Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Nutr ; 9: 868054, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35811969

RESUMO

Composition and antioxidant properties of sixteen pecan [Carya illinoinensis (Wangenh) K. Koch] cultivars grown simultaneously in a single experimental orchard in Uruguay were evaluated to characterize their nutritional properties and nutraceutical potential. The percentage of oil, moisture, ash, minerals, and proteins were determined and also the fatty acid profile. Total phenolic compounds [18-41 mg gallic acid equivalents (GAEs)/g], condensed tannin [2-12 mg catechin equivalents (CEs)/g], and tocopherols (110-163 µg/g) contents were estimated in nut kernels. Total phenolic compounds (32-117 mg GAE/g), condensed tannins (130-357 mg CE/g), and total anthocyanins (1-3 mg 3-glucoside cyanidin/g) were also determined for pecan shells. The antioxidant activity in shells [57.15-578.88 µmol Trolox equivalents (TEs)/g] was 5 times higher compared with the kernels (23.15-156.60 µmol TEs/g) measured with hydrophilic ORAC. Bioactive compounds concentrations present statistically significant genetic variability between cultivars studied (p < 0.05). The presence of phenolic compounds was related with high-antioxidant capacity in kernels and shells, and a strong correlation between content of total phenolic compounds and condensed tannins in pecan shells was found. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) show association between cultivars and the observed variables. The nutritional profile in the different cultivars showed the trends described in other countries, but this work shows some significant differences that could be attributed to the specific edaphoclimatic conditions of cultivation in Uruguay.

2.
Front Nutr ; 9: 895070, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35832049

RESUMO

Olive oil consumption has increased in the last two decades and consequently, its wastes have increased, which generates a tremendous environmental impact. Among the by-products are the olive mill leaves, which are easier and inexpensive to treat than other olive by-products. However, little research has been done on their chemical composition and potential bioactivity. Hence, in this study, olive mill leaves were used to obtain Oleuropein-Enriched Extracts (OLEU-EE) using Conventional Extraction, Ultrasound-Assisted Extraction, and Homogenization-Assisted Extraction. These three techniques were evaluated using a Factorial Design to determine the parameters to obtain an OLEU-EE with high contents of Total Phenolic Compounds (TPC), Antioxidant Activity (AA), and Oleuropein concentration (OLEU). From the results, the Homogenizer-Assisted Extraction (HAE) technique was selected at 18,000 rpm, solid:liquid ratio 1:10, and 30 s of homogenization with 70% ethanol, due to its high TPC (5,196 mg GA/100 g), AA (57,867 µmol of TE/100 g), and OLEU (4,345 mg of OLEU/100 g). In addition, the antiglycating effect of OLEU-EE on the levels of (1) fluorescent Advanced Glycation End Products (AGEs) were IC50 of 0.1899 and 0.1697 mg/mL for 1λEXC 325/λEM 440 and 2λEXC 389/λEM 443, respectively; (2) protein oxidative damage markers such as dityrosine (DiTyr), N-formylkynurenine (N-formyl Kyn), and kynurenine (Kyn) were IC50 of 0.1852, 0.2044, and 0.1720 mg/mL, respectively. In conclusion, OLEU-EE from olive mill leaves has different capacities to inhibit AGEs evidenced by the IC50 of fluorescent AGEs and protein oxidation products, together with the scavenging free radical evidenced by the concentration of Trolox Equivalent. Therefore, OLEU-EE could be potential functional ingredients that prevent oxidative damage caused by free radicals and AGEs accumulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA