Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Arq. bras. oftalmol ; Arq. bras. oftalmol;86(2): 178-187, Mar.-Apr. 2023. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1429834

RESUMO

ABSTRACT After the discovery of anti-vascular endothelial growth factor agents as treatment of wet age-related macular degeneration, the number of studies with the objective to understand the molecular mechanisms involved in the age-re lated macular degeneration genesis has increased. The importance of the nuclear factor e2-related factor 2 lies in its activation-derived proteins being involved in the maintenance of the redox balance and consequent prevention of degenerative macular disease. This article aims to present the characteristics of nuclear factor e2-related factor 2 and describe the main nuclear factor e2-related factor 2-activated antioxidant enzymes that contribute to the preservation of vision.


RESUMO Após a descoberta do anti fator de crescimento en dotelial vascular no tratamento da degeneração macular relacionada à idade úmida, muitas pesquisas têm sido realizadas com o intuito de elucidar os mecanismos moleculares envolvidos na gênese da degeneração macular relacionada à idade. O fator nuclear eritroide 2 relacionado ao fator 2 destaca-se pelo fato de diversas proteínas, oriundas de sua ativação, estarem envolvidas na manutenção do equilíbrio do estado redox e consequente prevenção da doença macular degenerativa. Este artigo mostra as características do fator nuclear eritroide 2 relacionado ao fator 2 e descreve as principais enzimas antioxidantes originadas da ativação que contribuem para a preservação da visão.

3.
Food Chem Toxicol ; 132: 110669, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31299294

RESUMO

Propolis is a sticky dark-colored substance produced by honey bees and comprises resin, balsam, wax, essential and aromatic oils, pollen, and several other substances; it is used in food and beverages to improve health and prevent diseases. We studied the neuroprotective effects of extracts of Brazilian green propolis in the mouse hippocampal cell line HT22. Ethanol extracts of Brazilian green propolis had a more potent preventive effect on oxidative stress-induced cell death, oxytosis/ferroptosis, in HT22 cells than water extracts of Brazilian green propolis, whereas it did not protect against anticancer drug-induced apoptotic cell death. Among the primary constituents of ethanol extracts of Brazilian green propolis, only artepillin C, kaempferide, and kaempferol demonstrated neuroprotective effects against oxytosis/ferroptosis. The flavonoid derivatives kaempferide and kaempferol are antioxidants with radical-scavenging abilities that additionally induce antioxidant response element-mediated transcriptional activity, suggesting that upregulation of endogenous antioxidant defense protects against oxidative stress. In contrast, artepillin C attenuated reactive oxygen species production; however, it did not induce antioxidant response element activation. These findings indicate that the ethanol extracts of Brazilian green propolis help to prevent oxidative stress-related neuronal cell death that is involved in the pathogenesis of several neurodegenerative diseases.


Assuntos
Apoptose/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Própole/farmacologia , Animais , Brasil , Cálcio/metabolismo , Linhagem Celular , Ácido Glutâmico/metabolismo , Glutationa/metabolismo , Heme Oxigenase-1/metabolismo , Hipocampo/citologia , Hipocampo/metabolismo , Quempferóis/farmacologia , Camundongos , Fenilpropionatos/farmacologia , Própole/química , Espécies Reativas de Oxigênio/metabolismo , Superóxidos/metabolismo
4.
Nat Prod Commun ; 14(1): 71-74, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31938081

RESUMO

We report relative bioactivities of extracts prepared from a large collection of plants from three national parks in Panama. Over 181 plants were collected, taxonomically identified and their detannified dichloromethane (DCM)-methanolic extracts were used for profiling selected bioactivities. Assays were performed to evaluate the antioxidant activity of the extracts for Antioxidant Response Element (ARE) induction, total non-enzymatic antioxidant potential, anti-inflammatory and anticancer properties. The high throughput analysis of 280 extracts resulted in identification of 57.5% of the extracts that could induce ARE at one or more concentrations tested, 93.5% that harbored total antioxidant capacity, and 2.1% of the extracts that showed lung cancer cell line-specific cytotoxicity. Data from our profiling experiments indicate that a large number of extracts could be a source for further isolation and chemical identification of compounds that could serve as leads for discovery of antioxidant, anticancer and anti-inflammatory agents to prevent or treat complex diseases like cancer and neurodegenerative disorders.

5.
Rev. méd. Chile ; 146(3): 362-372, mar. 2018. tab
Artigo em Espanhol | LILACS | ID: biblio-961401

RESUMO

Sedentarism, overweight and malnutrition generate an increase in the production of reactive oxygen species leading to a state of chronic oxidative stress. In patients with type 2 diabetes mellitus, oxidative stress alters pancreatic insulin secretion and the actions of the hormone on target cells, contributing to the development of micro and macrovascular complications. During physical exertion a state of transient oxidative stress occurs. As a consequence, the organism generates multiple physiological adaptations to these repetitive stimuli. Physical exercise is beneficial for type 2 diabetes mellitus but there is a paucity of information about the effects of physical exercise on biomarkers of oxidative stress in patients with the disease. We herein try to elucidate if the effects of exercise on oxidative stress can help in the prevention and treatment of type 2 diabetes mellitus and which is the most effective modality of physical exercise to reduce oxidative stress markers.


Assuntos
Humanos , Exercício Físico/fisiologia , Estresse Oxidativo/fisiologia , Diabetes Mellitus Tipo 2/terapia , Adaptação Fisiológica , Diabetes Mellitus Tipo 2/fisiopatologia , Terapia por Exercício
6.
Neuroscience ; 260: 130-9, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24361737

RESUMO

Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a transcription factor involved in the orchestration of antioxidant responses. Although its pharmacological activation has been largely hypothesized as a promising tool to ameliorate the progression of neurodegenerative events, the actual knowledge about its modulation in neurotoxic paradigms remains scarce. In this study, we investigated the early profile of Nrf2 modulation in striatal slices of rodents incubated in the presence of the toxic kynurenine pathway metabolite, quinolinic acid (QUIN). Tissue slices from rats and mice were obtained and used throughout the experiments in order to compare inter-species responses. Nuclear Nrf2 protein levels and oxidative damage to lipids were compared. Time- and concentration-response curves of all markers were explored. Nrf2 nuclear activation was corroborated through phase 2 antioxidant protein expression. The effects of QUIN on Nrf2 modulation and oxidative stress were also compared between slices of wild-type (Nrf2(+/+)) and Nrf2 knock-out (Nrf2(-/-)) mice. The possible involvement of the N-methyl-d-aspartate receptor (NMDAr) in the Nrf2 modulation and lipid peroxidation was further explored in mice striatal slices. In rat striatal slices, QUIN stimulated the Nrf2 nuclear translocation. This effect was accompanied by augmented lipid peroxidation. In the mouse striatum, QUIN per se exerted an induction of Nrf2 factor only at 1h of incubation, and a concentration-response effect on lipid peroxidation after 3h of incubation. QUIN stimulated the striatal content of phase 2 enzymes. Nrf2(-/-) mice were slightly more responsive than Nrf2(+/+) mice to the QUIN-induced oxidative damage, and completely unresponsive to the NMDAr antagonist MK-801 when tested against QUIN. Findings of this study indicate that: (1) Nrf2 is modulated in rodent striatal tissue in response to QUIN; (2) Nrf2(-/-) striatal tissue was moderately more vulnerable to oxidative damage than the Wt condition; and (3) early Nrf2 up-regulation reflects a compensatory response to the QUIN-induced oxidative stress in course as part of a general defense system, whereas Nrf2 down-regulation might contribute to more intense oxidative cell damage.


Assuntos
Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/fisiologia , Ácido Quinolínico/toxicidade , Animais , Feminino , Humanos , Cinurenina/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Wistar
7.
Free Radic Biol Med ; 65: 1078-1089, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23999506

RESUMO

The chemotherapeutic isothiocyanate sulforaphane (SFN) was early linked to anticarcinogenic and antiproliferative activities. Soon after, this compound, derived from cruciferous vegetables, became an excellent and useful trial for anti-cancer research in experimental models including growth tumor, metastasis, and angiogenesis. Many subsequent reports showed modifications in mitochondrial signaling, functionality, and integrity induced by SFN. When cytoprotective effects were found in toxic and ischemic insult models, seemingly contradictory behaviors of SFN were discovered: SFN was inducing deleterious changes in cancer cell mitochondria that eventually would carry the cell to death via apoptosis and also was protecting noncancer cell mitochondria against oxidative challenge, which prevented cell death. In both cases, SFN exhibited effects on mitochondrial redox balance and phase II enzyme expression, mitochondrial membrane potential, expression of the family of B cell lymphoma 2 homologs, regulation of proapoptotic proteins released from mitochondria, activation/inactivation of caspases, mitochondrial respiratory complex activities, oxygen consumption and bioenergetics, mitochondrial permeability transition pore opening, and modulation of some kinase pathways. With the ultimate findings related to the induction of mitochondrial biogenesis by SFN, it could be considered that SFN has effects on mitochondrial dynamics that explain some divergent points. In this review, we list the reports involving effects on mitochondrial modulation by SFN in anti-cancer models as well as in cytoprotective models against oxidative damage. We also attempt to integrate the data into a mechanism explaining the various effects of SFN on mitochondrial function in only one concept, taking into account mitochondrial biogenesis and dynamics and making a comparison with the theory of reactive oxygen species threshold of cell death. Our interest is to achieve a complete view of cancer and protective therapies based on SFN that can be extended to other chemotherapeutic compounds with similar characteristics. The work needed to test this hypothesis is quite extensive.


Assuntos
Antioxidantes/farmacologia , Isotiocianatos/farmacologia , Mitocôndrias/fisiologia , Animais , Apoptose , Humanos , Mitocôndrias/efeitos dos fármacos , Renovação Mitocondrial/efeitos dos fármacos , Neoplasias/metabolismo , Estresse Oxidativo , Sulfóxidos
8.
Phytomedicine ; 20(11): 1007-12, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23746950

RESUMO

ß-Lapachone is a phytochemotherapeutic originally isolated from Lapacho tree whose extract has been used medicinally for centuries. It is well known that NAD(P)H:quinone oxidoreductase (NQO1) activity is the principal determinant of ß-Lapachone cytotoxicity. As NQO1 is overexpressed in most common carcinomas, recent investigations suggest its potential application against cancer. Photodynamic therapy (PDT) is a clinically approved and rapidly developing cancer treatment. PDT involves the administration of photosensitizer (PS) followed by local illumination with visible light of specific wavelength. In the presence of oxygen molecules, the light illumination of PS can lead to a series of photochemical reactions and consequently the generation of cytotoxic reactive oxygen species (ROS). It has been reported that ß-Lapachone synergistically interacts with ionizing radiation, hyperthermia and cisplatin and that the sensitivity of cells to ß-Lapachone is closely related to the activity of NQO1. So, the present study aimed to investigate the feasibility of PDT to increase the anticancer effect of ß-Lapachone by up-regulating NQO1 expression on breast cancer MCF-7c3 cells. NQO1 expression was evaluated by Western blot analysis at different times after PDT using ME-ALA as PS. The cytotoxicity of the photodynamic treatment and ß-Lapachone alone or in combination was determined by MTT assay and the combination index (CI)-isobologram method and the dose reduction index (DRI) analysis were used to assess the effect of drug combinations. Our studies for the first time demonstrated that the expression of NQO1 is induced 24h after photodynamic treatment. The sensitivity of cancer cells to ß-Lapachone treatment increased 24h after PDT and a synergistic inhibitory effect on MCF-7c3 cells was showed. Taken together, these results lead us to conclude that the synergistic interaction between ß-Lapachone and PDT in killing cells was consistent with the up-regulation of NQO1. The combination of ß-Lapachone and PDT is a potentially promising modality for the treatment of cancer.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , NAD(P)H Desidrogenase (Quinona)/metabolismo , Naftoquinonas/uso terapêutico , Fotoquimioterapia , Fitoterapia , Tabebuia/química , Antineoplásicos Fitogênicos/farmacologia , Neoplasias da Mama/enzimologia , Neoplasias da Mama/metabolismo , Feminino , Humanos , Luz , Células MCF-7 , Naftoquinonas/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA