Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Clin Epigenetics ; 16(1): 40, 2024 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-38461243

RESUMO

BACKGROUND: MAL (T-lymphocyte maturation-associated protein) is highly downregulated in most cancers, including cervical cancer (CaCx), attributable to promoter hypermethylation. Long noncoding RNA genes (lncGs) play pivotal roles in CaCx pathogenesis, by interacting with human papillomavirus (HPV)-encoded oncoproteins, and epigenetically regulating coding gene expression. Hence, we attempted to decipher the impact and underlying mechanisms of MAL downregulation in HPV16-related CaCx pathogenesis, by interrogating the interactive roles of MAL antisense lncRNA AC103563.8, E7 oncoprotein and PRC2 complex protein, EZH2. RESULTS: Employing strand-specific RNA-sequencing, we confirmed the downregulated expression of MAL in association with poor overall survival of CaCx patients bearing HPV16, along with its antisense long noncoding RNA (lncRNA) AC103563.8. The strength of positive correlation between MAL and AC103563.8 was significantly high among patients compared to normal individuals. While downregulated expression of MAL was significantly associated with poor overall survival of CaCx patients bearing HPV16, AC103563.8 did not reveal any such association. We confirmed the enrichment of chromatin suppressive mark, H3K27me3 at MAL promoter, using ChIP-qPCR in HPV16-positive SiHa cells. Subsequent E7 knockdown in such cells significantly increased MAL expression, concomitant with decreased EZH2 expression and H3K27me3 marks at MAL promoter. In silico analysis revealed that both E7 and EZH2 bear the potential of interacting with AC103563.8, at the same binding domain. RNA immunoprecipitation with anti-EZH2 and anti-E7 antibodies, respectively, and subsequent quantitative PCR analysis in E7-silenced and unperturbed SiHa cells confirmed the interaction of AC103563.8 with EZH2 and E7, respectively. Apparently, AC103563.8 seems to preclude EZH2 and bind with E7, failing to block EZH2 function in patients. Thereby, enhanced EZH2 expression in the presence of E7 could potentially inactivate the MAL promoter through H3K27me3 marks, corroborating our previous results of MAL expression downregulation in patients. CONCLUSION: AC103563.8-E7-EZH2 axis, therefore, appears to crucially regulate the expression of MAL, through chromatin inactivation in HPV16-CaCx pathogenesis, warranting therapeutic strategy development.


Assuntos
Proteínas Proteolipídicas Associadas a Linfócitos e Mielina , Proteínas Oncogênicas Virais , RNA Longo não Codificante , Neoplasias do Colo do Útero , Feminino , Humanos , Cromatina/metabolismo , Metilação de DNA , Regulação para Baixo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Histonas/metabolismo , Papillomavirus Humano 16/genética , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias do Colo do Útero/patologia , Proteínas Proteolipídicas Associadas a Linfócitos e Mielina/genética , Proteínas Proteolipídicas Associadas a Linfócitos e Mielina/metabolismo
2.
Biomolecules ; 13(4)2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37189431

RESUMO

Antisense long noncoding RNA (as-lncRNA) is a lncRNA transcribed in reverse orientation that is partially or completely complementary to the corresponding sense protein-coding or noncoding genes. As-lncRNAs, one of the natural antisense transcripts (NATs), can regulate the expression of their adjacent sense genes through a variety of mechanisms, affect the biological activities of cells, and further participate in the occurrence and development of a variety of tumours. This study explores the functional roles of as-lncRNAs, which can cis-regulate protein-coding sense genes, in tumour aetiology to understand the occurrence and development of malignant tumours in depth and provide a better theoretical basis for tumour therapy targeting lncRNAs.


Assuntos
RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Carcinogênese/genética
3.
Cancer Biol Med ; 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34106559

RESUMO

OBJECTIVE: The purpose of this study was to explore the function and gene expression regulation of the newly identified lncRNA DPP10-AS1 in lung cancer, and its potential value as a prognostic biomarker. METHODS: qRT-PCR and Western blot were conducted to detect the expression of DDP10-AS1 and DPP10 in lung cancer cell lines and tissues. The effects of DDP10-AS1 on DPP10 expression, cell growth, invasion, apoptosis, and in vivo tumor growth were investigated in lung cancer cells by Western blot, rescue experiments, colony formation, flow cytometry, and xenograft animal experiments. RESULTS: The novel antisense lncRNA DPP10-AS1 was found to be highly expressed in cancer tissues (P < 0.0001), and its upregulation predicted poor prognosis in patients with lung cancer (P = 0.0025). Notably, DPP10-AS1 promoted lung cancer cell growth, colony formation, and cell cycle progression, and repressed apoptosis in lung cancer cells by upregulating DPP10 expression. Additionally, DPP10-AS1 facilitated lung tumor growth via upregulation of DPP10 protein in a xenograft mouse model. Importantly, DPP10-AS1 positively regulated DPP10 gene expression, and both were coordinately upregulated in lung cancer tissues. Mechanically, DPP10-AS1 was found to associate with DPP10 mRNA but did not enhance DPP10 mRNA stability. Hypomethylation of DPP10-AS1 and DPP10 contributed to their coordinate upregulation in lung cancer. CONCLUSIONS: These findings indicated that the upregulation of the antisense lncRNA DPP10-AS1 promotes lung cancer malignant processes and facilitates tumorigenesis by epigenetically regulating its cognate sense gene DPP10. DPP10-AS1 may serve as a candidate prognostic biomarker and a potential therapeutic target in lung cancer.

4.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 45(7): 862-868, 2020 Jul 28.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-32879091

RESUMO

Antisense long chain noncoding RNA (lncRNA) is a new class of RNA molecules. In recent years, antisense lncRNA has been found to play an important role in many life activities including tumorigenesis and development. It has become a hot topic in biological research in recent years. Because of the special structure, many antisense lncRNAs have specific expression in tumor tissues and are closely related to the clinical data of the patients. Thus, antisense lncRNA is a potential tumor molecular marker. Further functional studies have shown that lncRNA can participate in gene regulation by means of miRNA sponge and RBP binding to play an important role in tumor cell cycle, apoptosis, angiogenesis, invasion and metastasis. More studies on the mechanisms of antisense lncRNA in cancer are of great theoretical significance in understanding the etiology and pathogenesis of malignant tumors and RNA language. At the same time, antisense lncRNA is a molecular marker or a potential target for the early diagnosis of malignant tumors. The antisense lncRNA may have a broad clinical application prospect in the evaluation of therapeutic effect, prognosis and even gene therapy.


Assuntos
MicroRNAs/genética , Neoplasias/genética , RNA Longo não Codificante/genética , Biomarcadores Tumorais , Regulação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos
5.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-827401

RESUMO

Antisense long chain noncoding RNA (lncRNA) is a new class of RNA molecules. In recent years, antisense lncRNA has been found to play an important role in many life activities including tumorigenesis and development. It has become a hot topic in biological research in recent years. Because of the special structure, many antisense lncRNAs have specific expression in tumor tissues and are closely related to the clinical data of the patients. Thus, antisense lncRNA is a potential tumor molecular marker. Further functional studies have shown that lncRNA can participate in gene regulation by means of miRNA sponge and RBP binding to play an important role in tumor cell cycle, apoptosis, angiogenesis, invasion and metastasis. More studies on the mechanisms of antisense lncRNA in cancer are of great theoretical significance in understanding the etiology and pathogenesis of malignant tumors and RNA language. At the same time, antisense lncRNA is a molecular marker or a potential target for the early diagnosis of malignant tumors. The antisense lncRNA may have a broad clinical application prospect in the evaluation of therapeutic effect, prognosis and even gene therapy.


Assuntos
Humanos , Biomarcadores Tumorais , Regulação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , MicroRNAs , Genética , Neoplasias , Genética , RNA Longo não Codificante , Genética
6.
São Paulo; s.n; s.n; 2015. 115 p. tab, graf, ilus.
Tese em Português | LILACS | ID: biblio-847453

RESUMO

O splicing alternativo do pré-mRNA de BCL-X produz duas isoformas de mRNAs com funções antagônicas, a pró-apoptótica BCL-XS e a anti-apoptótica BCL-XL, cujo balanço regula a homeostasia celular. Entretanto, o mecanismo que regula esse processamento ainda é desconhecido. Nesse trabalho, nós identificamos e caracterizamos um longo RNA não codificador de proteínas (lncRNA) nomeado INXS, que é transcrito a partir da fita oposta do locus genômico de BCL-X, sendo menos abundante em linhagens celulares tumorais e tecidos tumorais de pacientes quando comparados com os respectivos pares não tumorais. INXS é um RNA unspliced de 1903 nts, é transcrito pela RNA Polimerase II, possui cap 5', está enriquecido na fração nuclear das células e se liga à proteína Sam68 do complexo modulador de splicing. O tratamento de células tumorais 786-O com cada um de três agentes indutores de apoptose aumentou a expressão endógena do INXS, levando ao aumento expressivo da proporção entre os mRNAs de BCL-XS / BCL-XL, e ativação das caspases 3, 7 e 9. Estes efeitos foram anulados na presença do knockdown do INXS. Da mesma forma, a superexpressão ectópica do INXS causou uma mudança no splicing favorecendo a isoforma BCL-XS e ativação das caspases, aumentando os níveis da proteína BCL-XS e conduzindo as células à apoptose. Utilizando um modelo in vivo, cinco injeções intra-tumorais do INXS durante 15 dias causaram uma regressão acentuada no volume dos xenotumores. Portanto, INXS é um lncRNA que induz a apoptose, sugerindo que essa molécula seja um possível alvo a ser explorado na terapia contra o câncer


BCL-X mRNA alternative splicing generates pro-apoptotic BCL-XS or anti-apoptotic BCL-XL, whose balance regulates cell homeostasis. However, the mechanism that regulates the splice shifting is incompletely understood. Here, we identified and characterized a long noncoding RNA (lncRNA) named INXS, transcribed from the opposite genomic strand of BCL-X, that was less abundant in tumor cell lines and patient tumor tissues compared with non-tumors. INXS is an unspliced 1903 nt-long RNA, is transcribed by RNA Polymerase II, 5'-capped, nuclear enriched and binds Sam68 splicing-modulator. The treatment of tumor cell line 786-O with each of three apoptosis-inducing agents increased endogenous INXS lncRNA, increased BCL-XS / BCL-XL mRNA ratio, and activated caspases 3, 7 and 9. These effects were abrogated in the presence of INXS knockdown. Similarly, ectopic INXS overexpression caused a shift in splicing towards BCL-XS and activation of caspases, increasing the levels of BCL-XS protein and then leading the cells to apoptosis. In a mouse xenograft model, five intra-tumor injections of INXS along 15 days caused a marked regression in tumor volume. INXS is an lncRNA that induces apoptosis, suggesting that INXS is a possible target to be explored in cancer therapies


Assuntos
Apoptose/genética , RNA Longo não Codificante/análise , Processamento Alternativo/genética , Proteína bcl-X , Proteína bcl-X/análise , DNA Antissenso , Expressão Gênica/genética , Neoplasias , RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...