RESUMO
Amebiasis is an intestinal infection caused by Entamoeba histolytica. Amebic liver abscess (ALA) is the most common extraintestinal complication of amebiasis. In animal models of ALA, neutrophils have been shown to be the first cells to come into contact with Entamoeba histolytica during the initial phase of ALA. One of the multiple mechanisms by which neutrophils exhibit amebicidal activity is through reactive oxygen species (ROS) and the enzyme NADPH oxidase (NOX2), which generates and transports electrons to subsequently reduce molecular oxygen into superoxide anion. Previous reports have shown that ROS release in the susceptible animal species (hamster) is mainly stimulated by the pathogen, in turn provoking such an exacerbated inflammatory reaction that it is unable to be controlled and results in the death of the animal model. Apocynin is a natural inhibitor of NADPH oxidase. No information is available on the role of NOX in the evolution of ALA in the hamster, a susceptible model. Our study showed that administration of a selective NADPH oxidase 2 (NOX2) enzyme inhibitor significantly decreases the percentage of ALA, the size of inflammatory foci, the number of neutrophils, and NOX activity indicated by the reduction in superoxide anion (O2-) production. Moreover, in vitro, the apocynin damages amoebae. Our results showed that apocynin administration induces a decrease in the activity of NOX that could favor a decrease in ALA progression.
RESUMO
Oxidative stress is one of the main mechanisms involved in the pathophysiology of arterial hypertension, inducing direct effects on the vasculature, and contributing to endothelial dysfunction and consequent impairment of vascular relaxation. Despite a large number of pharmacological treatments available, intolerable side effects are reported, which makes the use of natural antioxidants a promising and complementary alternative for the prevention and treatment of hypertension. From this perspective, the current review aims to investigate and characterize the main antioxidants of natural origin for the treatment of hypertension. Antioxidants act in the inhibition or extinction of chemical reactions involving free radicals and consequently reduce the occurrence of damage caused by these cellular components. The main natural antioxidants for treating hypertension include caffeic acid, ferulic acid, curcumin, apocynin, quercetin, lipoic acid, and lycopene. The effects associated with these antioxidants, which make them therapeutic targets for decreasing high blood pressure, include increased activation of antioxidant enzymes, stimulation of nitric oxide bioavailability, and reduction in angiotensin-converting enzyme activity, arginase, and NADPH oxidase, whose effects contribute to reducing oxidative stress, improving endothelial function, and preventing cardiovascular dysfunctions. Thus, several products with antioxidant properties that are available in nature and their application in the treatment of hypertension are described in the literature. The therapeutic effects of these products seem to regulate several parameters related to arterial hypertension, in addition to combating and preventing the deleterious effects related to the disease.
Assuntos
Antioxidantes , Hipertensão , Humanos , Antioxidantes/efeitos adversos , Anti-Hipertensivos/efeitos adversos , Hipertensão/diagnóstico , Hipertensão/tratamento farmacológico , Estresse Oxidativo/fisiologia , Radicais Livres/farmacologia , Radicais Livres/uso terapêuticoRESUMO
Reactive oxygen species (ROS) derived from NOX enzymes activity play an important role in the development of cardiovascular diseases. Compounds able to decrease oxidative stress damage are potential candidates as drugs and/or supplements for hypertension treatment. Here, we aimed to compare in vitro ROS scavenging potency, effective NOX inhibition and effects on vascular reactivity of apocynin to another phenolic compound, protocatechuic acid, in vascular cells from spontaneously hypertensive rat (SHR), where redox signaling is altered and contributes to the development and/or maintenance of hypertension. We evaluated the in vitro antioxidant capacity and free radical scavenging capacity of both phenolic compounds. Moreover, we investigated the effect of both compounds on lipid peroxidation, lucigenin chemiluminescence, nitric oxide (NOâ¢) levels and ROS concentration in vascular cells of SHR or human umbilical vein endothelial cell (HUVEC). Apocynin and protocatechuic acid presented antioxidant capacity and ability as free radical scavengers, decreased thiobarbituric acid reactive substances (TBARS) in aortic cells from SHR, and increased NO⢠concentration in isolated HUVEC. Both compounds were able to reduce lucigenin chemiluminescence and increased the potency of acetylcholine in aorta of SHR. However, in SHR aortas, only apocynin diminished the contraction induced by phenylephrine. In conclusion, these results strongly reinforce the potential application of substances such as apocynin and protocatechuic acid that combine abilities as scavenging and/or prevention of ROS generation, establishment of NO bioactivity and modulation of vascular reactivity. Due to its phytochemical origin and low toxicity, its potential therapeutic use in vascular diseases should be considered.
RESUMO
In response to diabetes mellitus, skeletal muscle is negatively affected, as is evident by reduced contractile force production, increased muscle fatigability, and increased levels of oxidative stress biomarkers. Apocynin is a widely used NADPH oxidase inhibitor, with antioxidant and anti-inflammatory potential. It has been effective for amelioration of a variety of disorders, including diabetic complications. Therefore, the present study was conducted to evaluate the effects and action mechanisms of apocynin in slow- and fast-twitch diabetic rat muscles. Male Wistar rats were rendered diabetic by applying intraperitoneally a single dose of streptozotocin (45 mg/kg). Apocynin treatment (3 mg/kg/day) was administered over 8 weeks. Fasting blood glucose (FBG), insulin tolerance and body weight gain were measured. Both slow (soleus) and fast (extensor digitorum longus, EDL) skeletal muscles were used for muscle function evaluation, oxidative stress markers, and evaluating gene expression using qRT-PCR. Treatment with apocynin significantly reduced FBG levels and enhanced insulin tolerance. Apocynin also prevented muscle contractile dysfunction in EDL muscle but had no significant effect on this parameter in soleus muscles. However, in both types of muscles, apocynin mitigated the oxidative stress by decreasing ROS levels and increasing total glutathione levels and redox state. Concomitantly, apocynin also statistically enhanced Nrf-2 and GLU4 mRNA expression and downregulated NOX2, NOX4, and NF-κB mRNA. Collectively, apocynin exhibits properties myoprotective in diabetic animals. These findings indicate that apocynin predominantly acts as an antioxidant in fast-twitch and slow-twitch muscles but has differential impact on contractile function.
RESUMO
CONTEXT: The chronic exposure to Cadmium (Cd) constitute an risk to develop hypertension and cardiovascular diseases associated with the increase of oxidative stress. OBJECTIVE: In this study, we investigate the role of metabolic changes produced by exposure to Cd on the endothelial dysfunction via oxidative stress. METHODS: Male Wistar rats were exposed to Cd (32.5-ppm) for 2-months. The zoometry and blood pressure were evaluated, also glucose and lipids profiles in serum and vascular reactivity evaluated in isolated aorta rings. RESULTS: Rats exposed to Cd showed an increase of blood pressure and biochemical parameters similar to metabolic syndrome. Additionally, rats exposed to Cd showed a reduced relaxation in aortic rings, which was reversed after the addition of SOD and apocynin an inhibitor of NADPH. CONCLUSION: The Cd-exposition induced hypertension and endothelial injury by that modifying the vascular relaxation and develop oxidative stress via NADPH oxidase, superoxide and loss nitric oxide bioavailability.
Assuntos
Hipertensão , Superóxidos , Animais , Aorta/metabolismo , Cádmio/toxicidade , Endotélio Vascular/metabolismo , Hipertensão/metabolismo , Masculino , Óxido Nítrico/metabolismo , Estresse Oxidativo , Ratos , Ratos Wistar , Fatores de Risco , Superóxidos/metabolismoRESUMO
Diabetes mellitus (DM) constitutes one of the public health problems today. It is characterized by hyperglycemia through a defect in the ß-cells function and/or decreased insulin sensitivity. Apocynin has been tasted acting directly as an NADPH oxidase inhibitor and reactive oxygen species (ROS) scavenger, exhibiting beneficial effects against diabetic complications. Hence, the present study's goal was to dissect the possible mechanisms by which apocynin could mediate its cardioprotective effect against DM-induced oxidative stress. Male Wistar rats were assigned into 4 groups: Control (C), control + apocynin (C+A), diabetes (D), diabetes + apocynin (D+A). DM was induced with streptozotocin. Apocynin treatment (3 mg/kg/day) was applied for 5 weeks. Treatment significantly decreased blood glucose levels and insulin resistance in diabetic rats. In cardiac tissue, ROS levels were higher, and catalase enzyme activity was reduced in the D group compared to the C group; the apocynin treatment significantly attenuated these responses. In heart mitochondria, Complexes I and II of the electron transport chain (ETC) were significantly enhanced in the D+A group. Total glutathione, the level of reduced glutathione (GSH) and the GSH/ oxidized glutathione (GSSG) ratio were increased in the D+A group. Superoxide dismutase (SOD) and the glutathione peroxidase (GSH-Px) activities were without change. Apocynin enhances glucose uptake and insulin sensitivity, preserving the antioxidant defense and mitochondrial function.
RESUMO
Trichilia ramalhoi Rizz. is a species from Meliaceae family and its chemical composition and biological activities are still unknown. This work describes the chemical composition and biological activities of the organic extracts of this plant. Therefore, methanolic extract of stem barks and leaves were prepared and submitted to chromatographic procedures. Besides, T. ramalhoi extracts biological evaluation showed antioxidant, antinociceptive and, anti-inflammatory activities. Usual chromatographic procedures of the active extracts permitted to isolate methyl 5-O-caffeoylquinate, apocynin C, cinchonains Ia and Ib, besides ß-sitosterol, stigmasterol and lupeol. The identification of the isolates was based on 13C and 1H NMR (1 D and 2 D) spectroscopic data and mass spectrometry. Although the flavalignans cinchonains Ia and Ib were previously isolated from T. catigua, this is the first occurrence of apocynin C in the Meliaceae family.
Assuntos
Antioxidantes , Meliaceae , Analgésicos/farmacologia , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Extratos Vegetais/farmacologiaRESUMO
Increased reactive oxygen species (ROS) production leads to tissue damage observed in sepsis and lipopolysaccharide (LPS)-exposed animals. LPS stimulates cytokines releasing, including tumor necrosis factor alpha (TNF-α), that is important to ROS production. Platelets, considered inflammatory cells, generate ROS when exposed to LPS in vivo, but not when they are incubated in vitro with this compound. Therefore, we investigated the role of TNF-α on the increased intraplatelet ROS levels after LPS treatment. Mice were injected with LPS (1 mg/kg) or TNF-α (10 ng/kg), and blood was collected to prepare the washed platelets. Animals were treated with infliximab (anti-TNF-α antibody), R-7050 (non-selective TNF-α receptor antagonist) or apocynin (NADPH oxidase inhibitor). At 48 h after LPS or TNF-α injection, the ROS levels in ADP (25 µM)-activated platelets were evaluated by flow cytometry. Our data showed that injection of mice with LPS increased by 4-fold the ROS production (p < 0.05), which was significantly reduced by the treatments with infliximab, R-7050 or apocynin. Injection of mice with TNF-α markedly elevated the ROS formation in platelets (p < 0.05) that was reduced by infliximab, R-7050 or apocynin treatments. In separate experiments, platelets from saline-injected mice were incubated with TNF-α (30 to 3000 pg/mL) in absence or presence of infliximab, R-7050, apocynin or GKT137831 (NOX1/NOX4 inhibitor) before ROS measurements. TNF-α in vitro markedly increased the ROS levels, an effect significantly reduced by all treatments. Therefore, platelets are involved in the oxidative stress induced by LPS through TNF-α action, and NADPH oxidase takes part in this effect.
Assuntos
Plaquetas/metabolismo , Lipopolissacarídeos/metabolismo , Fator de Necrose Tumoral alfa/uso terapêutico , Animais , Humanos , Masculino , Camundongos , Espécies Reativas de Oxigênio , Fator de Necrose Tumoral alfa/farmacologiaRESUMO
Reactive oxygen species (ROS) are produced by NADPH oxidase (NOX), an enzyme that reduces oxygen by using NADPH as a substrate. Apocynin (APO) is a catechol that is used as a NOX inhibitor, and N-acetyl-cysteine ââ(NAC) can reduce intracellular ROS levels. In this work, the effect of APO and NAC on osteoclast formation were evaluated. APO and NAC significantly decreased the number of tartrate-resistant acid phosphatase (TRAP)-positive cells and the osteoclast area. We analyzed bone-marrow derived monocyte-macrophages (BMMs) that differentiated into osteoclasts after RANKL stimulation. Stimulation was associated with either APO or NAC treatment and osteoclastogenesis marker expression, including NFATc1, MMP-9, and DC-STAMP, was evaluated. APO decreased the intracellular calcium concentration by calcium channels other than ITPR1 and TPC2. On the other hand, APO reduced Tnfrsf11a (RANK) expression and did not alter Fam102a (EEIG1) expression. Therefore, our results demonstrate that APO inhibits osteoclastogenesis by the RANK-RANKL-related signaling pathways, decreases osteoclast markers, and reduces intracellular calcium concentration.
Assuntos
Acetofenonas/farmacologia , Osteoclastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Acetofenonas/metabolismo , Acetilcisteína/metabolismo , Acetilcisteína/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Feminino , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Metaloproteinase 9 da Matriz , Proteínas de Membrana , Camundongos , Camundongos Endogâmicos C57BL , NADPH Oxidases/antagonistas & inibidores , NADPH Oxidases/metabolismo , Fatores de Transcrição NFATC , Proteínas do Tecido Nervoso , Osteoclastos/metabolismo , Osteogênese/fisiologia , Espécies Reativas de Oxigênio , Transdução de Sinais/efeitos dos fármacos , Fosfatase Ácida Resistente a Tartarato/metabolismoRESUMO
Chronic treatment with apocynin reduces blood pressure and prevents endothelial dysfunction development in spontaneously hypertensive rats (SHR). Mechanisms underlying apocynin effects on SHR remain unclear. Compared to diapocynin and other drugs, apocynin is a weak antioxidant, which suggests that its effects on SHR are associated with other mechanisms besides its antioxidant capacity. Angiotensin (Ang) II regulates NOX, the major reactive oxygen species (ROS) source in the cardiovascular system. We hypothesized that, by inhibiting NOX, apocynin could alter Ang II pressor and vasoconstrictor effects on SHR. We analyzed how Ang II affects blood pressure and vascular reactivity in aorta and mesenteric resistance arteries and evaluated plasma antioxidant capacity, NOX isoforms and subunits, NOS isoforms, AT1 and AT2 receptors expression, ROS production, and NOS activity in apocynin-treated SHR blood vessels (30â¯mg/Kg/day, p.o.). In SHR, apocynin reduced Ang II pressor effects, increased plasmatic antioxidant capacity, and blunted aortic and mesenteric NOX-dependent oxidants production and NOX2 and p47phox overexpression, which demonstrated that apocynin inhibits NOX in SHR blood vessels. Moreover, apocynin raised plasmatic and aortic nitrate/nitrite levels, maintained NOS activity and eNOS, p-eNOS, nNOS, iNOS, sGC-α, and sGC-ß expression in mesenteric bed, diminished AT1 expression in aorta and mesenteric bed, and elevated AT2 expression in SHR aorta. Apocynin increased Ang II vasoconstriction endothelial modulation in SHR resistance arteries. All these results showed that in vivo treatment with apocynin alters several mechanisms that reduce Ang II pressor and vasoconstrictor effects on SHR. Such apocynin effects involve other mechanisms besides vascular ROS modulation, which improves NO availability in SHR vascular cells. These integrated data could help us to understand the promising apocynin activity as an antihypertensive drug that acts differently from the drugs that are currently being used in the clinical setting.
Assuntos
Acetofenonas/farmacologia , Artérias Mesentéricas/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Resistência Vascular/efeitos dos fármacos , Vasoconstrição/efeitos dos fármacos , Angiotensina II/genética , Angiotensina II/metabolismo , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Células Cultivadas , Masculino , Artérias Mesentéricas/metabolismo , Músculo Liso Vascular/metabolismo , Óxido Nítrico/metabolismo , Oxirredução , Ratos , Ratos Endogâmicos SHR , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Transdução de SinaisRESUMO
Cardiac aging is characterized by alterations in contractility and intracellular calcium ([Ca2+]i) homeostasis. It has been suggested that oxidative stress may be involved in this process. We and others have reported that in cardiomyopathies the NADPH oxidase (NOX)-derived superoxide is increased, with a negative impact on [Ca2+]i and contractility. We tested the hypothesis that in the aged heart, [Ca2+]i handling and contractility are disturbed by NOX-derived superoxide. For this we used adults (≈5 month-old) and aged (20â»24 month-old) rats. Contractility was evaluated in isolated hearts, challenged with isoproterenol. To assess [Ca2+]i, isolated cardiac myocytes were field-stimulated and [Ca2+]i was monitored with fura-2. Cardiac concentration-response to isoproterenol was depressed in aged compared to adults hearts (p < 0.005), but was restored by NOX inhibitors apocynin and VAS2870. In isolated cardiomyocytes, apocynin increased the amplitude of [Ca2+]i in aged myocytes (p < 0.05). Time-50 [Ca2+]i decay was increased in aged myocytes (p < 0.05) and reduced towards normal by NOX inhibition. In addition, we found that myofilaments Ca2+ sensitivity was reduced in aged myocytes (p < 0.05), and was further reduced by apocynin. NOX2 expression along with NADPH oxidase activity was increased in aged hearts. Phospholamban phosphorylation (Ser16/Thr17) after isoproterenol treatment was reduced in aged hearts compared to adults and was restored by apocynin treatment (p < 0.05). In conclusion, ß-adrenergic-induced contractility was depressed in aged hearts, and NOX inhibition restored back to normal. Moreover, altered Ca2+ handling in aged myocytes was also improved by NOX inhibition. These results suggest a NOX-dependent effect in aged myocytes at the level of Ca2+ handling proteins and myofilaments.
Assuntos
Acetofenonas/farmacologia , Agonistas Adrenérgicos beta/farmacologia , Benzoxazóis/farmacologia , Cálcio/metabolismo , Coração/efeitos dos fármacos , Isoproterenol/farmacologia , Contração Miocárdica/efeitos dos fármacos , NADPH Oxidases/antagonistas & inibidores , Triazóis/farmacologia , Envelhecimento/efeitos dos fármacos , Animais , Células Cultivadas , Inibidores Enzimáticos/farmacologia , Feminino , Coração/fisiologia , Masculino , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , NADPH Oxidases/metabolismo , RatosRESUMO
O osteossarcoma (OS) é o tumor maligno primário mais comum do tecido ósseo, caracterizado pela formação de osteócitos anormais. Apesar do avanço nas terapias convencionais (quimioterapia e retirada do tumor), essas não conseguem eliminar totalmente as células tumorais e impedir a progressão da doença. Recentemente, agentes derivados de fontes naturais ganharam considerável atenção por causa de sua segurança, eficácia e disponibilidade imediata. Nesse sentido, a apocinina, inibidor do complexo NADPH-oxidase, vem sendo estudada como agente antitumoral em alguns tipos de câncer como: pâncreas, próstata, pulmão e mama. Apocinina é um pró-fármaco e sua ação parece estar relacionada à sua conversão produzindo a diapocinina, a qual se mostrou mais efetiva do que a apocinina. Portanto, o objetivo desse estudo é avaliar, in vitro, o potencial antitumoral da apocinina e diapocinina em células de osteossarcoma humano. Para isso, foram utilizados osteoblastos humanos normais (HOb) e osteossarcoma humano imortalizadas (SaOS-2) tratados ou não com apocinina e diapocinina em diversas concentrações. Foram realizados os ensaios de viabilidade celular, alterações morfológicas, apoptose celular, produção de espécies reativas de oxigênio (EROs), formação de colônias, migração, invasão e expressão do fator indutor de hipóxia-1alfa (HIF-1). Também foram conduzidos ensaios para verificar a atividade de metaloproteinase de matriz (MMP) 2 e 9. Os resultados em SaOS-2 mostraram que o tratamento com apocinina nas concentrações de 1,5 e 3 mM; e diapocinina nas concentrações de 0,75 e 1,5 mM reduziram a viabilidade; aumentaram o número de células em apoptose e diminuíram a produção de EROs; sem causar danos às células HOb. Além disso, essas mesmas concentrações inibiram a migração e invasão celular; diminuíram a expressão de HIF-1; e reduziram a atividade de MMP-2 em SaOS-2. Considerando os resultados obtidos, concluímos que a apocinina e diapocinina podem atuar como possíveis moduladores de células tumorais, sendo que a diapocinina mostrou ser mais efetiva nos parâmetros testados.(AU)
Osteosarcoma (OS) is the most common primary malignant tumor of bone tissue, characterized by the formation of abnormal osteocytes. Despite advances in conventional therapies (chemotherapy and surgery) they cannot completely eliminate tumor cells and prevent the progression of the disease. Recently, agents derived from natural sources have achieved considerable attention because of their safety, efficacy and immediate availability of therapies. In this way, apocynin, an inhibitor of the NADPH-oxidase complex, has been studied as an antitumor agent in some types of cancer, such as pancreas, prostate, lung and breast. Apocynin is a prodrug and its action indicate to be related to its conversion to diapocynin, which has been shown to be more efficient than apocynin itself. Thus, the aim of this study is to evaluate, in vitro, the antitumor potential of apocynin and diapocynin in human osteosarcoma cells. For this, normal human osteoblasts (HOb) and immortalized human osteosarcoma cells (SaOS-2) were treated or no-treated with apocynin and diapocynin in various concentrations. Cell viability assay, morphological alterations, cellular apoptosis, reactive oxygen species (ROS) production, colony formation, migration, invasion and expression of hypoxia-inducible factor-1 alpha (HIF-1) were performed. We also performed assays to verify the activity of matrix metalloproteinase (MMP) 2 and 9. The results in SaOS-2 showed that treatment with apocynin at concentrations of 1,5 e 3 mM; and diapocynin at concentrations of 0,75 e 1,5 mM reduced cell viability; increased the number of cells in apoptosis and decreased the production of ROS; without damaging HOb cells. Moreover, these same concentrations inhibited cell migration and invasion; decreased HIF-1 expression; and reduced MMP 2 activity in SaOS-2. Considering the results, we suggest that apocynin and diapocynin may act as possible modulators of tumor cells, and diapocynin has been shown to be more effective.(AU)
Assuntos
Humanos , Acetofenonas/farmacologia , Antineoplásicos/farmacologia , Compostos de Bifenilo/farmacologia , Osteossarcoma/tratamento farmacológico , Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Metaloproteinase 2 da Matriz/efeitos dos fármacos , Metaloproteinase 9 da Matriz/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Espécies Reativas de Oxigênio/análise , Reprodutibilidade dos Testes , Células Tumorais CultivadasRESUMO
Ethanol consumption is associated with an increased risk of erectile dysfunction (ED), but the molecular mechanisms through which ethanol causes ED remain elusive. Reactive oxygen species are described as mediators of ethanol-induced cell toxicity/damage in distinctive tissues. The enzyme NADPH oxidase is the main source of reactive oxygen species in the endothelium and vascular smooth muscle cells and ethanol is described to increase NADPH oxidase activation and reactive oxygen species generation. This study evaluated the contribution of NADPH oxidase-derived reactive oxygen species to ethanol-induced ED, endothelial dysfunction and production of pro-inflammatory and redox-sensitive proteins in the rat cavernosal smooth muscle (CSM). Male Wistar rats were treated with ethanol (20% v/v) or ethanol plus apocynin (30mg/kg/day; p.o. gavage) for six weeks. Apocynin prevented both the decreased in acetylcholine-induced relaxation and intracavernosal pressure induced by ethanol. Ethanol increased superoxide anion (O2-) generation and catalase activity in CSM, and treatment with apocynin prevented these responses. Similarly, apocynin prevented the ethanol-induced decreased of nitrate/nitrite (NOx), hydrogen peroxide (H2O2) and SOD activity. Treatment with ethanol increased p47phox translocation to the membrane as well as the expression of Nox2, COX-1, catalase, iNOS, ICAM-1 and p65. Apocynin prevented the effects of ethanol on protein expression and p47phox translocation. Finally, treatment with ethanol increased both TNF-α production and neutrophil migration in CSM. The major new finding of this study is that NADPH oxidase-derived reactive oxygen species play a role on chronic ethanol consumption-induced ED and endothelial dysfunction in the rat CSM.
Assuntos
Disfunção Erétil/metabolismo , Etanol/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , NADPH Oxidases/metabolismo , Pênis/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Disfunção Erétil/induzido quimicamente , Disfunção Erétil/fisiopatologia , Masculino , Músculo Liso/metabolismo , Músculo Liso/fisiopatologia , Neutrófilos/citologia , Neutrófilos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ereção Peniana/efeitos dos fármacos , Pênis/efeitos dos fármacos , Pênis/fisiopatologia , Fosforilação/efeitos dos fármacos , Ratos , Ratos WistarRESUMO
Nicotinamide adenine dinucleotide phosphate oxidase (NAD(P)H-oxidase) is a multicomponent enzyme system that generates superoxide anion by one-electron reduction of molecular oxygen and represents the major source of reactive oxygen species (ROS) in the vascular cells. Apocynin has been extensively used as an inhibitor of NADPH oxidase (NOX) in phagocytic cells and as an antioxidant in non-phagocytic cells. In phagocytes cells, due to the presence of myeloperoxidase, apocynin can be the converted to diapocynin, which is supposed to be the active form of this phytochemical. Moreover, apocynin was shown to induce hypotension and vasodilatation in many experimental animal models. However, there are no studies showing the effects of diapocynin on blood pressure or in vascular cells. In this present study, we used chemically synthesized diapocynin and analyzed its antioxidant capacity, effect on blood pressure and vascular reactivity. Moreover, it was evaluated the levels of nitric oxide (NO), ROS and calcium in aortic endothelial cells stimulated by diapocynin. All results were compared to apocynin. We found that diapocynin showed higher antioxidant capacity than apocynin. Apocynin and diapocynin, promoted hypotensive effects without changing the heart rate, however the effects of diapocynin were reversed faster than the effects of apocynin, which was long lasting. Diapocynin and apocynin induced endothelium dependent and independent vasodilatation, but diapocynin was less potent than apocynin regarding the capacity of induction of vasodilatation in mesenteric resistance arteries and aorta from Wistar rats. The relaxation induced by apocynin or diapocynin involves sGC and potassium channels in vascular smooth muscle cells and NOS participates of relaxation induced by apocynin or diapocynin in intact mesenteric rings. Apocynin and diapocynin increased NO and decreased ROS levels in endothelial cells, however diapocynin did not alter calcium levels in these cells. In conclusion, these results demonstrated that, similarly to apocynin, diapocynin also induces hypotensive and vasodilator effects in rats and vascular endothelium improves the diapocynin vasodilator effects by increases NO bioavailability.
Assuntos
Acetofenonas/administração & dosagem , Compostos de Bifenilo/administração & dosagem , Hipertensão/tratamento farmacológico , NADPH Oxidases/metabolismo , Vasodilatação/efeitos dos fármacos , Vasodilatadores/administração & dosagem , Animais , Antioxidantes/administração & dosagem , Aorta/efeitos dos fármacos , Aorta/metabolismo , Aorta/fisiopatologia , Pressão Sanguínea/efeitos dos fármacos , Cálcio/metabolismo , Células Endoteliais/efeitos dos fármacos , Humanos , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Óxido Nítrico/metabolismo , Oxigênio/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Superóxidos/metabolismoRESUMO
Chronic ethanol consumption is a risk factor for cardiovascular diseases. We studied whether NAD(P)H oxidase-derived reactive oxygen species (ROS) play a role in ethanol-induced hypertension, vascular dysfunction, and protein expression in resistance arteries. Male Wistar rats were treated with ethanol (20 % v/v) for 6 weeks. Ethanol treatment increased blood pressure and decreased acetylcholine-induced relaxation in the rat mesenteric arterial bed (MAB). These responses were attenuated by apocynin (30 mg/kg/day; p.o. gavage). Ethanol consumption increased superoxide anion (O2-) generation and decreased nitrate/nitrite (NO x ) concentration in the rat MAB and apocynin prevented these responses. Conversely, ethanol did not affect the concentration of hydrogen peroxide (H2O2) and reduced glutathione (GSH) or the activity of superoxide dismutase (SOD) and catalase (CAT) in the rat MAB. Ethanol increased interleukin (IL)-10 levels in the rat MAB but did not affect the levels of tumor necrosis factor (TNF)-α, IL-6, or IL-1ß. Ethanol increased the expression of Nox2 and the phosphorylation of SAPK/JNK, but reduced eNOS expression in the rat MAB. Apocynin prevented these responses. However, ethanol treatment did not affect the expression of Nox1, Nox4, p38MAPK, ERK1/2, or SAPK/JNK in the rat MAB. Ethanol increased plasma levels of TBARS, TNF-α, IL-6, IL-1ß, and IL-10, whereas it decreased NO x levels. The major finding of our study is that NAD(P)H oxidase-derived ROS play a role on ethanol-induced hypertension and endothelial dysfunction in resistance arteries. Moreover, ethanol consumption affects the expression and phosphorylation of proteins that regulate vascular function and NAD(P)H oxidase-derived ROS play a role in such responses.
Assuntos
Modelos Animais de Doenças , Endotélio Vascular/metabolismo , Hipertensão/metabolismo , Artérias Mesentéricas/metabolismo , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Acetofenonas/uso terapêutico , Alcoolismo/fisiopatologia , Animais , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/imunologia , Doenças Cardiovasculares/prevenção & controle , Citocinas/sangue , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/imunologia , Endotélio Vascular/fisiopatologia , Inibidores Enzimáticos/uso terapêutico , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Hipertensão/etiologia , Hipertensão/fisiopatologia , Hipertensão/prevenção & controle , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Artérias Mesentéricas/efeitos dos fármacos , Artérias Mesentéricas/imunologia , Artérias Mesentéricas/fisiopatologia , NADPH Oxidase 2 , NADPH Oxidases/antagonistas & inibidores , NADPH Oxidases/genética , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Distribuição Aleatória , Ratos Wistar , Espécies Reativas de Oxigênio/antagonistas & inibidores , Resistência Vascular/efeitos dos fármacosRESUMO
Human adrenomedullin (AM) is a 52-amino acid peptide involved in cardiovascular control. AM has two specific receptors formed by the calcitonin-receptor-like receptor (CRLR) and receptor activity-modifying protein (RAMP) 2 or 3, known as AM1 and AM2 receptors, respectively. In addition, AM has appreciable affinity for the calcitonin gene-1 related peptide receptor (CGRP1), composed of CRLR/RAMP1. In brain, AM and their receptors are expressed in several localized areas, including the cerebellum. AM has been reported as an antioxidant. Little is known about the role of AM in the regulation of cerebellar reactive oxygen species (ROS) metabolism. We assessed the effect of AM on three antioxidant enzymes activity: catalase (CAT), glutathione peroxidase (GPx) and superoxide dismutase (SOD) and on thiobarbituric acid reactive substances (TBARS) production in rat cerebellar vermis, as well the receptor subtypes involved in AM actions. Additionally, we evaluated the role of angiotensin II (ANG II), protein kinase A (PKA) activity, and protein kinase C/nicotinamide adenine dinucleotide phosphate oxidase (PKC/NAD(P)H) (oxidase) pathway. Sprague-Dawley rats were sacrificed by decapitation and cerebellar vermis was microdissected under stereomicroscopic control. CAT, GPx, SOD activity and TBARS production was determined spectrophotometrically. Our findings demonstrated that in cerebellar vermis, AM decreased and ANG II increased CAT, GPx and SOD activity and TBARS production. Likewise, AM antagonized ANG II-induced increase antioxidant enzyme activity. AM(22-50) and CGRP(8-37) blunted AM-induced decrease of antioxidant enzymes activity and TBARS production indicating that these actions are mediated through AM and CGRP1 receptors. Further, PKA inhibitor (PKAi) blunted AM action and apocynin and chelerythrine reverted ANG II action, suggesting that AM antioxidant action is mediated through stimulation of PKA activity, while ANG II-induced stimulation through PKC/NAD(P)H oxidase pathway. Our results support the role of AM in the regulation of cerebellar antioxidant enzymes activity and suggest a physiological role for AM in cerebellum.
Assuntos
Adrenomedulina/metabolismo , Angiotensina II/metabolismo , Antioxidantes/metabolismo , Vermis Cerebelar/enzimologia , Animais , Catalase/metabolismo , Vermis Cerebelar/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Glutationa Peroxidase/metabolismo , Masculino , NADP/metabolismo , Proteína Quinase C/metabolismo , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismoRESUMO
In this study, we developed and validated a fast, specific, sensitive, precise and stability-indicating high performance liquid chromatography (HPLC) method to determine the drug apocynin in bovine serum albumin (BSA) nanoparticles. Chromatographic analyses were performed on an RP C18 column and using a photodiode array detector at a wavelength of 276 nm. Mobile phase consisted of a mixture of acetonitrile and 1% acetic acid (60:40, v/v), and it was eluted isocratically at a flow rate of 0.8 mL/min. The retention time of apocynin chromatographic peak was 1.65 min. The method was linear, precise, accurate and specific in the range of 5-100 µg/mL. The intra- and inter-day precisions presented relative standard deviation (RSD) values lower than 2%. The method was robust regarding changes in mobile phase proportion, but not for flow rate. Limits of detection and quantitation were 78 ng/mL and 238 ng/mL, respectively. Apocynin was exposed to acid and alkali hydrolysis, oxidation and visible light. The drug suffered mild degradation under acid and oxidation conditions and great degradation under alkali conditions. Light exposure did not degrade the drug. The method was successfully applied to determine the encapsulation efficiency of apocynin in BSA nanoparticles.
RESUMO
This study has evaluated how the vascular endothelium of hypertensive rats chronically treated with apocynin affects acetylcholine (ACh), sodium nitroprusside (SNP), and phenylephrine (PE) action on the nitric oxide (NO) signal transduction pathway in endothelial (EC) and vascular smooth muscle cells. Treatment with apocynin significantly reduced the mean arterial pressure in spontaneously hypertensive rats (SHR). In addition, apocynin improved the impaired ACh hypotensive effect on SHR. Although systemic oxidative stress was high in SHR, SHR treated with apocynin and normotensive rats presented similar systemic oxidative stress levels. Endothelium significantly blunted PE contractions in intact aortas of treated SHR. The ACh effect was impaired in resistance arteries and aortas of SHR, but this same effect was improved in treated SHR. The SNP potency was higher in intact resistance arteries of treated SHR than in intact resistance arteries of untreated SHR. NO and calcium concentrations increased, whereas reactive oxygen species levels decreased in EC of treated SHR. Aortas of untreated and treated SHR did not differ in terms of sGC alpha or beta units expression. Aorta of treated SHR expressed higher eNOS levels as compared to aorta of untreated SHR. The study groups did not differ with respect to NOX1, NOXO1, or NOX4 expression. However, treatment with apocynin normalized overexpression of NOX2 and its subunit p47phox in aortas of SHR. Based on all the results presented in this study, we suggest apocynin increases NO biovailability by different mechanisms, restoring the proper function of vascular endothelium in SHR.
Assuntos
Acetofenonas/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Hipertensão/tratamento farmacológico , Óxido Nítrico/metabolismo , Acetilcolina/farmacologia , Animais , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/metabolismo , Cálcio/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Hipertensão/fisiopatologia , Masculino , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Nitroprussiato/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Fenilefrina/farmacologia , Ratos , Ratos Endogâmicos SHR , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismoRESUMO
4-Hydroxy-3-methoxy-acetophenone (apocynin) is a naturally occurring methoxy-substitute catechol that is isolated from the roots of Apocynin cannabinum (Canadian hemp) and Picrorhiza kurroa (Scrophulariaceae). It has been previously shown to have antioxidant and neuroprotective properties in several models of neurodegenerative disease, including cerebral ischemia. The present study investigates the effects of apocynin on transient global cerebral ischemia (TGCI)-induced retrograde memory deficits in rats. The protective effects of apocynin on neurodegeneration and the glial response to TGCI are also evaluated. Rats received a single intraperitoneal injection of apocynin (5 mg/kg) 30 min before TGCI and were tested 7, 14, and 21 days later in the eight-arm aversive radial maze (AvRM). After behavioral testing, the hippocampi were removed for histological evaluation. The present results confirm that TGCI causes memory impairment in the AvRM and that apocynin prevents these memory deficits and attenuates hippocampal neuronal death in a sustained way. Apocynin also decreases OX-42 and glial fibrillary acidic protein immunoreactivity induced by TGCI. These findings support the potential role of apocynin in preventing neurodegeneration and cognitive impairments following TGCI in rats. The long-term protective effects of apocynin may involve inhibition of the glial response.
Assuntos
Acetofenonas/uso terapêutico , Hipocampo/metabolismo , Ataque Isquêmico Transitório/metabolismo , Transtornos da Memória/metabolismo , Neuroglia/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Acetofenonas/farmacologia , Animais , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Hipocampo/efeitos dos fármacos , Ataque Isquêmico Transitório/tratamento farmacológico , Ataque Isquêmico Transitório/psicologia , Masculino , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/psicologia , Neuroglia/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Ratos , Ratos WistarRESUMO
Background: NADPH oxidase is a source of reactive oxygen species that may contribute to insulin resistance (IR). Aim: To assess the effect of a single oral dose of vanillin (a putative inhibitor of the enzyme) on IR in humans. Material and Methods: Using a crossover, random, double-blind design, eight lean and 10 obese males ingested 600 mg of vanillin or placebo followed by the ingestion of 75g of glucose. Serum/plasma glucose, free-fatty acids, insulin, glutathione, C reactive protein concentrations and red blood cell glutathione concentration were determined. Insulin resistance was estimated by the Matsuda index. Results: Under fasting conditions, obese individuals had higher glucose and insulin and lower red blood cell glutathione levels than their lean counterparts (p < 0.01). Serum free-fatty acids, total and oxidized plasma glutathione concentrations were similar in both groups. After glucose ingestion, obese individuals had a lower red blood cell total glutathione concentration and increased plasma oxidized glutathione concentration than their lean counterparts (p < 0.05). In addition, obese participants had a higher level of IR (p < 0.001) and impaired serum free-fatty acid suppression (p < 0.001) than their lean counterparts. Ingestion of vanillin did not modify any of these variables when compared with placebo in obese individuals. In lean volunteers a reduction in Matsuda index was detected when vanillin was administered, compared to placebo (4.3 +/- 0.6 and 3.6 +/- 0.6 respectively; p < 0.05). Conclusions: IR was ameliorated after vanillin ingestion among lean but not obese participants.