Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38316170

RESUMO

The present study was conducted to evaluate the effects of fasting on responses of oxidative biomarkers and antioxidant defenses using different organs and tissues of Colossoma macropomum. The fish were divided into two groups: fed (control) and fasting (7 days). After 7 days, the fish were sampled for assessment of oxidative stress biomarkers (MDA-lipid peroxidation and PCO-protein carbonyl) and antioxidant defenses (SOD-superoxide dismutase; CAT-catalase; GPX-glutathione peroxidase; and GST-glutathione-S -transferase) in the liver, intestine, gills, muscle, brain, and plasma. The results showed an increase in MDA, PCO, SOD, and GPX concentrations in the liver and intestine of fasting fish. In contrast, in the branchial tissue, there was a reduction in the activity of SOD and CAT enzymes in fasting fish. There was also a reduction in CAT activity in the muscle of fasting fish, while in the brain, there were no changes in oxidative stress biomarkers. Plasma showed a relatively low antioxidant response. In conclusion, our results confirm that a 7-day fasting period induced tissue-specific antioxidant responses, but the increase in antioxidant responses was only for the SOD and GPX enzymes of the liver and intestine. Additionally, the liver and intestine were the most responsive tissues, whereas the plasma was the least sensitive to oxidative stress.


Assuntos
Antioxidantes , Caraciformes , Animais , Antioxidantes/metabolismo , Estresse Oxidativo/fisiologia , Catalase/metabolismo , Superóxido Dismutase/metabolismo , Glutationa Peroxidase/metabolismo , Peroxidação de Lipídeos , Fígado/metabolismo , Jejum , Biomarcadores/metabolismo , Glutationa Transferase/metabolismo
2.
Free Radic Biol Med ; 213: 266-273, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38278309

RESUMO

Yellow fever (YF) presents a wide spectrum of severity, with clinical manifestations in humans ranging from febrile and self-limited to fatal cases. Although YF is an old disease for which an effective and safe vaccine exists, little is known about the viral- and host-specific mechanisms that contribute to liver pathology. Several studies have demonstrated that oxidative stress triggered by viral infections contributes to pathogenesis. We evaluated whether yellow fever virus (YFV), when infecting human hepatocytes cells, could trigger an imbalance in redox homeostasis, culminating in oxidative stress. YFV infection resulted in a significant increase in reactive oxygen species (ROS) levels from 2 to 4 days post infection (dpi). When measuring oxidative parameters at 4 dpi, YFV infection caused oxidative damage to lipids, proteins, and DNA, evidenced by an increase in lipid peroxidation/8-isoprostane, carbonyl protein, and 8-hydroxy-2'-deoxyguanosine, respectively. Furthermore, there was a significant reduction in the activity of the antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GPx), in addition to a reduction in the ratio of reduced to oxidized glutathione (GSH/GSSG), indicating a pro-oxidant environment. However, no changes were observed in the enzymatic activity of the enzyme catalase (CAT) or in the gene expression of SOD isoforms (1/2/3), CAT, or GPx. Therefore, our results show that YFV infection generates an imbalance in redox homeostasis, with the overproduction of ROS and depletion of antioxidant enzymes, which induces oxidative damage to cellular constituents. Moreover, as it has been demonstrated that oxidative stress is a conspicuous event in YFV infection, therapeutic strategies based on antioxidant biopharmaceuticals may be new targets for the treatment of YF.


Assuntos
Antioxidantes , Febre Amarela , Humanos , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Vírus da Febre Amarela/metabolismo , Glutationa/metabolismo , Estresse Oxidativo , Oxirredução , Catalase/genética , Catalase/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Dissulfeto de Glutationa/metabolismo , Hepatócitos/metabolismo , Peroxidação de Lipídeos , Glutationa Peroxidase/metabolismo , 8-Hidroxi-2'-Desoxiguanosina/metabolismo
3.
Chemosphere ; 343: 140260, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37742760

RESUMO

The present study was aimed at evaluating the in vivo effects of microplastics (MP), in terms of oxidative stress and histopathological effects, in two crustacean species: Procambarus clarkii and Leptuca pugilator. In addition, MP accumulation in the hepatopancreas (HP) of both species was also determined. Adults of both crayfish and crabs were exposed for one month to fluorescent polystyrene beads (size: 1 µm) at nominal concentrations of 1000 or 5000 particles/mL. During the exposure, animals were maintained under controlled feeding, aeration, temperature, and photoperiod conditions. At the end of the exposure, HP and hemolymph (HL) samples were harvested for analysis of oxidative damage and total antioxidant levels. Additionally, the presence of MPs in both tissues was confirmed. Significant differences with the control groups were observed in lipid peroxidation levels in HP in animals exposed to the lowest concentration in P. clarkii and to the highest concentration in L. pugilator. A marked increase in antioxidant levels was also observed in the HL at both concentrations in P. clarkii, and at the highest MPs concentration in L. pugilator. Moreover, several histopathological changes were detected in both gills and HP, including hypertrophied lamellae, lifting or collapse of gill epithelia, loss of normal shape of hepatopancreatic tubules, and epithelial atrophy in the HP tissue. We conclude that exposure to MP beads at selected concentrations results in oxidative damage, induces histopathological changes in gills and HP, and triggers an antioxidant response in two crustacean species.


Assuntos
Braquiúros , Poluentes Químicos da Água , Animais , Astacoidea , Braquiúros/metabolismo , Plásticos , Antioxidantes/metabolismo , Microplásticos/toxicidade , Poluentes Químicos da Água/toxicidade , Estresse Oxidativo
4.
Bull Environ Contam Toxicol ; 111(3): 41, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37710082

RESUMO

Dicamba (DIC) is one of the most applied auxin herbicides worldwide. Sublethal effects in the South American native fish Jenynsia lineata exposed to DIC concentrations close to environmental concentrations (0.03-30 µg/L) during 48 h were analysed thorough the evaluation of catalase (CAT), glutathione S-transferase (GST), superoxide dismutase (SOD) activities and malondialdehyde (MDA) and H2O2 levels for detecting potential oxidative stress. In gills MDA increased showing oxidative damage probably because of an inefficient antioxidant defense. This response evidenced the important role of gills as an organ of direct contact with waterborne contaminants. In addition, other changes in the biomarkers of oxidative stress were observed such as the inhibition of SOD activities in brain and the inhibition of GST in liver. These results show that short- term exposures to environmentally relevant concentrations of DIC could induce sublethal effects in native fish.


Assuntos
Dicamba , Peixes , Herbicidas , Estresse Oxidativo , Animais , Dicamba/toxicidade , Glutationa Transferase , Herbicidas/toxicidade , Peróxido de Hidrogênio , América do Sul , Superóxido Dismutase
5.
Front Neurosci ; 17: 1186520, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37575308

RESUMO

The psychostimulant methylphenidate (MPH) is the first-line pharmacological treatment for attention-deficit/hyperactivity disorder (ADHD), but has numerous adverse side effects. The PPARγ receptor agonist pioglitazone (PIO) is known to improve mitochondrial bioenergetics and antioxidant capacity, both of which may be deficient in ADHD, suggesting utility as an adjunct therapy. Here, we assessed the effects of PIO on ADHD-like symptoms, mitochondrial biogenesis and antioxidant pathways in multiple brain regions of neonate rats with unilateral striatal lesions induced by 6-hydroxydopamine (6-OHDA) as an experimental ADHD model. Unilateral striatal injection of 6-OHDA reduced ipsilateral dopaminergic innervation by 33% and increased locomotor activity. This locomotor hyperactivity was not altered by PIO treatment for 14 days. However, PIO increased the expression of proteins contributing to mitochondrial biogenesis in the striatum, hippocampus, cerebellum and prefrontal cortex of 6-OHDA-lesioned rats. In addition, PIO treatment enhanced the expression of the phase II transcription factor Nrf2 in the striatum, prefrontal cortex and cerebellum. In contrast, no change in the antioxidant enzyme catalase was observed in any of the brain regions analyzed. Thus, PIO may improve mitochondrial biogenesis and phase 2 detoxification in the ADHD brain. Further studies are required to determine if different dose regimens can exert more comprehensive therapeutic effects against ADHD neuropathology and behavior.

6.
Amino Acids ; 54(11): 1505-1517, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35927507

RESUMO

Methylmalonic acidemia is a neurometabolic disorder biochemically characterized by the accumulation of methylmalonic acid (MMA) in different tissues, including the central nervous system (CNS). In this sense, it has been shown that high levels of this organic acid have a key role in the progressive neurological deterioration in patients. Astroglial cells actively participate in a wide range of CNS functions, such as antioxidant defenses and inflammatory response. Considering the role of these cells to maintain brain homeostasis, in the present study, we investigated the effects of MMA on glial parameters, focusing on redox homeostasis and inflammatory process, as well as putative mediators of these events in C6 astroglial cells. MMA decreased cell viability, glutathione levels, and antioxidant enzyme activities, increased inflammatory response, and changed the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), nuclear factor kappa B (NFκB), peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX-2), and adenosine receptors, suggesting that these transcriptional factors and proteins may underlie the glial responses induced by MMA. Moreover, we also demonstrated the protective roles of melatonin and resveratrol against MMA-induced inflammation and decrease in glutathione levels. In summary, our findings support the hypothesis that astroglial changes are associated with pathogenesis of methylmalonic acidemia. In addition, we showed that these cells might be potential targets for preventive/therapeutic strategies by using molecules, such as melatonin and resveratrol, which mediated glioprotection in this inborn error of metabolism.


Assuntos
Melatonina , Ácido Metilmalônico , Animais , Ratos , Humanos , Resveratrol/farmacologia , Astrócitos , Melatonina/farmacologia , Antioxidantes/farmacologia , Ratos Wistar , Oxirredução , Glutationa/farmacologia , Homeostase
7.
Antioxidants (Basel) ; 11(6)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35739940

RESUMO

More than 80 million people live and work (in a chronic or intermittent form) above 2500 masl, and 35 million live in the Andean Mountains. Furthermore, in Chile, it is estimated that 100,000 people work in high-altitude shifts, where stays in the lowlands are interspersed with working visits in the highlands. Acute exposure to high altitude has been shown to induce oxidative stress in healthy human lowlanders due to increased free radical formation and decreased antioxidant capacity. However, intermittent hypoxia (IH) induces preconditioning in animal models, generating cardioprotection. Here, we aim to describe the responses of a cardiac function to four cycles of intermittent hypobaric hypoxia (IHH) in a rat model. The twelve adult Wistar rats were randomly divided into two equal groups, a four-cycle of IHH and a normobaric hypoxic control. Intermittent hypoxia was induced in a hypobaric chamber in four continuous cycles (1 cycle = 4 days of hypoxia + 4 days of normoxia), reaching a barometric pressure equivalent to 4600 m of altitude (428 Torr). At the end of the fourth cycle, cardiac structural and functional variables were also determined by echocardiography; furthermore, cardiac oxidative stress biomarkers (4-Hydroxynonenal, HNE; nitrotyrosine, NT), antioxidant enzymes, and NLRP3 inflammasome panel expression are also determined. Our results show a higher ejection and a shortening fraction of the left ventricle function by the end of the fourth cycle. Furthermore, cardiac tissue presented a decreased expression of antioxidant proteins. However, a decrease in IL-1ß, TNF-αn, and oxidative stress markers is observed in IHH compared to normobaric hypoxic controls. Non-significant differences were found in protein levels of NLRP3 and caspase-1. IHH exposure determines structural and functional heart changes. These findings suggest that initial states of IHH are beneficial for cardiovascular function and protection.

8.
Obes Res Clin Pract ; 16(2): 130-137, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35183472

RESUMO

BACKGROUND: Obesity is accompanied by insulin resistance and glucose intolerance, which favor the onset of complications related to oxidative stress. The aim of this study was to investigate the effects and underlying mechanisms of hydroethanolic extract from Siolmatra brasiliensis stems on insulin resistance, glucose intolerance, advanced glycation end product (AGE) formation, and oxidative stress in mice with induced obesity. METHODS: C57BL-6 J mice were fed a high-fat diet for 14 weeks and treated with 125 or 250 mg/kg S. brasiliensis extract during the last 7 weeks. The study assessed glucose tolerance and insulin sensitivity, lipid profile, plasma levels of thiobarbituric acid reactive substances (TBARS, biomarkers of oxidative damage), fluorescent AGEs (biomarkers of advanced glycation), and paraoxonase 1 (PON1) activity (antioxidant enzyme). The activities of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) in the liver and kidneys were also investigated. RESULTS: Siolmatra brasiliensis extract had antiobesogenic effects; improved insulin sensitivity and glucose tolerance; decreased the total plasma cholesterol levels; decreased the levels of glycoxidative stress biomarkers, including AGEs (plasma, liver, kidneys) and TBARS (liver, kidneys); and also improved endogenous antioxidant defenses by increasing the activities of PON1 (plasma), SOD (kidneys), CAT (liver, kidneys), and GSH-Px (kidneys). CONCLUSION: This study expands on our knowledge about the pharmacological properties of S. brasiliensis and substantiates the potential of this plant species to be used as a complementary therapeutic agent to alleviate the metabolic dysfunctions resulting from dyslipidemia and glycoxidative stress.


Assuntos
Intolerância à Glucose , Resistência à Insulina , Animais , Antioxidantes/farmacologia , Arildialquilfosfatase , Biomarcadores/metabolismo , Dieta Hiperlipídica , Glucose/metabolismo , Intolerância à Glucose/tratamento farmacológico , Intolerância à Glucose/metabolismo , Humanos , Peroxidação de Lipídeos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Estresse Oxidativo , Extratos Vegetais/farmacologia , Superóxido Dismutase/metabolismo , Superóxido Dismutase/farmacologia , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/farmacologia
9.
Antioxidants (Basel) ; 11(2)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35204273

RESUMO

Saxitoxin (STX) group toxins consist of a set of analogues which are produced by harmful algal blooms (HABs). During a HAB, filter-feeding marine organisms accumulate the dinoflagellates and concentrate the toxins in the tissues. In this study, we analyze the changes in antioxidant enzymes and oxidative damage in the bivalves Mytilus chilensis and Ameghinomya antiqua, and the gastropod Concholepas concholepas during a bloom of Alexandrium pacificum. The results show that during the exponential phase of the bloom bivalves show an increase in toxicity and activity of antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, and glutathinoe reductase, p < 0.05), while in the gastropods, increased activity of antioxidant enzymes was associated with the bioaccumulation of toxins through the diet. At the end of the bloom, decreased activity of antioxidant enzymes in the visceral and non-visceral tissues was detected in the bivalves, with an increase in oxidative damage (p < 0.05), in which the latter is correlated with the detection of the most toxic analogues of the STX-group (r = 0.988). In conclusion, in areas with high incidence of blooms, shellfish show a high activity of antioxidants, however, during the stages involving the distribution and bioconversion of toxins, there is decreased activity of antioxidant enzymes resulting in oxidative damage.

10.
Front Cell Neurosci ; 15: 785057, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34955754

RESUMO

Inherited metabolic disorders (IMDs) are rare genetic conditions that affect multiple organs, predominantly the central nervous system. Since treatment for a large number of IMDs is limited, there is an urgent need to find novel therapeutical targets. Nuclear factor erythroid-2-related factor 2 (Nrf2) is a transcription factor that has a key role in controlling the intracellular redox environment by regulating the expression of antioxidant enzymes and several important genes related to redox homeostasis. Considering that oxidative stress along with antioxidant system alterations is a mechanism involved in the neuropathophysiology of many IMDs, this review focuses on the current knowledge about Nrf2 signaling dysregulation observed in this group of disorders characterized by neurological dysfunction. We review here Nrf2 signaling alterations observed in X-linked adrenoleukodystrophy, glutaric acidemia type I, hyperhomocysteinemia, and Friedreich's ataxia. Additionally, beneficial effects of different Nrf2 activators are shown, identifying a promising target for treatment of patients with these disorders. We expect that this article stimulates research into the investigation of Nrf2 pathway involvement in IMDs and the use of potential pharmacological modulators of this transcription factor to counteract oxidative stress and exert neuroprotection.

11.
J Inherit Metab Dis ; 44(2): 481-491, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32882059

RESUMO

Sulfite oxidase (SO) deficiency is a disorder caused either by isolated deficiency of SO or by defects in the synthesis of its molybdenum cofactor. It is characterized biochemically by tissue sulfite accumulation. Patients present with seizures, progressive neurological damage, and basal ganglia abnormalities, the pathogenesis of which is not fully established. Treatment is supportive and largely ineffective. To address the pathophysiology of sulfite toxicity, we examined the effects of intrastriatal administration of sulfite in rats on antioxidant defenses, energy transfer, and mitogen-activated protein kinases (MAPK) and apoptosis pathways in rat striatum. Sulfite administration decreased glutathione (GSH) concentration and glutathione peroxidase, glucose-6-phosphate dehydrogenase, glutathione S-transferase, and glutathione reductase activities in striatal tissue. Creatine kinase (CK) activity, a crucial enzyme for cell energy transfer, was also decreased by sulfite. Superoxide dismutase-1 (SOD1) and catalase (CAT) proteins were increased, while heme oxygenase-1 (HO-1) was decreased. Additionally, sulfite altered phosphorylation of MAPK by decreasing of p38 and increasing of ERK. Sulfite further augmented the content of GSK-3ß, Bok, and cleaved caspase-3, indicating increased apoptosis. JP4-039 is a mitochondrial-targeted antioxidant that reaches higher intramitochondrial levels than other traditional antioxidants. Intraperitoneal injection of JP4-039 before sulfite administration preserved activity of antioxidant enzymes and CK. It also prevented or attenuated alterations in SOD1, CAT, and HO-1 protein content, as well as changes in p38, ERK, and apoptosis markers. In sum, oxidative stress and apoptosis induced by sulfite injection are prevented by JP4-039, identifying this molecule as a promising candidate for pharmacological treatment of SO-deficient patients.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/prevenção & controle , Antioxidantes/farmacologia , Corpo Estriado/metabolismo , Mitocôndrias/metabolismo , Óxidos de Nitrogênio/farmacocinética , Sulfito Oxidase/deficiência , Erros Inatos do Metabolismo dos Aminoácidos/patologia , Animais , Catalase/metabolismo , Morte Celular/efeitos dos fármacos , Corpo Estriado/efeitos dos fármacos , Creatina Quinase/metabolismo , Transferência de Energia/efeitos dos fármacos , Glutationa Peroxidase/metabolismo , Glutationa Peroxidase/farmacologia , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Sulfitos/metabolismo , Superóxido Dismutase/metabolismo
12.
Food Res Int ; 138(Pt A): 109718, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33292963

RESUMO

Blueberry is a polyphenol-rich fruit bearing great bioactive potential. Natural deep eutectic solvents (NADES) emerged as putatively biocompatible solvents that could substitute for toxic organic solvents in the extraction of fruit phenolic compounds for developing nutraceuticals or functional foods. Therefore, the aim of this study was to investigate the gastroprotective effects and the biocompatibility of a blueberry crude extract (CE) obtained using NADES and of the extract fractions (anthocyanin-rich fraction - ARF; non-anthocyanin phenolic fraction - NAPF) in a model of ethanol-induced gastric ulcer in rats. CE was the NADES-containing, ready-to-use extract that was obtained using choline chloride:glycerol:citric acid NADES (0.5:2:0.5 M ratio). ARF and NAPF were the NADES-free fractions obtained by solid phase purification of CE and were investigated to identify the bioactive fraction responsible for the effects of CE. Animals were treated for 14 days with water, NADES vehicle, CE, ARF, NAPF or lansoprazole (intragastric) and then received ethanol to induce gastric ulcer. CE decreased ulcer index and preserved the integrity of gastric mucosa. The pretreatment with CE or ARF reduced glutathione depletion and the inflammatory response. All treatments, including NADES vehicle reduced protein oxidation and nitric oxide overproduction in ethanol-treated rats. Additionally, ARF increased short-chain fatty acids in feces. These findings suggest that NADES can be used to obtain biocompatible extracts of blueberry that exhibit gastroprotective effects with no need of solvent removal. The gastroprotective effects were mainly associated to ARF but NAPF and even NADES vehicle also contributed to some protective effects.


Assuntos
Mirtilos Azuis (Planta) , Úlcera Gástrica , Animais , Etanol , Extratos Vegetais/farmacologia , Ratos , Solventes , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/prevenção & controle
13.
J Photochem Photobiol B ; 212: 112045, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33022469

RESUMO

Due to their superb light absorption and photostability conjugated polymer nanoparticles are promising photosensitizers (PS) for their use in Photodynamic therapy (PDT). Recently, we developed metallated porphyrin-doped conjugated polymer nanoparticles (CPNs) for PDT that efficiently eliminate tumor cells through reactive oxygen species (ROS) mediated photoinduced damage of apoptotic nature. These nanoaggregates act as densely packed multi-chromophoric systems having exceptional light harvesting and (intra-particle) energy transfer capabilities which lead to efficient photosensitized formation of ROS. In general, three key components; light, PS, and oxygen; are considered in the prediction of the PDT outcome. However, recent studies led to the discovery of a profound genetic heterogeneity among glioblastoma (GBM) cells which include the adaptation to ROS. Thus, tumor heterogeneity and their associated difference in sensitivity to ROS-producing therapeutic agents must be considered in the design of PDT protocols for the prediction of its outcome. In this study, anticancer activity through ROS-mediated PDT using CPNs was compared in three GBM cell lines with different initial redox status. T98G cells were the most effective incorporating nanoparticles but also were the most resistant to CPN-PDT effect. In part, this feature could be attributed to the differential basal and PDT-induced antioxidant enzyme levels found in these cells measured by gene expression analysis. Furthermore, considering that cell-specific antioxidant enzyme status is a significant feature of GBM heterogeneity, establishing its correlation with CPN-PDT outcome might be important for designing novel and improved CPN-based treatments.


Assuntos
Glioblastoma/patologia , Nanomedicina/métodos , Nanopartículas , Fotoquimioterapia/métodos , Polímeros/química , Polímeros/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Linhagem Celular Tumoral , Humanos , Oxirredução , Espécies Reativas de Oxigênio/metabolismo
14.
Virus Res ; 286: 198084, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32622852

RESUMO

The first outbreak of Zika virus (ZIKV) infection in the Americas, especially in Brazil, was reported in 2015. Fever, headache, rash, and conjunctivitis are the common symptoms of ZIKV infection. Unexpected clinical outcomes, such as microcephaly and Guillain-Barré syndrome, have also been reported. The recent spread of ZIKV and its association with severe illness has created an urgent need to understand its pathogenesis and find potential therapeutic targets. Studies show that some viruses, including Flavivirus, trigger oxidative stress, which affects cellular metabolism, viral cycle, and pathogenesis. However, the role of oxidative stress in ZIKV infection needs to be investigated. Here, we analyzed ZIKV infection-triggered oxidative stress and modified antioxidant enzyme activities. U87-MG and HepG2 cells were infected to measure reactive oxygen species (ROS), malondialdehyde (MDA), and carbonyl protein levels, the activities of superoxide dismutase (SOD) and catalase (CAT), and the activation of nuclear factor erythroid 2p45-related factor 2 (Nrf2). ZIKV infection induced a significant increase in ROS, lipid peroxidation, and protein carbonylation products and a significant decrease in SOD and CAT activities accompanied by inhibition of Nrf2 activation in both cell lines. Further, MDA and carbonyl protein levels and SOD and CAT activities were evaluated in the brain and liver of ZIKV-infected C57BL/6 mice, and oxidative stress associated with antioxidant depletion was also found to occur in vivo. Together, our findings indicate the potential use of antioxidants as a novel therapeutic approach to Zika disease, and future studies in this direction are warranted.


Assuntos
Antioxidantes/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Infecção por Zika virus/metabolismo , Zika virus/patogenicidade , Animais , Linhagem Celular , Chlorocebus aethiops , Feminino , Células Hep G2 , Humanos , Insetos , Masculino , Malondialdeído/análise , Camundongos , Camundongos Endogâmicos C57BL , Células Vero , Replicação Viral
15.
Antioxidants (Basel) ; 9(1)2020 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-31940899

RESUMO

The response of apoplastic antioxidant systems in root and leaf tissues from two onion genotypes ('Texas 502', salt-sensitive and 'Granex 429', salt-resistant) in response to salinity was studied. Electrolyte leakage data indicated the membrane integrity impairing by the effect of salts, especially in 'Texas 502'. We detected superoxide dismutase (SOD) and peroxidase (POX) activity in the root and leaf apoplastic fractions from onion plants. Salinity increased SOD activity in the root symplast of 'Texas 502' and in 'Granex 429' leaves. In contrast, salinity reduced SOD activity in the leaf and root apoplastic fractions from 'Texas 502'. In 'Granex 429', salt-stress increased leaf apoplastic POX activity and symplastic catalase (CAT) activity of both organs, but a decline in root apoplastic POX from 'Texas 502' took place. Salt-stress increased monodehydroascorbate reductase (MDHAR) in root and leaf symplast and in root glutathione reductase GR, mainly in 'Granex 429', but only in this genotype, leaf dehydroascorbate reductase (DHAR) activity increased. In contrast, a decline in leaf GR was produced only in 'Texas 502'. Salinity increased leaf ASC levels, and no accumulation of dehydroascorbate (DHA) was observed in roots in both cases. These responses increased the redox state of ascorbate, especially in roots. In contrast, salinity declined reduced glutathione (GSH), but oxidised glutathione (GSSG) was accumulated in leaves, decreasing the redox state of glutathione. Salinity slightly increased root GSH concentration in the salt-tolerant genotype and was unchanged in the salt-sensitive genotype, but no accumulation of GSSG was produced, favoring the rise and/or maintenance of the redox state of the glutathione. These results suggest that the lower sensitivity to salt in 'Granex 429' could be related to a better performance of the antioxidant machinery under salinity conditions.

16.
Plants (Basel) ; 9(1)2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31952215

RESUMO

Cadmium is a heavy metal (HM) that inhibits plant growth and leads to death, causing great losses in yields, especially in Cd hyperaccumulator crops such as Glycine max (L.) Merr. (soybean), a worldwide economically important legume. Furthermore, Cd incorporation into the food chain is a health hazard. Oxidative stress (OS) is a plant response to abiotic and biotic stresses with an intracellular burst of reactive oxygen species (ROS) that causes damage to lipids, proteins, and DNA. The arbuscular mycorrhizal fungal (AMF) association is a plant strategy to cope with HM and to alleviate OS. Our aim was to evaluate the mitigation effects of mycorrhization with AMF Rhizophagus intraradices on soybean growth, nutrients, Cd accumulation, lipid peroxidation, and the activity of different antioxidant agents under Cd (0.7-1.2 mg kg-1 bioavailable Cd) induced OS. Our results suggest that glutathione may act as a signal molecule in a defense response to Cd-induced OS, and mycorrhization may avoid Cd-induced growth inhibition and reduce Cd accumulation in roots. It is discussed that R. intraradices mycorrhization would act as a signal, promoting the generation of a soybean cross tolerance response to Cd pollution, therefore evidencing the potential of this AMF association for bioremediation and encouragement of crop development, particularly because it is an interaction between a worldwide cultivated Cd hyperaccumulator plant and an AMF-HM-accumulator commonly present in soils.

17.
Antioxidants (Basel) ; 9(1)2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31936265

RESUMO

The enzymatic complex Nicotinamide Adenine Dinucleotide Phosphate (NADPH) oxidase (NOx) may be the principal source of reactive oxygen species (ROS). The NOX2 and NOX4 isoforms are tissue-dependent and are differentially expressed in slow-twitch fibers (type I fibers) and fast-twitch fibers (type II fibers) of skeletal muscle, making them different markers of ROS metabolism induced by physical exercise. The aim of this study was to investigate NOx signaling, as a non-adaptive and non-cumulative response, in the predominant fiber types of rat skeletal muscles 24 h after one strenuous treadmill exercise session. The levels of mRNA, reduced glycogen, thiol content, NOx, superoxide dismutase, catalase, glutathione peroxidase activity, and PPARGC1α and SLC2A4 gene expression were measured in the white gastrocnemius (WG) portion, the red gastrocnemius (RG) portion, and the soleus muscle (SOL). NOx activity showed higher values in the SOL muscle compared to the RG and WG portions. The same was true of the NOX2 and NOX4 mRNA levels, antioxidant enzymatic activities, glycogen content. Twenty-four hours after the strenuous exercise session, NOx expression increased in slow-twitch oxidative fibers. The acute strenuous exercise condition showed an attenuation of oxidative stress and an upregulation of antioxidant activity through PPARGC1α gene activity, antioxidant defense adaptations, and differential gene expression according to the predominant fiber type. The most prominent location of detoxification (indicated by NOX4 activation) in the slow-twitch oxidative SOL muscle was the mitochondria, while the fast-twitch oxidative RG portion showed a more cytosolic location. Glycolytic metabolism in the WG portion suggested possible NOX2/NOX4 non-regulation, indicating other possible ROS regulation pathways.

18.
Curr Hypertens Rev ; 16(3): 166-180, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31146669

RESUMO

BACKGROUND: Disruption of redox signaling is a common pathophysiological mechanism observed in several diseases. In hypertension, oxidative stress, resulted either from enhances in Reactive Oxygen Species (ROS) production or decreases in antioxidant defenses, is associated with increase in blood pressure, endothelial dysfunction and vascular remodeling. Although the role of oxidative stress in the development of hypertension is well known, it is still unclear if this process is a cause or a consequence of tissue changes in hypertension. Indeed, unbalanced ROS formation results in several detrimental effects that contribute to hypertension, including reduction in nitric oxide bioavailability and activation of metalloproteinases. Additionally, ROS may also directly react with lipids, proteins and DNA, thereby contributing to tissue damage associated with hypertension. Therefore, a deep understanding of the role of oxidative stress in hypertension is essential to comprehend its pathophysiology and to identify new therapeutic targets. CONCLUSION: This mini-review discusses the main enzymatic sources of oxidants and the major antioxidant defenses in the vasculature, followed by the effects of oxidative stress in hypertension, highlighting endothelial dysfunction, vascular remodeling and tissue damage.


Assuntos
Hipertensão , Antioxidantes , Pressão Sanguínea , Humanos , Hipertensão/diagnóstico , Estresse Oxidativo , Espécies Reativas de Oxigênio
19.
Chem Biol Interact ; 315: 108867, 2020 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-31672467

RESUMO

Methylmercury (MeHg) and Ethylmercury (EtHg) are toxic to the central nervous system. Human exposure to MeHg and EtHg results mainly from the consumption of contaminated fish and thimerosal-containing vaccines, respectively. The mechanisms underlying the toxicity of MeHg and EtHg are still elusive. Here, we compared the toxic effects of MeHg and EtHg in Saccharomyces cerevisiae (S. cerevisiae) emphasizing the involvement of oxidative stress and the identification of molecular targets from antioxidant pathways. Wild type and mutant strains with deleted genes for antioxidant defenses, namely: γ-glutamylcysteine synthetase, glutathione peroxidase, catalase, superoxide dismutase, mitochondrial peroxiredoxin, cytoplasmic thioredoxin, and redox transcription factor Yap1 were used to identify potential pathways and proteins from cell redox system targeted by MeHg and EtHg. MeHg and EtHg inhibited cell growth, decreased membrane integrity, and increased the granularity and production of reactive species (RS) in wild type yeast. The mutants were predominantly less tolerant of mercurial than wild type yeast. But, as the wild strain, mutants exhibited higher tolerance to MeHg than EtHg. Our results indicate the involvement of oxidative stress in the cytotoxicity of MeHg and EtHg and reinforce S. cerevisiae as a suitable model to explore the mechanisms of action of electrophilic toxicants.


Assuntos
Antioxidantes/farmacologia , Compostos de Etilmercúrio/farmacologia , Compostos de Metilmercúrio/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo
20.
Ecotoxicol Environ Saf ; 190: 110086, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31864119

RESUMO

Glyphosate-based herbicides (GBH), including Roundup®, are the most used herbicides in agricultural and non-agricultural areas, which can reach aquatic environments through drift during application or surface runoff. Some studies, mostly in fish, demonstrated that GBH caused oxidative stress in non-target animals. However, only few information is available on the GBH effects in the antioxidant and stress proteins of many other organisms, such as freshwater crustaceans. Thus, we aimed to investigate the effects of environmentally relevant GBH concentrations on the relative transcript expression (RTE) of the superoxide dismutase (sod1), catalase (cat), selenium-dependent glutathione peroxidase (gpx), glutathione-S-transferase (gst), thioredoxin (txn), heat shock protein (hsp70 and hsp90) in the hepatopancreas of the ecologically important freshwater prawn Macrobrachium potiuna. Moreover, this study aimed to assess the gender-differences responses to GBH exposure. Male and female prawns were exposed to three Roundup WG® concentrations (0.0065, 0.065 and 0.28 mg of glyphosate/L) and a control group (0.0 mg/L) for 7 and 14 days. In general, males had an under-expression of the studied genes, indicating an oxidative stress and possible accumulation of ROS in the hepatopancreas. In the opposite, females had an overexpression of the same genes, indicating a more robust antioxidant system, in order to cope with the possible ROS increase after Roundup WG® exposure. Therefore, results confirmed that gender could be a confounding factor in ecotoxicological assessment of GBH effects. Additionally, this work highlights that sod1, cat, gpx, gst, txn, hsp70 and hsp90 gene expressions seem to be useful biomarkers to investigate the oxidative stress caused by Roundup WG® in Macrobrachium sp.


Assuntos
Glicina/análogos & derivados , Herbicidas/toxicidade , Palaemonidae/fisiologia , Animais , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Catalase/metabolismo , Decápodes , Feminino , Água Doce , Expressão Gênica , Glutationa Peroxidase/metabolismo , Glutationa Transferase/metabolismo , Glicina/toxicidade , Hepatopâncreas/efeitos dos fármacos , Herbicidas/metabolismo , Masculino , Estresse Oxidativo/efeitos dos fármacos , Palaemonidae/efeitos dos fármacos , Selênio/metabolismo , Superóxido Dismutase/metabolismo , Glifosato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA