Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Mol Cell Proteomics ; 23(6): 100779, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38679388

RESUMO

New treatments that circumvent the pitfalls of traditional antivenom therapies are critical to address the problem of snakebite globally. Numerous snake venom toxin inhibitors have shown promising cross-species neutralization of medically significant venom toxins in vivo and in vitro. The development of high-throughput approaches for the screening of such inhibitors could accelerate their identification, testing, and implementation and thus holds exciting potential for improving the treatments and outcomes of snakebite envenomation worldwide. Energetics-based proteomic approaches, including thermal proteome profiling and proteome integral solubility alteration (PISA) assays, represent "deep proteomics" methods for high throughput, proteome-wide identification of drug targets and ligands. In the following study, we apply thermal proteome profiling and PISA methods to characterize the interactions between venom toxin proteoforms in Crotalus atrox (Western Diamondback Rattlesnake) and the snake venom metalloprotease (SVMP) inhibitor marimastat. We investigate its venom proteome-wide effects and characterize its interactions with specific SVMP proteoforms, as well as its potential targeting of non-SVMP venom toxin families. We also compare the performance of PISA thermal window and soluble supernatant with insoluble precipitate using two inhibitor concentrations, providing the first demonstration of the utility of a sensitive high-throughput PISA-based approach to assess the direct targets of small molecule inhibitors for snake venom.


Assuntos
Venenos de Crotalídeos , Crotalus , Proteoma , Proteômica , Animais , Crotalus/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Metaloproteases/antagonistas & inibidores , Metaloproteases/metabolismo , Ácidos Hidroxâmicos/farmacologia , Venenos de Serpentes/metabolismo
3.
Toxicon ; 239: 107617, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38219916

RESUMO

Bungarus fasciatus also referred to as the Banded krait is a snake which possesses venom and belongs to the Elapidae family. It is widely distributed across the Indian subcontinent and South East Asian countries and is responsible for numerous snakebites in the population. B. fasciatus possesses a neurotoxic venom and envenomation by the snake results in significant morbidity and occasional morbidity in the victim if not treated appropriately. In this study, the efficacy of Indian polyvalent antivenom (Premium Serums polyvalent antivenom) was evaluated against the venom of B. fasciatus from Guwahati, Assam (India) employing the Third-generation antivenomics technique followed by identification of venom proteins from three poorly immunodepleted peaks (P5, P6 and P7) using LC-MS/MS analysis. Seven proteins were identified from the three peaks and all these venom proteins belonged to the phospholipase A2 (PLA2) superfamily. The identified PLA2 proteins were corroborated by the in vitro enzymatic activities (PLA2 and Anticoagulant activity) exhibited by the three peaks and previous reports of pathological manifestation in the envenomated victims. Neutralization of enzymatic activities by Premium Serums polyvalent antivenom was also assessed in vitro for crude venom, P5, P6 and P7 which revealed moderate to poor inhibition. Inclusion of venom proteins/peptides, which are non-immunodepleted or poorly immunodepleted, into the immunization mixture of venom used for antivenom production may help in enhancing the efficacy of the polyvalent antivenom.


Assuntos
Antivenenos , Elapidae , Mordeduras de Serpentes , Serpentes Peçonhentas , Animais , Antivenenos/farmacologia , Cromatografia Líquida , Espectrometria de Massas em Tandem , Venenos Elapídicos , Índia , Fosfolipases A2/metabolismo , Bungarus/metabolismo
4.
Toxins (Basel) ; 15(8)2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37624267

RESUMO

The limitations posed by currently available antivenoms have emphasized the need for alternative treatments to counteract snakebite envenomation. Even though exact epidemiological data are lacking, reports have indicated that most global snakebite deaths are reported in India. Among the many problems associated with snakebite envenomation, issues related to the availability of safer and more efficient antivenoms are of primary concern. Since India has the highest number of global snakebite deaths, efforts should be made to reduce the burden associated with snakebite envenoming. Alternative methods, including aptamers, camel antivenoms, phage display techniques for generating high-affinity antibodies and antibody fragments, small-molecule inhibitors, and natural products, are currently being investigated for their effectiveness. These alternative methods have shown promise in vitro, but their in vivo effectiveness should also be evaluated. In this review, the issues associated with Indian polyvalent antivenoms in neutralizing venom components from geographically distant species are discussed in detail. In a nutshell, this review gives an overview of the current drawbacks of using animal-derived antivenoms and several alternative strategies that are currently being widely explored.


Assuntos
Produtos Biológicos , Mordeduras de Serpentes , Animais , Humanos , Mordeduras de Serpentes/tratamento farmacológico , Antivenenos/uso terapêutico , Povo Asiático , Camelus , Índia
5.
Int J Mol Sci ; 24(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37298463

RESUMO

The socioeconomic impact of snakebites in India is largely attributed to a subset of snake species commonly known as the 'big four'. However, envenoming by a range of other clinically important yet neglected snakes, a.k.a. the 'neglected many', also adds to this burden. The current approach of treating bites from these snakes with the 'big four' polyvalent antivenom is ineffective. While the medical significance of various species of cobras, saw-scaled vipers, and kraits is well-established, the clinical impact of pit vipers from regions such as the Western Ghats, northeastern India, and the Andaman and Nicobar Islands remains poorly understood. Amongst the many species of snakes found in the Western Ghats, the hump-nosed (Hypnale hypnale), Malabar (Craspedocephalus malabaricus), and bamboo (Craspedocephalus gramineus) pit vipers can potentially inflict severe envenoming. To evaluate the severity of toxicity inflicted by these snakes, we characterised their venom composition, biochemical and pharmacological activities, and toxicity- and morbidity-inducing potentials, including their ability to damage kidneys. Our findings highlight the therapeutic inadequacies of the Indian and Sri Lankan polyvalent antivenoms in neutralising the local and systemic toxicity resulting from pit viper envenomings.


Assuntos
Crotalinae , Mordeduras de Serpentes , Viperidae , Animais , Antivenenos/uso terapêutico , Mordeduras de Serpentes/tratamento farmacológico , Venenos de Víboras
6.
Toxins (Basel) ; 15(4)2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-37104196

RESUMO

Snake envenoming is caused by many biological species, rather than a single infectious agent, each with a multiplicity of toxins in their venom. Hence, developing effective treatments is challenging, especially in biodiverse and biogeographically complex countries such as India. The present study represents the first genus-wide proteomics analysis of venom composition across Naja species (N. naja, N. oxiana, and N. kaouthia) found in mainland India. Venom proteomes were consistent between individuals from the same localities in terms of the toxin families present, but not in the relative abundance of those in the venom. There appears to be more compositional variation among N. naja from different locations than among N. kaouthia. Immunoblotting and in vitro neutralization assays indicated cross-reactivity with Indian polyvalent antivenom, in which antibodies raised against N. naja are present. However, we observed ineffective neutralization of PLA2 activities of N. naja venoms from locations distant from the source of immunizing venoms. Antivenom immunoprofiling by antivenomics revealed differential antigenicity of venoms from N. kaouthia and N. oxiana, and poor reactivity towards 3FTxs and PLA2s. Moreover, there was considerable variation between antivenoms from different manufacturers. These data indicate that improvements to antivenom manufacturing in India are highly desirable.


Assuntos
Mordeduras de Serpentes , Toxinas Biológicas , Animais , Antivenenos , Venenos Elapídicos , Venenos de Serpentes , Naja , Elapidae
7.
Toxins (Basel) ; 14(4)2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35448844

RESUMO

In Colombia, on average 2.9% of the nearly 5600 snakebite events that occur annually involve the rattlesnake Crotalus durissus cumanensis. The envenomation by this snake is mainly characterized by neurotoxicity and the main toxin is crotoxin (~64.7% of the total venom). The Instituto Nacional de Salud (INS) produces a polyvalent antivenom aimed at the treatment of bothropic, crotalid, and lachesic envenomations; nonetheless, its immune reactivity profile and neutralizing capacity over biological activities of the C. d. cumanensis venom has been poorly evaluated. In this sense, the study aims: (1) to describe an in-depth exploration of its immunoreactivity through second-generation antivenomics and HPLC fraction-specific ELISA immunoprofiles; and (2) to evaluate the neutralization pattern of the rattlesnake venom in vitro and in vivo biological activities. The results obtained showed a variable recognition of crotoxin subunits, in addition to a molecular mass-dependent immunoreactivity pattern in which the disintegrins were not recognized, and snake venom metalloproteinases and L-amino acid oxidases were the most recognized. Additionally, a high neutralization of proteolytic and coagulant activities was observed, but not over the PLA2 activity. Further, the median effective dose against C. d. cumanensis venom lethality was 962 µL of antivenom per mg of venom. In conclusion, (1) the antivenom recognition over the crotoxin and the disintegrins of the C. d. cumanensis should be improved, thus aiming upcoming efforts for the exploration of new techniques and approaches in antivenom production in Colombia, and (2) the neutralization activity of the antivenom seems to follow the molecular mass-dependent recognition pattern, although other explanations should be explored.


Assuntos
Venenos de Crotalídeos , Crotoxina , Animais , Antivenenos , Colômbia , Venenos de Crotalídeos/toxicidade , Crotalus , Desintegrinas
8.
Artigo em Inglês | MEDLINE | ID: mdl-35245843

RESUMO

Various snake species and snake predators have natural neutralization against snake toxins, which their antidotal abilities are commonly attributed to the intrinsic inhibitors produced by the liver, e.g., phospholipase A2 inhibitor (PLI) and metalloproteinase inhibitor (SVMPI). Sinonatrix annularis was found to possess broad-spectrum neutralization to different snake venoms in our lab. Although the anti-venom compound PLIγ has been previously characterized in our laboratory, the mechanism of resistance of S. annularis to snake venoms remains obscure. In this research, a venom affinity chromatography was constructed by immobilizing D. acutus venom to NHS-agarose beads and applied for antitoxins mining from S. annularis. The binding capacity of the venom column was validated using a self-prepared rabbit antivenom against D. acutus. Serum and liver homogenate of S. annularis were then applied to the column, the bound components were profiled using SDS-PAGE and mass spectrometry. PLIs, snake venom metalloproteins inhibitor (SVMPI), small serum protein (SSP), heat shock proteins, etc were identified. To identify their toxin targets in D. acutus venom, a reverse separation was conducted by coupling the fractionated S. annularis serum proteins to NHS-agarose beads. Fifteen toxins of five families were captured and identified as follows: PLA2s, metalloproteinases, cysteine-rich secretory proteins, snake venom serine proteinases, and C-type lectins. These discoveries increased our understanding of the capacity and mechanism of the natural neutralization of S. annularis to snake venom. These natural inhibitors are medically significant due to their powerful and broad antidotal activities, which may provide alternative and promising drug candidates for snakebite treatment.


Assuntos
Antivenenos , Colubridae/fisiologia , Proteoma , Venenos de Serpentes/antagonistas & inibidores , Animais , Antivenenos/análise , Antivenenos/química , Masculino , Espectrometria de Massas , Metaloproteases , Camundongos , Fosfolipases A2 , Proteoma/análise , Proteoma/química , Proteômica , Coelhos
9.
J Proteomics ; 249: 104379, 2021 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-34534714

RESUMO

We report the first proteomics analyses of the venoms of two poorly studied snakes, the Manabi hognosed pitviper Porthidium arcosae endemic to the western coastal province of Manabí (Ecuador), and the Costa Rican hognosed pitviper P. volcanicum with distribution restricted to South Pacific Costa Rica and western Panamá. These venom proteomes share a conserved compositional pattern reported in four other congeneric species within the clade of South American Porthidium species, P. nasutum, P. lansbergii, P. ophryomegas, and P. porrasi. The paraspecific immunorecognition profile of antivenoms produced in Costa Rica (ICP polyvalent), Perú (Instituto Nacional de Salud) and Brazil (soro antibotrópico pentavalente, SAB, from Instituto Butantan) against the venom of P. arcosae was investigated through a third-generation antivenomics approach. The maximal venom-binding capacities of the investigated antivenoms were 97.1 mg, 21.8 mg, and 25.7 mg of P. arcosae venom proteins per gram of SAB, ICP, and INS-PERU antibody molecules, respectively, which translate into 28.4 mg, 13.1 mg, and 15.2 mg of total venom proteins bound per vial of SAB, ICP, and INS-PERU AV. The antivenomics results suggest that 21.8%, 7.8% and 6.1% of the SAB, ICP, and INS-PERU antibody molecules recognized P. arcosae venom toxins. The SAB antivenom neutralized P. arcosae venom's lethality in mice with an ED50 of 31.3 mgV/g SAB AV. This preclinical neutralization paraspecificity points to Brazilian SAB as a promising candidate for the treatment of envenomings by Ecuadorian P. arcosae. BIOLOGICAL SIGNIFICANCE: Assessing the preclinical efficacy profile of antivenoms against homologous and heterologous medically relevant snake venoms represents an important goal towards defining the biogeographic range of their clinical utility. This is particularly relevant in regions, such as Mesoamerica, where a small number of pharmaceutical companies produce antivenoms against the venoms of a small number of species of maximum medical relevance among the local rich herpetofauna, leaving a wide range of snakes of secondary medical relevance, but also causing life-threatening human envenomings without nominal clinical coverage. This work is part of a larger project aiming at mapping the immunological characteristics of antivenoms generated in Latin American countries towards venoms of such poorly studied snakes of the local and neighboring countries' herpetofauna. Here we report the proteomics characterization of the Manabi hognosed pitviper Porthidium arcosae endemic to the western coastal province of Manabí (Ecuador), and the Costa Rican hognosed pitviper P. volcanicum with distribution restricted to southwestern Costa Rica, the antivenomics assessment of three bothropoid commercial antivenoms produced in Costa Rica, Perú, and Brazil against the venom components of P. arcosae, and the in vivo capacity of the Brazilian soro antibotrópico pentavalente (SAB) from Instituto Butantan to neutralize the murine lethality of P. arcosae venom. The preclinical paraspecific ED50 of 31.3 mg of P. arcosae venom per gram of antivenom points to Brazilian SAB as a promising candidate for the treatment of envenomings by the Manabi hognosed pitviper P. arcosae.


Assuntos
Venenos de Crotalídeos , Crotalinae , Animais , Antivenenos , Camundongos , Proteoma , Proteômica , Venenos de Serpentes
10.
Toxicon ; 201: 148-154, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34474069

RESUMO

Clinicians report low efficacy of Indian polyvalent antivenom (PAV), with >20 vials required for treatment of a snakebite envenoming. We hypothesize that the antivenom efficacy could be reduced due to insufficient antibodies against some venom toxins. To test this, we used third-generation antivenomics to reveal bound and unbound venom toxins of Echis carinatus venom from Goa (ECVGO) and Tamil Nadu (ECVTN). We used 60, 120, 180, 240, 300, and 360 µg of venom and passed through mini-columns containing ~5 mg Antivenom bound to CNBr beads. The non-retained (unbound) and retained (bound) toxins were identified using reverse-phase HPLC and tandem mass spectrometry. Low molecular weight toxins - Short disintegrins (5.3 kDa) and DIS domain of P-II SVMP from ECVGO and ECVTN showed poor binding with antivenom. The immunorecognition sites of antivenom saturated at the lower antivenom-venom ratio for ECVGO than for ECVTN. The immunoretained capacity of antivenom against ECVTN was 140.6 µg and ECVGO was 125.1 µg. The amount of immunoretained toxins quantified can further be used to estimate the efficacy of antivenom by correlating it with in-vivo studies. The unbound toxins identified from this study could be targeted to improve the effectiveness of antivenom.


Assuntos
Mordeduras de Serpentes , Viperidae , Animais , Antivenenos , Índia , Mordeduras de Serpentes/tratamento farmacológico , Venenos de Víboras
11.
J Venom Anim Toxins Incl Trop Dis ; 27: e20200177, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33995514

RESUMO

BACKGROUND: The western Russell's viper (Daboia russelii) is widely distributed in South Asia, and geographical venom variation is anticipated among distant populations. Antivenoms used for Russell's viper envenomation are, however, raised typically against snakes from Southern India. The present study investigated and compared the venom proteomes of D. russelii from Sri Lanka (DrSL) and India (DrI), the immunorecognition of Indian VINS Polyvalent Antivenom (VPAV) and its efficacy in neutralizing the venom toxicity. METHODS: The venoms of DrSL and DrI were decomplexed with C18 high-performance liquid chromatography and SDS-polyacrylamide gel electrophoresis under reducing conditions. The proteins fractionated were identified through nano-ESI-liquid chromatography-tandem mass spectrometry (LCMS/MS). The immunological studies were conducted with enzyme-linked immunosorbent assay. The neutralization of the venom procoagulant effect was evaluated in citrated human plasma. The neutralization of the venom lethality was assessed in vivo in mice adopting the WHO protocol. RESULTS: DrSL and DrI venom proteomes showed comparable major protein families, with phospholipases A2 (PLA2) being the most abundant (> 60% of total venom proteins) and diverse (six protein forms identified). Both venoms were highly procoagulant and lethal (intravenous median lethal dose in mice, LD50 = 0.24 and 0.32 µg/g, for DrSL and DrI, respectively), while lacking hemorrhagic and anticoagulant activities. VPAV was immunoreactive toward DrSL and DrI venoms, indicating conserved protein antigenicity in the venoms. The high molecular weight venom proteins were, however, more effectively immunorecognized than small ones. VPAV was able to neutralize the coagulopathic and lethal effects of the venoms moderately. CONCLUSION: Considering that a large amount of venom can be injected by Russell's viper during envenomation, the potency of antivenom can be further improved for optimal neutralization and effective treatment. Region-specific venoms and key toxins may be incorporated into the immunization procedure during antivenom production.

12.
Artigo em Inglês | MEDLINE | ID: mdl-33910092

RESUMO

The Many-banded Krait (Bungarus multicinctus) is a medically important venomous snake in East Asia. This study investigated the venom proteomes of B. multicinctus from Guangdong, southern China (BM-China) and insular Taiwan (BM-Taiwan), and the neutralization activities of two antivenom products (produced separately in China and Taiwan) against the lethal effect of the venoms. The venom proteomes of both specimens contained similar toxin families, notwithstanding small variations in the subtypes and abundances of minor components. More than 90% of the total venom proteins belong to three-finger toxins (3FTx, including alpha-neurotoxins) and phospholipases A2 (PLA2, including beta-bungarotoxins), supporting their key involvement in the pathophysiology of krait envenomation which manifests as pre- and post-synaptic neurotoxicity. The venoms exhibited potent neurotoxic and lethal effects with extremely low i.v. LD50 of 0.027 µg/g (Bm-China) and 0.087 µg/g (Bm-Taiwan), respectively, in mice. Bungarus multicinctus monovalent antivenom (BMMAV) produced in China and Neuro bivalent antivenom (NBAV) produced in Taiwan were immunoreactive toward both venoms and their toxin fractions. The antivenoms neutralized the venom lethality variably, with BMMAV being more efficacious than NBAV by approximately two-fold. Findings suggest that the monovalent antivenom has a higher potency presumably due to its species-specificity toward the krait venom.


Assuntos
Antivenenos/farmacologia , Bungarus/metabolismo , Venenos Elapídicos/metabolismo , Proteoma/metabolismo , Animais , China , Camundongos , Especificidade da Espécie , Taiwan
13.
J Proteomics ; 240: 104196, 2021 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-33775842

RESUMO

Cobras are the most medically important elapid snakes in Africa. The African genera Naja and Hemachatus include snakes with neurotoxic and cytotoxic venoms, with shared biochemical, toxinological and antigenic characteristics. We have studied the antigenic cross-reactivity of four sub-Saharan Africa cobra venoms against an experimental monospecific Hemachatus haemachatus antivenom through comparative proteomics, preclinical assessment of neutralization, and third generation antivenomics. The venoms of H. haemachatus, N. annulifera, N. mossambica and N. nigricollis share an overall qualitative family toxin composition but depart in their proportions of three-finger toxin (3FTxs) classes, phospholipases A2 (PLA2s), snake venom metalloproteinases (SVMPs), and cysteine-rich secretory proteins (CRISPs). A monospecific anti-Hemachatus antivenom produced by Costa Rican Instituto Clodomiro Picado neutralized the lethal activity of the homologous and heterologous neuro/cytotoxic (H. haemachatus) and cyto/cardiotoxic (N. mossambica and N. nigricollis) venoms of the three spitting cobras sampled, while it was ineffective against the lethal and toxic activities of the neurotoxic venom of the non-spitting snouted cobra N. annulifera. The ability of the anti-Hemachatus-ICP antivenom to neutralize toxic (dermonecrotic and anticoagulant) and enzymatic (PLA2) activities of spitting cobra venoms suggested a closer kinship of H. haemachatus and Naja subgenus Afrocobra spitting cobras than to Naja subgenus Uraeus neurotoxic taxa. These results were confirmed by third generation antivenomics. BIOLOGICAL SIGNIFICANCE: African Naja species represent the most widespread medically important elapid snakes across Africa. To gain deeper insight into the spectrum of medically relevant toxins, we compared the proteome of three spitting cobras (Hemachatus haemachatus, Naja mossambica and N. nigricollis) and one non-spitting cobra (N. annulifera). Three finger toxins and phospholipases A2 are the two major protein families among the venoms analyzed. The development of antivenoms of broad species coverage is an urgent need in sub-Saharan Africa. An equine antivenom raised against H. haemachatus venom showed cross-reactivity with the venoms of H. haemachatus, N. mossambica and N. nigricollis, while having poor recognition of the venom of N. annulifera. This immunological information provides clues for the design of optimum venom mixtures for the preparation of broad spectrum antivenoms.


Assuntos
Antivenenos , Hemachatus , África Subsaariana , Animais , Venenos Elapídicos/toxicidade , Elapidae , Cavalos
14.
J. venom. anim. toxins incl. trop. dis ; 27: e20200177, 2021. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1250255

RESUMO

The western Russell's viper (Daboia russelii) is widely distributed in South Asia, and geographical venom variation is anticipated among distant populations. Antivenoms used for Russell's viper envenomation are, however, raised typically against snakes from Southern India. The present study investigated and compared the venom proteomes of D. russelii from Sri Lanka (DrSL) and India (DrI), the immunorecognition of Indian VINS Polyvalent Antivenom (VPAV) and its efficacy in neutralizing the venom toxicity. Methods: The venoms of DrSL and DrI were decomplexed with C18 high-performance liquid chromatography and SDS-polyacrylamide gel electrophoresis under reducing conditions. The proteins fractionated were identified through nano-ESI-liquid chromatography-tandem mass spectrometry (LCMS/MS). The immunological studies were conducted with enzyme-linked immunosorbent assay. The neutralization of the venom procoagulant effect was evaluated in citrated human plasma. The neutralization of the venom lethality was assessed in vivo in mice adopting the WHO protocol. Results: DrSL and DrI venom proteomes showed comparable major protein families, with phospholipases A2 (PLA2) being the most abundant (> 60% of total venom proteins) and diverse (six protein forms identified). Both venoms were highly procoagulant and lethal (intravenous median lethal dose in mice, LD50 = 0.24 and 0.32 µg/g, for DrSL and DrI, respectively), while lacking hemorrhagic and anticoagulant activities. VPAV was immunoreactive toward DrSL and DrI venoms, indicating conserved protein antigenicity in the venoms. The high molecular weight venom proteins were, however, more effectively immunorecognized than small ones. VPAV was able to neutralize the coagulopathic and lethal effects of the venoms moderately. Conclusion: Considering that a large amount of venom can be injected by Russell's viper during envenomation, the potency of antivenom can be further improved for optimal neutralization and effective treatment. Region-specific venoms and key toxins may be incorporated into the immunization procedure during antivenom production.(AU)


Assuntos
Animais , Venenos/toxicidade , Antivenenos/biossíntese , Daboia , Proteômica , Localizações Geográficas
15.
J Proteome Res ; 19(8): 3518-3532, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32686412

RESUMO

We report a structural and functional proteomics characterization of venoms of the two subspecies (Bothrops bilineatusbilineatus and B. b. smaragdinus) of the South American palm pit viper from the Brazilian state of Rondônia and B. b. smaragdinus from Perú. These poorly known arboreal and mostly nocturnal generalist predators are widely distributed in lowland rainforests throughout the entire Amazon region, where they represent an important cause of snakebites. The three B. bilineatus spp. venom samples exhibit overall conserved proteomic profiles comprising components belonging to 11 venom protein classes, with PIII (34-40% of the total venom proteins) and PI (8-18%) SVMPs and their endogenous tripeptide inhibitors (SVMPi, 8-10%); bradykinin-potentiating-like peptides (BBPs, 10.7-15%); snake venom serine proteinases (SVSP, 5.5-14%); C-type lectin-like proteins (CTL, 3-10%); phospholipases A2 (PLA2, 2.8-7.6%); cysteine-rich secretory proteins (CRISP, 0.9-2.8%); l-amino acid oxidases (LAO, 0.9-5%) representing the major components of their common venom proteomes. Comparative analysis of the venom proteomes of the two geographic variants of B. b. smaragdinus with that of B. b. bilineatus revealed that the two Brazilian taxa share identical molecules between themselves but not with Peruvian B. b. smaragdinus, suggesting hybridization between the geographically close, possibly sympatric, Porto Velho (RO, BR) B. b. smaragdinus and B. b. bilineatus parental populations. However, limited sampling does not allow determining the frequency of this event. The toxin arsenal of the South American palm pit vipers may account for the in vitro recorded collagenolytic, caseinolytic, PLA2, l-amino acid oxidase, thrombin-like and factor X-activating activities, and the clinical features of South American palm pit viper envenomings, i.e., local and progressively ascending pain, shock and loss of consciousness, spontaneous bleeding, and profound coagulopathy. The remarkable cross-reactivity of the Brazilian pentabothropic SAB antivenom toward the heterologous B. b. bilineatus venom suggests that the paraspecific antigenic determinants should have been already present in the venom of the last common ancestor of the Bothrops ″jararaca″ and ″taeniatus″ clades, about 8.5 Mya in the mid-late Miocene epoch of the Cenozoic era. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the data set identifiers PXD020043, PXD020026, and PXD020013.


Assuntos
Bothrops , Venenos de Crotalídeos , Crotalinae , Animais , Antivenenos , Proteoma/genética , Proteômica , Venenos de Víboras
16.
Toxicon X ; 6: 100037, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32550592

RESUMO

Bothrops atrox snakes are mostly endemic of the Amazon rainforest and is certainly the South American pit viper responsible for most of the snakebites in the region. The composition of B. atrox venom is significantly known and has been used to trace the relevance of the venom phenotype for snake biology and for the impacts in the clinics of human patients involved in accidents by B. atrox. However, in spite of the wide distribution and the great medical relevance of B. atrox snakes, B. atrox taxonomy is not fully resolved and the impacts of the lack of taxonomic resolution on the studies focused on venom or envenoming are currently unknown. B. atrox venom presents different degrees of compositional variability and is generally coagulotoxic, inducing systemic hematological disturbances and local tissue damage in snakebite patients. Antivenoms are the effective therapy for attenuating the clinical signs. This review brings a comprehensive discussion of the literature concerning B. atrox snakes encompassing from snake taxonomy, diet and venom composition, towards clinical aspects of snakebite patients and efficacy of the antivenoms. This discussion is highly supported by the contributions that venomics and antivenomics added for the advancement of knowledge of B. atrox snakes, their venoms and the treatment of accidents they evoke.

17.
Expert Rev Proteomics ; 17(5): 411-423, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32579411

RESUMO

INTRODUCTION: The 'Big Four' venomous snakes - Daboia russelii, Naja naja, Bungarus caeruleus, and Echis carinatus - are primarily responsible for the majority of snake envenomation in India. Several other lesser-known venomous snake species also inflict severe envenomation in the country. AREAS COVERED: A comprehensive analysis of the venom proteome composition of the 'Big Four' and other medically important venomous snakes of India and the effect of regional variation in venom composition on immunorecognition and/or neutralization by commercial antivenom was undertaken by searching the literature (from 1985 to date) available in large public databases. Further, mass spectrometric identification of poorly immunogenic toxins of snake venom (against which commercial polyvalent antivenom contains a significantly lower proportion of antibodies) and its impact on antivenom therapy against snakebite are discussed. The application of mass spectrometry to identify protein (toxin) complexes as well as drug prototypes from Indian snake venoms and the clinical importance of such studies are also highlighted. EXPERT OPINION: Further detailed clinical and proteomic research is warranted to better understand the effects of regional snake venom composition on the clinical manifestation of envenomation and antivenom therapy and to improve the production of antibodies against poorly immunogenic venom components.


Assuntos
Antivenenos/genética , Proteoma/genética , Proteômica , Mordeduras de Serpentes/genética , Animais , Bungarus/genética , Venenos Elapídicos/química , Venenos Elapídicos/genética , Índia , Espectrometria de Massas/tendências , Naja naja/genética , Mordeduras de Serpentes/prevenção & controle , Serpentes/genética , Venenos de Víboras/química , Venenos de Víboras/genética
18.
Artigo em Inglês | MEDLINE | ID: mdl-32362928

RESUMO

BACKGROUND: The Brazil's lancehead, Bothrops brazili, is a poorly studied pit viper distributed in lowlands of the equatorial rainforests of southern Colombia, northeastern Peru, eastern Ecuador, southern and southeastern Venezuela, Guyana, Suriname, French Guiana, Brazil, and northern Bolivia. Few studies have been reported on toxins isolated from venom of Ecuadorian and Brazilian B. brazili. The aim of the present study was to elucidate the qualitative and quantitative protein composition of B. brazili venom from Pará (Brazil), and to carry out a comparative antivenomics assessment of the immunoreactivity of the Brazilian antibothropic pentavalent antivenom [soro antibotrópico (SAB) in Portuguese] against the venoms of B. brazili and reference species, B. jararaca. METHODS: We have applied a quantitative snake venomics approach, including reverse-phase and two-dimensional electrophoretic decomplexation of the venom toxin arsenal, LC-ESI-MS mass profiling and peptide-centric MS/MS proteomic analysis, to unveil the overall protein composition of B. brazili venom from Pará (Brazil). Using third-generation antivenomics, the specific and paraspecific immunoreactivity of the Brazilian SAB against homologous (B. jararaca) and heterologous (B. brazili) venoms was investigated. RESULTS: The venom proteome of the Brazil's lancehead (Pará) is predominantly composed of two major and three minor acidic (19%) and two major and five minor basic (14%) phospholipase A2 molecules; 7-11 snake venom metalloproteinases of classes PI (21%) and PIII (6%); 10-12 serine proteinases (14%), and 1-2 L-amino acid oxidases (6%). Other toxins, including two cysteine-rich secretory proteins, one C-type lectin-like molecule, one nerve growth factor, one 5'-nucleotidase, one phosphodiesterase, one phospholipase B, and one glutaminyl cyclase molecule, represent together less than 2.7% of the venom proteome. Third generation antivenomics profile of the Brazilian pentabothropic antivenom showed paraspecific immunoreactivity against all the toxin classes of B. brazili venom, with maximal binding capacity of 132.2 mg venom/g antivenom. This figure indicates that 19% of antivenom's F(ab')2 antibodies bind B. brazili venom toxins. CONCLUSION: The proteomics outcome contribute to a deeper insight into the spectrum of toxins present in the venom of the Brazil's lancehead, and rationalize the pathophysiology underlying this snake bite envenomings. The comparative qualitative and quantitative immunorecognition profile of the Brazilian pentabothropic antivenom toward the venom toxins of B. brazili and B. jararaca (the reference venom for assessing the bothropic antivenom's potency in Brazil), provides clues about the proper use of the Brazilian antibothropic polyvalent antivenom in the treatment of bites by the Brazil's lancehead.

19.
Artigo em Inglês | MEDLINE | ID: mdl-32082369

RESUMO

The Eastern Russell's viper, Daboia siamensis, is a WHO Category 1 medically important venomous snake. It has a wide but disjunct distribution in Southeast Asia. The specific antivenom, D. siamensis Monovalent Antivenom (DsMAV-Thailand) is produced in Thailand but not available in Indonesia, where a heterologous trivalent antivenom, Serum Anti Bisa Ular (SABU), is used instead. This study aimed to investigate the geographical venom variation of D. siamensis from Thailand (Ds-Thailand) and Indonesia (Ds-Indonesia), and the immunorecognition of the venom proteins by antivenoms. METHODS: The venom proteins were decomplexed with reverse-phase high-performance liquid chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, followed by in-solution tryptic digestion, nano-liquid chromatography-tandem mass spectrometry and protein identification. The efficacies of DsMAV-Thailand and SABU in binding the various venom fractions were assessed using an enzyme-linked immunosorbent assay optimized for immunorecognition profiling. RESULTS: The two most abundant protein families in Ds-Thailand venom are phospholipase A2 (PLA2) and Kunitz-type serine protease inhibitor (KSPI). Those abundant in Ds-Indonesia venom are PLA2 and serine protease. KSPI and vascular endothelial growth factor were detected in Ds-Thailand venom, whereas L-amino acid oxidase and disintegrin were present in Ds-Indonesia venom. Common proteins shared between the two included snaclecs, serine proteases, metalloproteinases, phosphodiesterases, 5'nucleotidases and nerve growth factors at varying abundances. DsMAV-Thailand exhibited strong immunorecognition of the major protein fractions in both venoms, but low immunoreactivity toward the low molecular weight proteins e.g. KSPI and disintegrins. On the other hand, SABU was virtually ineffective in binding all fractionated venom proteins. CONCLUSION: D. siamensis venoms from Thailand and Indonesia varied geographically in the protein subtypes and abundances. The venoms, nevertheless, shared conserved antigenicity that allowed effective immunorecognition by DsMAV-Thailand but not by SABU, consistent with the neutralization efficacy of the antivenoms. A specific, appropriate antivenom is needed in Indonesia to treat Russell's viper envenomation.

20.
J. venom. anim. toxins incl. trop. dis ; 26: e20190048, 2020. ilus, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1056677

RESUMO

The Eastern Russell's viper, Daboia siamensis, is a WHO Category 1 medically important venomous snake. It has a wide but disjunct distribution in Southeast Asia. The specific antivenom, D. siamensis Monovalent Antivenom (DsMAV-Thailand) is produced in Thailand but not available in Indonesia, where a heterologous trivalent antivenom, Serum Anti Bisa Ular (SABU), is used instead. This study aimed to investigate the geographical venom variation of D. siamensis from Thailand (Ds-Thailand) and Indonesia (Ds-Indonesia), and the immunorecognition of the venom proteins by antivenoms. Methods: The venom proteins were decomplexed with reverse-phase high-performance liquid chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, followed by in-solution tryptic digestion, nano-liquid chromatography-tandem mass spectrometry and protein identification. The efficacies of DsMAV-Thailand and SABU in binding the various venom fractions were assessed using an enzyme-linked immunosorbent assay optimized for immunorecognition profiling. Results: The two most abundant protein families in Ds-Thailand venom are phospholipase A2 (PLA2) and Kunitz-type serine protease inhibitor (KSPI). Those abundant in Ds-Indonesia venom are PLA2 and serine protease. KSPI and vascular endothelial growth factor were detected in Ds-Thailand venom, whereas L-amino acid oxidase and disintegrin were present in Ds-Indonesia venom. Common proteins shared between the two included snaclecs, serine proteases, metalloproteinases, phosphodiesterases, 5'nucleotidases and nerve growth factors at varying abundances. DsMAV-Thailand exhibited strong immunorecognition of the major protein fractions in both venoms, but low immunoreactivity toward the low molecular weight proteins e.g. KSPI and disintegrins. On the other hand, SABU was virtually ineffective in binding all fractionated venom proteins. Conclusion: D. siamensis venoms from Thailand and Indonesia varied geographically in the protein subtypes and abundances. The venoms, nevertheless, shared conserved antigenicity that allowed effective immunorecognition by DsMAV-Thailand but not by SABU, consistent with the neutralization efficacy of the antivenoms. A specific, appropriate antivenom is needed in Indonesia to treat Russell's viper envenomation.(AU)


Assuntos
Animais , Antivenenos , Cromatografia Líquida de Alta Pressão , Daboia , Proteômica , Eletroforese em Gel de Poliacrilamida , Fosfolipases A2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...