , Transdução de Sinais , Acidente Vascular Cerebral , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Masculino , Transdução de Sinais/efeitos dos fármacos , Depressão/tratamento farmacológico , Depressão/etiologia , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/complicações , Ratos , Glicosídeos/farmacologia , Acetilação , Modelos Animais de Doenças , Fármacos Neuroprotetores/farmacologia , Antidepressivos/farmacologia , Simulação de Acoplamento Molecular , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico
7.
Acta Pharmacol Sin ; 45(4): 704-713, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38097715

RESUMO

Sigma-1 receptor (S1R) is a unique multi-tasking chaperone protein in the endoplasmic reticulum. Since S1R agonists exhibit potent antidepressant-like activity, S1R has become a novel target for antidepression therapy. With a rapid and sustained antidepressant effect, ketamine may also interact with S1R. In this study, we investigated whether the antidepressant action of ketamine was related to S1R activation. Depression state was evaluated in the tail suspension test (TST) and a chronic corticosterone (CORT) procedure was used to induce despair-like behavior in mice. The neuronal activities and structural changes of pyramidal neurons in medial prefrontal cortex (mPFC) were assessed using fiber-optic recording and immunofluorescence staining, respectively. We showed that pharmacological manipulation of S1R modulated ketamine-induced behavioral effect. Furthermore, pretreatment with an S1R antagonist BD1047 (3 mg·kg-1·d-1, i.p., for 3 consecutive days) significantly weakened the structural and functional restoration of pyramidal neuron in mPFC caused by ketamine (10 mg·kg-1, i.p., once). Ketamine indirectly triggered the activation of S1R and subsequently increased the level of BDNF. Pretreatment with an S1R agonist SA4503 (1 mg·kg-1·d-1, i.p., for 3 consecutive days) enhanced the sustained antidepressant effect of ketamine, which was eliminated by knockdown of BDNF in mPFC. These results reveal a critical role of S1R in the sustained antidepressant effect of ketamine, and suggest that a combination of ketamine and S1R agonists may be more beneficial for depression patients.


Assuntos
Antidepressivos , Fator Neurotrófico Derivado do Encéfalo , Ketamina , Receptor Sigma-1 , Animais , Humanos , Camundongos , Antidepressivos/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Depressão/tratamento farmacológico , Ketamina/farmacologia , Neurônios , Córtex Pré-Frontal/metabolismo , Receptor Sigma-1/agonistas
8.
Proc Natl Acad Sci U S A ; 120(26): e2214505120, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37339227

RESUMO

Sleep loss robustly disrupts mood and emotion regulation in healthy individuals but can have a transient antidepressant effect in a subset of patients with depression. The neural mechanisms underlying this paradoxical effect remain unclear. Previous studies suggest that the amygdala and dorsal nexus (DN) play key roles in depressive mood regulation. Here, we used functional MRI to examine associations between amygdala- and DN-related resting-state connectivity alterations and mood changes after one night of total sleep deprivation (TSD) in both healthy adults and patients with major depressive disorder using strictly controlled in-laboratory studies. Behavioral data showed that TSD increased negative mood in healthy participants but reduced depressive symptoms in 43% of patients. Imaging data showed that TSD enhanced both amygdala- and DN-related connectivity in healthy participants. Moreover, enhanced amygdala connectivity to the anterior cingulate cortex (ACC) after TSD associated with better mood in healthy participants and antidepressant effects in depressed patients. These findings support the key role of the amygdala-cingulate circuit in mood regulation in both healthy and depressed populations and suggest that rapid antidepressant treatment may target the enhancement of amygdala-ACC connectivity.


Assuntos
Transtorno Depressivo Maior , Adulto , Humanos , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/tratamento farmacológico , Privação do Sono/diagnóstico por imagem , Tonsila do Cerebelo/diagnóstico por imagem , Giro do Cíngulo/diagnóstico por imagem , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Imageamento por Ressonância Magnética/métodos
9.
J Ethnopharmacol ; 313: 116555, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37100263

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Traditional Chinese medicines (TCMs) are often prepared in oral dosage forms, making TCMs interact with gut microbiota after oral administration, which could affect the therapeutic effect of TCM. Xiaoyao Pills (XYPs) are a commonly used TCM in China to treat depression. The biological underpinnings, however, are still in its infancy due to its complex chemical composition. AIM OF THE STUDY: The study aims to explore XYPs' underlying antidepressant mechanism from both in vivo and in vitro. MATERIALS AND METHODS: XYPs were composed of 8 herbs, including the root of Bupleurum chinense DC., the root of Angelica sinensis (Oliv.) Diels, the root of Paeonia lactiflora Pall., the sclerotia of Poria cocos (Schw.) Wolf, the rhizome of Glycyrrhiza uralensis Fisch., the leaves of Mentha haplocalyx Briq., the rhizome of Atractylis lancea var. chinensis (Bunge) Kitam., and the rhizome of Zingiber officinale Roscoe, in a ratio of 5:5:5:5:4:1:5:5. The chronic unpredictable mild stress (CUMS) rat models were established. After that, the sucrose preference test (SPT) was carried out to evaluate if the rats were depressed. After 28 days of treatment, the forced swimming test and SPT were carried out to evaluate the antidepressant efficacy of XYPs. The feces, brain and plasma were taken out for 16SrRNA gene sequencing analysis, untargeted metabolomics and gut microbiota transformation analysis. RESULTS: The results revealed multiple pathways affected by XYPs. Among them, the hydrolysis of fatty acids amide in brain decreased most significant via XYPs treatment. Moreover, the XYPs' metabolites which mainly derived from gut microbiota (benzoic acid, liquiritigenin, glycyrrhetinic acid and saikogenin D) were found in plasma and brain of CUMS rats and could inhibit the levels of FAAH in brain, which contributed to XYPs' antidepressant effect. CONCLUSIONS: The potential antidepressant mechanism of XYPs by untargeted metabolomics combined with gut microbiota-transformation analysis was revealed, which further support the theory of gut-brain axis and provide valuable evidence of the drug discovery.


Assuntos
Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Ratos , Animais , Medicina Tradicional Chinesa , Depressão/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Encéfalo
10.
J Affect Disord ; 324: 8-15, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36566932

RESUMO

BACKGROUND: We investigated the effects of liraglutide, a glucagon-like peptide-1 (GLP-1) agonist, on a depression-like phenotype in mice exposed to chronic unpredictable stress (CUS). Learning and memory were also assessed using the Morris water maze (MWM) test. METHODS: Liraglutide (0.3 mg/kg/day for 21 days) was administered to mice with or without exposure to CUS. After 21 days of CUS, the forced swim test (FST) was performed to assess its antidepressant effect. To evaluate cognitive function, liraglutide was administered to mice under stress-free conditions for 21 days, and then the MWM test was performed on 6 consecutive days. RESULTS: Chronic liraglutide treatment reduced FST immobility in mice with and without CUS. In the probe trial of the Morris water maze test, the search error rate was reduced and the time spent and path length in the target quadrant and the number of platform crossings were increased. LIMITATION: Additional animal model experiments and molecular level studies are needed to support the results obtained in this study. CONCLUSIONS: Liraglutide appears to exert antidepressant effects and could improve cognitive function. Based on these results, GLP-1 agonists could have potential as novel antidepressants.


Assuntos
Liraglutida , Teste do Labirinto Aquático de Morris , Camundongos , Animais , Liraglutida/farmacologia , Liraglutida/uso terapêutico , Depressão/tratamento farmacológico , Aprendizagem em Labirinto , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Cognição , Peptídeo 1 Semelhante ao Glucagon , Modelos Animais de Doenças , Comportamento Animal , Estresse Psicológico
11.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-998170

RESUMO

ObjectiveTo explore the antidepressant effect of Sophora flavescens seed extract and its molecular mechanism. MethodA mouse depression model was established by intraperitoneal injection of lipopolysaccharide(LPS), and normal group, model group, fluoxetine group(2.5 mg·kg-1), and S. flavescens seed low, medium and high dose groups(200, 400, 800 mg·kg-1) were set up for 7 d of consecutive gavage. Then the antidepressant effect of S. flavescens seed extract was evaluated by using open field test, elevated plus maze test and forced swimming test. Pathological morphological changes in the hippocampal tissue was observed by hematoxylin-eosin(HE) staining. Protein expression levels of G1/S-specific cyclin D1(Cyclin D1), Wnt1, β-catenin and phosphorylated glycogen synthase kinase-3β(p-GSK-3β) in mouse brain tissues were detected by Western blot. Hippocampal cell apoptosis was detected by terminal deoxynucleotidyl transferase mediated deoxyuridine triphosphate(dUTP) nick end labeling(TUNEL). ResultThe results of mouse behavioral experiments showed that compared with the normal group, the speed of movement in the open field and the distance of movement in the central area of the open field, and the time spent on the open arms of the elevated plus maze were significantly reduced in the model group(P<0.01), while immobility time in the forced swimming test was significantly increased(P<0.05). Compared with the model group, the S. flavescens seed medium and high dose groups had increased speed of movement in the open field test and time spent on the open arms of the elevated plus maze test(P<0.05, P<0.01), and decreased immobility time in the forced swimming test(P<0.05), the distance of movement in the central area of the open field test increased in the high dose group(P<0.05). HE staining results showed that compared with the normal group, the hippocampal neuron structure of mice in the model group was damaged. Compared with the model group, after treatment of S. flavescens seed extract, the pathological state of the mouse hippocampal neuron structure was alleviated, and the neurons increased, were neatly arranged, and the cytoplasm was clear. Western blot results showed that the protein expression levels of Wnt1 and β-catenin in mouse brain tissue were significantly decreased(P<0.01), while the protein expression levels of Cyclin D1 and p-GSK-3β were significantly increased(P<0.01) after LPS injection. Compared with the model group, protein expression levels of Wnt1 and β-catenin in brain tissue of S. flavescens seed medium and high dose groups were significantly increased(P<0.01), while the protein expression levels of Cyclin D1 and p-GSK-3β were significantly decreased(P<0.01). TUNEL staining results showed that the hippocampal cell apoptosis rate in the model group was significantly increased compared with that of the normal group(P<0.01), while the hippocampal cell apoptosis rate in the S. flavescens seed medium and high dose groups was significantly decreased compared with that of the model group(P<0.01). ConclusionS. flavescens seed extract can effectively improve the severity of depression in LPS-induced depressed mice, and its molecular mechanism is related to the regulation of neuroinflammation and hippocampal neuronal apoptosis mediated by Wnt/β-catenin signaling pathway.

12.
Int J Nanomedicine ; 18: 7965-7983, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38162571

RESUMO

Purpose: The early stage of this study verified that a turmeric extract (TUR) including 59% curcumin (CU), 22% demethoxycurcumin (DMC), and 18% bisdemethoxycurcumin (BDMC), could enhance the stability of CU and had greater antidepressant potential in vitro. The objective of the study was to develop a nano-delivery system containing TUR (TUR-NE) to improve the pharmacokinetic behavior of TUR and enhance its antidepressant effect. Methods: The antidepressant potential of TUR was explored using ABTS, oxidative stress-induced cell injury, and a high-throughput screening model. TUR-NE was fabricated, optimized and characterized. The pharmacokinetic behaviors of TUR-NE were evaluated following oral administration to normal rats. The antidepressant effect of TUR-NE was assessed within chronic unpredictable mild stress model (CUMS) mice. The behavioral and biochemical indexes of mice were conducted. Results: The results depicted that TUR had 3.18 and 1.62 times higher antioxidant capacity than ascorbic acid and CU, respectively. The inhibition effect of TUR on ASP+ transport was significantly enhanced compared with fluoxetine and CU. TUR-NE displayed a particle size of 116.0 ± 0.31 nm, polydispersity index value of 0.121 ± 0.007, an encapsulation rate of 98.45%, and good release and stability in cold storage. The results of pharmacokinetics indicated the AUC(0-t) of TUR-NE was 8.436 and 4.495 times higher than that of CU and TUR, while the Cmax was 9.012 and 5.452 times higher than that of CU and TUR, respectively. The pharmacodynamic study confirmed that the superior antidepressant effect of TUR-NE by significantly improving the depressant-like behaviors and elevating the content of 5-hydroxytryptamine in plasma and brain in CUMS mice. TUR-NE showed good safety with repeated administration. Conclusion: TUR-NE, which had small and uniform particle size, enhanced the bioavailability and antidepressant effect of TUR. It could be a promising novel oral preparation against depression.


Assuntos
Curcumina , Ratos , Camundongos , Animais , Curcumina/farmacologia , Antidepressivos/farmacologia , Extratos Vegetais/química , Curcuma/química
13.
Front Psychiatry ; 13: 1051235, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36506414

RESUMO

Alarin is a pleiotropic peptide involved in a multitude of putative biological activities, notably, it has a regulatory effect on depression-like behaviors. Although further elucidating research is needed, animal-based cumulative evidence has shown the antidepressant-like effects of alarin. In light of its regulatory role in depression, alarin could be used as a promising antidepressant in future treatment for depression. Nevertheless, the available information is still insufficient and the therapeutic relevance of alarin in depression is still of concern. Moreover, a plethora of studies have reported that the actions of alarin, including antidepressant activities, are mediated by a separate yet unidentified receptor, highlighting the need for more extensive research. This review focuses on the current understanding of the regulatory effects and future therapeutic relevance of alarin on depression, and the arguments on its receptors.

14.
Adv Sci (Weinh) ; : e2204463, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36414403

RESUMO

Major depressive disorder (MDD) is a leading cause of disability worldwide. A comprehensive understanding of the molecular mechanisms of this disorder is critical for the therapy of MDD. In this study, it is observed that deubiquitinase Mysm1 is induced in the brain tissues from patients with major depression and from mice with depressive behaviors. The genetic silencing of astrocytic Mysm1 induced an antidepressant-like effect and alleviated the osteoporosis of depressive mice. Furthermore, it is found that Mysm1 knockdown led to increased ATP production and the activation of p53 and AMP-activated protein kinase (AMPK). Pifithrin α (PFT α) and Compound C, antagonists of p53 and AMPK, respectively, repressed ATP production and reversed the antidepressant effect of Mysm1 knockdown. Moreover, the pharmacological inhibition of astrocytic Mysm1 by aspirin relieved depressive-like behaviors in mice. The study reveals, for the first time, the important function of Mysm1 in the brain, highlighting astrocytic Mysm1 as a potential risk factor for depression and as a valuable target for drug discovery to treat depression.

15.
Acta Psychiatr Scand ; 146(6): 540-556, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36163686

RESUMO

OBJECTIVES: Suicidality is a serious public health problem and is closely associated with the severity of depression. In this work, we examined the effects of accelerated intermittent theta burst stimulation (iTBS) on suicidal status, risk factors for suicide, and severity of depressive symptoms in subjects with major depressive disorder (MDD). METHODS: We present data from a quadruple-blind (patient, care provider, investigator, rater) sham-controlled crossover randomized clinical trial. During a 6-week observation period, each participant underwent 2 weeks of stimulation - each week with 20 sessions of active or sham iTBS. A suicide score was created using a composite of individual items from Montgomery-Åsberg Depression Scale (MADRS), Hamilton Depression Scale, and Beck Depression Inventory. The severity of depression was determined by MADRS total scores. In addition, we used demographic and Columbia Suicidality Rating Scale information to assess suicide risk. RESULTS: Among 81 participants, we observed a significant reduction in suicidality and this change was positively correlated with a change in depressive symptoms. A significant difference between active and sham iTBS provided evidence for antidepressant effects. Higher changes in levels of anxiety and impulsiviness also correlated with larger changes in suicidality. CONCLUSIONS: As neither suicide nor other serious adverse events were evidenced, this intervention was a safe and viable procedure to reduce suicidality and severity of depressive symptoms. Moreover, we identified more pronounced anti-suicidal effects in those with higher risk profiles. Unlike MADRS, composite suicidal scores did not provide evidence of an effect between stimulation conditions in this crossover design study. Even so, based on our promising results, parallel and larger studies could contribute to a better characterization of the anti-suicidal placebo effect and the benefit of using iTBS against suicidal symptoms.


Assuntos
Transtorno Depressivo Maior , Suicídio , Humanos , Transtorno Depressivo Maior/tratamento farmacológico , Depressão/terapia , Estimulação Magnética Transcraniana/métodos , Método Duplo-Cego , Resultado do Tratamento
16.
Front Pharmacol ; 13: 968124, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091747

RESUMO

Increasing evidence indicates that the pathogenesis of depression is closely linked to impairments in neuronal synaptic plasticity. Honokiol, a biologically active substance extracted from Magnolia Officinalis, has been proven to exert significant antidepressant effects. However, the specific mechanism of action remains unclear. In this study, PC12 cells and chronic unpredictable mild stress (CUMS) model rats were used to explore the antidepressant effects and potential mechanisms of honokiol in vitro and in rats. In vitro experiment, a cell viability detection kit was used to screen the concentration and time of honokiol administration. PC12 cells were administered with hypoxia-inducible factor-1α (HIF-1α) blocker, 2-methoxyestradiol (2-ME), and vascular endothelial growth factor receptor 2 (VEGFR-2) blocker, SU5416, to detect the expression of HIF-1α, VEGF, synaptic protein 1 (SYN 1), and postsynaptic density protein 95 (PSD 95) by western blotting. In effect, we investigated whether the synaptic plasticity action of honokiol was dependent on the HIF-1α-VEGF pathway. In vivo, behavioral tests were used to evaluate the reproducibility of the CUMS depression model and depression-like behaviors. Molecular biology techniques were used to examine mRNA and protein expression of the HIF-1α-VEGF signaling pathway and synaptic plasticity-related regulators. Additionally, molecular docking techniques were used to study the interaction between honokiol and target proteins, and predict their binding patterns and affinities. Experimental results showed that honokiol significantly reversed CUMS-induced depression-like behaviors. Mechanically, honokiol exerted a significant antidepressant effect by enhancing synaptic plasticity. At the molecular level, honokiol can activate the HIF-1α-VEGF signaling pathway in vitro and in vivo, as well as promote the protein expression levels of SYN 1 and PSD 95. Taken together, the results do not only provide an experimental basis for honokiol in the clinical treatment of depression but also suggest that the HIF-1α-VEGF pathway may be a potential target for the treatment of depression.

17.
Front Hum Neurosci ; 16: 919002, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992951

RESUMO

Cognitive reappraisal (CR) is one of the core treatment components of cognitive behavioral therapy (CBT) and is the gold standard treatment for major depressive disorders. Accumulating evidence indicates that cognitive reappraisal could function as a protective factor of cognitive vulnerability to depression. However, the neural mechanism by which CR training reduces cognitive vulnerability to depression is unclear. There is ample evidence that the prefrontal-amygdala circuit is involved in CR. This study proposes a novel cognitive bias model of CR training which hypothesizes that CR training may improve the generation ability of CR with altered prefrontal-amygdala functional activation/connectivity, thus reducing negative cognitive bias (negative attention bias, negative memory bias, negative interpretation bias, and/or negative rumination bias) and alleviating depressive symptoms. This study aims to (1) explore whether there is abnormal CR strategy generation ability in individuals who are cognitively vulnerable to depression; (2) test the hypothesis that CR training alleviates depressive symptoms through the mediators of cognitive bias (interpretation bias and/or rumination bias); (3) explore the neural mechanism by which CR training may enhance the ability of CR strategy generation; and (4) examine the short- and long-term effects of CR training on the reduction in depressive symptoms in individuals who are cognitively vulnerable to depression following intervention and 6 months later. The study is promising, providing theoretical and practical evidence for the early intervention of depression-vulnerable individuals.

18.
Biochem Biophys Res Commun ; 620: 56-62, 2022 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-35780581

RESUMO

OBJECTIVE: The aim of this study was to investigate the antidepressant effect of Jujuboside A (JuA) on corticosterone (CORT)-induced depression in mice and explore the underlying mechanisms. METHODS: The mice models were submitted to CORT and treated with JuA (10 and 30 mg/kg) for three weeks. Experiments were also performed on mice with brain-derived neurotrophic factor knockdown (BDNF (±)) as control subjects. Behavioral tests, including the open field test (OFT), tail suspension test (TST), forced swimming test (FST) and Morris water maze (MWM), were then performed to evaluate the antidepressant effect of JuA. The expression levels of BDNF, tyrosine kinase receptor B (TrkB), and cyclic AMP response element binding protein (CREB) in the hippocampi of mice were examined by immunohistochemistry (IHC) and Western blot. The effect of JuA on the viability of mouse hippocampal cells (HT22) was also assessed by CCK-8 assay. RESULTS: JuA significantly decreased the OFT and TST immobility time of the mice, the total distance travelled and the time spent in the central area also effectively increased in the OFT. In the MWM, the escape latencies of the mice decreased remarkably, while the number of times the mice crossed the platform and the target quadrant increased significantly after treatment with JuA. In addition, the BDNF, TrkB, and CREB expression levels were significantly increased in the hippocampi of the mice treated with JuA. Furthermore, JuA clearly attenuated CORT-induced cell injury, as evidenced by the increased viability of the HT22 cells. CONCLUSION: These findings demonstrated that JuA may exhibit potential antidepressant effect in mice by increasing protein expression levels of BDNF, TrkB, CREB, and improving the viability of the hippocampal cells.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Corticosterona , Animais , Antidepressivos/metabolismo , Antidepressivos/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Corticosterona/efeitos adversos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Depressão/induzido quimicamente , Depressão/tratamento farmacológico , Depressão/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo , Humanos , Camundongos , Saponinas , Estresse Psicológico
19.
Chem Biodivers ; 19(7): e202100931, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35674435

RESUMO

The ketene dithioacetal 3 generated from 2-nitroperchlorobutadiene 1 reacted with various heterocyclic amines and aliphatic, aromatic and heterocyclic thiols to produce functionalized new ketene-N,S,S-acetals and S,S,S-acetals 4a-f, 5a-h as heterocyclic dithiolanes. They were separated/purified by chromatographic methods and their exact structure characterization were made clear by spectroscopic methods. These compounds synthesized could act as effective drugs for versatile activity. Evaluation of the antimicrobial effect of the obtained substances determined derivatives 4e and 5h, which have MIC=15.6 µg/mL for the test culture of Mycobacterium luteum bacteria closing to the control drug Vancomycin. The obtained compounds can be proposed as a promising synthetic objects for future molecular design to enhance the antimicrobial action. Ketene dithioacetals 3, 4a, 4b, 4e, 5g (50 mg/kg) exhibited antiseizure effect comparable with reference drug (valproic acid) on the model of pentylenetetrazole-induced convulsions after single oral administration both at 3 h and 24 h. Furthermore, tested dithioacetals possessed prolonged antidepressant activity in forced swim test (FST) considerable decreasing the duration of immobility time compared to reference drug amitriptyline. This is the first study of the investigation of anticonvulsant and antidepressant activities of ketene dithioacetals.


Assuntos
Acetais , Antifúngicos , Acetais/química , Acetais/farmacologia , Antibacterianos/farmacologia , Anticonvulsivantes/farmacologia , Antidepressivos/química , Antidepressivos/farmacologia , Antifúngicos/farmacologia , Etilenos , Cetonas
20.
Front Psychiatry ; 13: 925007, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35722555

RESUMO

Studies have found that repetitive transcranial magnetic stimulation rTMS can produce antidepressant effects by affecting inflammatory cytokines in patients with depression, which plays a key role in the therapeutic mechanism of antidepressants. This study aimed to explore the changes in inflammatory cytokine levels in patients with depression after 4 weeks of rTMS treatment to determine the possible antidepressant mechanism of rTMS. This prospective, double-blind, pseudo-stimulus-controlled study was conducted, and a total of 57 patients with depression and 30 healthy controls were recruited. Patients were randomly divided into the active rTMS (n = 29) and sham rTMS groups (n = 28). The Hamilton Depression Scale was used to evaluate depressive symptoms and their severity. The serum levels of seven inflammatory cytokines were measured using enzyme-linked immunosorbent assay. Inflammatory cytokines include high-sensitivity C-reactive protein (CRP-hc); tumor necrosis factor (TNF-α); interferon (IFN-γ); interleukin-2 (IL-2); interleukin-4 (IL-4); interleukin-6 (IL-6); and interleukin-8 (IL-8). At baseline, TNF-α (F = 36.699, p < 0.001), IFN-γ (F = 8.907, p < 0.001), IL-4 (F = 66.256, p < 0.001), and IL-2 (F = 9.162, p < 0.001) levels in the depression group were significantly different from those of healthy controls. In the self-control analysis of the active rTMS group, the levels of IL-2 and CRP-hc increased significantly after 2 and 12 weeks of treatment. In the sham-rTMS group, IFN-γ increased after 2 and 12 weeks of treatment. Our results revealed that the changes in inflammatory cytokines after rTMS treatment showed different patterns compared to the sham group, suggesting that the antidepressant effect of rTMS may be related to changes in inflammatory cytokines.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...