Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.574
Filtrar
1.
Cell Mol Life Sci ; 81(1): 285, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38969941

RESUMO

Volume regulation is essential for cell homeostasis and physiological function. Amongst the sensory molecules that have been associated with volume regulation is the transient receptor potential vanilloid 4 (TRPV4), which is a non-selective cation channel that in conjunction with aquaporins, typically controls regulatory volume decrease (RVD). Here we show that the interaction between orthologous AQP4 (Aqp4a) and TRPV4 (Trpv4) is important for regulatory volume increase (RVI) in post-activated marine fish spermatozoa under high osmotic stress. Based upon electrophysiological, volumetric, and in vivo and ex vivo functional experiments using the pharmacological and immunological inhibition of Aqp4a and Trpv4 our model suggests that upon ejaculation and exposure to the hypertonic seawater, spermatozoon shrinkage is initially mediated by water efflux through Aqp1aa in the flagellar tail. The shrinkage results in an increase in intracellular Ca2+ concentration, and the activation of sperm motility and a Na+/K+/2Cl- (NKCC1) cotransporter. The activity of NKCC1 is required for the initiation of cell swelling, which secondarily activates the Aqp4a-Trpv4 complex to facilitate the influx of water via Aqp4a-M43 and Ca2+ via Trpv4 and L-type channels for the mediation of RVI. The inhibitory experiments show that blocking of each of these events prevents either shrinkage or RVI. Our data thus reveal that post-activated marine fish spermatozoa are capable of initiating RVI under a high hypertonic stress, which is essential for the maintenance of sperm motility.


Assuntos
Tamanho Celular , Pressão Osmótica , Motilidade dos Espermatozoides , Espermatozoides , Canais de Cátion TRPV , Animais , Masculino , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/genética , Espermatozoides/metabolismo , Motilidade dos Espermatozoides/fisiologia , Aquaporina 4/metabolismo , Aquaporina 4/genética , Cálcio/metabolismo , Peixes/metabolismo , Peixes/fisiologia , Natação , Membro 2 da Família 12 de Carreador de Soluto/metabolismo , Membro 2 da Família 12 de Carreador de Soluto/genética
2.
Neurol Sci ; 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38969961

RESUMO

BACKGROUND: Neuromyelitis Optica Spectrum Disorder (NMOSD) is an autoimmune demyelinating disease characterized by recurrent myelitis and optic neuritis. It is associated with high rates of relapse and disability. The main treatment strategies for acute attacks include intravenous methylprednisolone pulse (IVMP) treatment and rescue treatment with plasma exchange (PLEX). Recently, the blockade of neonatal Fc receptor (FcRn)-IgG interaction has gained momentum as a therapeutic strategy. Efgartigimod, the first approved FcRn inhibitor for treating generalized myasthenia gravis, has shown impressive safety, efficacy, and tolerability, and is being regarded as "PLEX in a bottle". CASE DESCRIPTION: We report a 65-year-old female patient who was diagnosed with anti-AQP4 antibody positive NMOSD. Add-on treatment with efgartigimod to IVMP and intravenous immunoglobulin (IVIG) at the second acute relapse showed favorable results. CONCLUSION: This case suggests that efgartigimod is a potentially effective add-on therapy in acute attacks of AQP4-IgG-positive NMOSD.

3.
Biochem Biophys Res Commun ; 727: 150320, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38963984

RESUMO

Aquaporin-0 (AQP0) constitutes 50 % of the lens membrane proteome and plays important roles in lens fiber cell adhesion, water permeability, and lens transparency. Previous work has shown that specific proteins, such as calmodulin (CaM), interact with AQP0 to modulate its water permeability; however, these studies often used AQP0 peptides, rather than full-length protein, to probe these interactions. Furthermore, the specific regions of interaction of several known AQP0 interacting partners, i.e. αA and αB-crystallins, and phakinin (CP49) remain unknown. The purpose of this study was to use crosslinking mass spectrometry (XL-MS) to identify interacting proteins with full-length AQP0 in crude lens cortical membrane fractions and to determine the specific protein regions of interaction. Our results demonstrate, for the first time, that the AQP0 N-terminus can engage in protein interactions. Specific regions of interaction are elucidated for several AQP0 interacting partners including phakinin, α-crystallin, connexin-46, and connexin-50. In addition, two new interacting partners, vimentin and connexin-46, were identified.

4.
Mutat Res ; 829: 111868, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38959561

RESUMO

BACKGROUND: Emerging data identifies aquaporin 5 (AQP5) as a vital player in many kinds of cancers. Over expression of AQP5 was associated with increased metastasis and poor prognosis, suggesting that AQP5 may facilitate cancer cell proliferation and migration. Our previous studies also showed that AQP3 and AQP5 were highly expressed in triple-negative breast cancer (TNBC) and the expression of AQP3 and AQP5 in TNBC tissue was positive correlated with advanced clinical stage. OBJECTIVE: We aim to investigate the role of AQP5 in TNBC oncogenesis and development. METHODS: MDA-MB-231 cells were transfected with siRNA-AQP5 and AQP5 overexpression vector to establish a differential expression system for AQP5. Cell proliferation and apoptosis of MDA-MB-231 cells were detected by CCK-8 (Cell Counting Kit-8) and FCM (flow cytometry), respectively. Cell migration and invasion abilities were evaluated by wound healing assay and transwell assay. The qRT-PCR and western blot assays were used to study the effect of AQP5 expression level on the expression of epithelial-to-mesenchymal transition (EMT) related molecules. The effects of ICG-001, a Wnt/ß-catenin signaling pathway inhibitor, on the invasive and migratory capabilities of overexpressed AQP5 cells and downstream molecules were measured. RESULTS: 1. The expression of AQP5 in the MDA-MB-231 cells was significantly higher than that in the MCF-10A cells. 2. Up-regulation of AQP5 significantly promoted the proliferation, migration and invasion of TNBC cells, while inhibited the cell apoptosis; in addition, up-regulation of AQP5 increased the expression of Bcl-2 and decreased the expression of Caspase-3. However, knockdown of AQP5 presented the adverse effects of AQP5 overexpression. 3. Overexpressed AQP5 induced the overexpression of EMT-related factors, which further promoted the migration and invasion of cells. 4. Overexpression of AQP5 could up-regulate the expression of ß-catenin in the nucleus followed by increasing the expression levels of downstream genes in Wnt/ß-catenin signaling pathway. Moreover, ICG-001, the inhibitor of Wnt/ß-catenin signaling pathway, could significantly attenuate the effect of overexpression of AQP5 on cells, further confirming that AQP5 may promote the proliferation, migration and invasion of TNBC cells by activating Wnt/ß-catenin signaling pathway. CONCLUSIONS: In the TNBC cells, AQP5 modulates the expression levels of EMT-related proteins through activation of Wnt/ß-catenin signaling pathway, thus enhancing the cell proliferation, migration and invasion while inhibiting the cell apoptosis.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38961846

RESUMO

The prostaglandin E2 (PGE2) receptor EP3 has been detected in the thick ascending limb (TAL) and the collecting duct of the kidney, where its actions are proposed to inhibit water reabsorption. However, EP3 is also expressed in other cell types, including vascular endothelial cells. The aim here was to determine the contribution of EP3 in renal water handling in male and female adult mice by phenotyping a novel mouse model with doxycycline-dependent deletion of EP3 throughout the kidney tubule (EP3-/- mice). RNAscope demonstrated that EP3 was highly expressed in the cortical and medullary TAL of adult mice. Compared to controls EP3 mRNA expression was reduced by >80% in whole kidney (RT-qPCR) and non-detectable (RNAscope) in renal tubules of EP3-/- mice. Under basal conditions, there were no significant differences in control and EP3-/- mice of both genders in food and water intake, bodyweight, urinary output or clinical biochemistries. No differences were detectable between genotypes in handling of an acute water load, or in their response to the vasopressin analogue dDAVP. No differences in water handling were observed when PGE2 production was enhanced using a 1% NaCl load. Expression of proteins involved in kidney water handling were not different between genotypes. This study demonstrates that renal tubular EP3 is not essential for body fluid homeostasis in males or females, even when PGE2 levels are high. The mouse model is a novel tool for examining the role of EP3 in kidney function independently of potential developmental abnormalities or systemic effects.

6.
Neurobiol Dis ; 199: 106586, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38950712

RESUMO

OBJECTIVE: The glymphatic system serves as a perivascular pathway that aids in clearing liquid and solute waste from the brain, thereby enhancing neurological function. Disorders in glymphatic drainage contribute to the development of vasogenic edema following cerebral ischemia, although the molecular mechanisms involved remain poorly understood. This study aims to determine whether a deficiency in dystrophin 71 (DP71) leads to aquaporin-4 (AQP4) depolarization, contributing to glymphatic dysfunction in cerebral ischemia and resulting in brain edema. METHODS: A mice model of middle cerebral artery occlusion and reperfusion was used. A fluorescence tracer was injected into the cortex and evaluated glymphatic clearance. To investigate the role of DP71 in maintaining AQP4 polarization, an adeno-associated virus with the astrocyte promoter was used to overexpress Dp71. The expression and distribution of DP71 and AQP4 were analyzed using immunoblotting, immunofluorescence, and co-immunoprecipitation techniques. The behavior ability of mice was evaluated by open field test. Open-access transcriptome sequencing data were used to analyze the functional changes of astrocytes after cerebral ischemia. MG132 was used to inhibit the ubiquitin-proteasome system. The ubiquitination of DP71 was detected by immunoblotting and co-immunoprecipitation. RESULTS: During the vasogenic edema stage following cerebral ischemia, a decline in the efflux of interstitial fluid tracer was observed. DP71 and AQP4 were co-localized and interacted with each other in the perivascular astrocyte endfeet. After cerebral ischemia, there was a notable reduction in DP71 protein expression, accompanied by AQP4 depolarization and proliferation of reactive astrocytes. Increased DP71 expression restored glymphatic drainage and reduced brain edema. AQP4 depolarization, reactive astrocyte proliferation, and the behavior of mice were improved. After cerebral ischemia, DP71 was degraded by ubiquitination, and MG132 inhibited the decrease of DP71 protein level. CONCLUSION: AQP4 depolarization after cerebral ischemia leads to glymphatic clearance disorder and aggravates cerebral edema. DP71 plays a pivotal role in regulating AQP4 polarization and consequently influences glymphatic function. Changes in DP71 expression are associated with the ubiquitin-proteasome system. This study offers a novel perspective on the pathogenesis of brain edema following cerebral ischemia.

7.
Mol Neurobiol ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958889

RESUMO

As a risk factor for Alzheimer's disease (AD), studies have demonstrated that long-term high-fat diet (HFD) could accelerate the deposition of amyloid beta (Aß) in the brain. The glymphatic system plays a critical role in Aß clearance from the brain. However, studies investigating the effects of long-term HFD on glymphatic function have reported paradoxical outcomes, and whether glymphatic dysfunction is involved in the disturbance of Aß clearance in long-term HFD-fed mice has not been determined. In the present study, we injected fluorescently labeled Aß into the hippocampus and found that Aß clearance was decreased in HFD-fed mice. We found that long-term HFD-fed mice had decreased glymphatic function by injecting fluorescent tracers into the cisterna magna and corpus striatum. In long-term HFD-fed mice, aquaporin-4 (AQP4) polarization in the cortex was disrupted, and glymphatic clearance activity was positively correlated with the AQP4 polarization index. In HFD-fed mice, the disturbance of Aß clearance from the hippocampus was exacerbated by TGN-020, a specific inhibitor of AQP4, whereas TGN-073, an enhancer of AQP4, ameliorated it. These findings suggest that long-term HFD disrupts Aß clearance by inhibiting AQP4-mediated glymphatic function. The underlying mechanism may involve the disruption of AQP4 polarization.

8.
Int J Biol Macromol ; : 133692, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38972657

RESUMO

Bombus terrestris are efficient pollinators in forestry and agriculture, with higher cold tolerance than other bees. Yet, their cold tolerance mechanism remains unclear. Aquaporins (AQPs) function as cell membrane proteins facilitating rapid water flow, aiding in osmoregulation. Recent studies highlight the importance of insect AQPs in dehydration and cold stress. Comparative transcriptome analysis of B. terrestris under cold stress revealed up-regulation of four AQPs, indicating their potential role in cold tolerance. Seven AQPs-Eglp1, Eglp2, Eglp3, DRIP, PRIP, Bib, and AQP12L-have been identified in B. terrestris. These are widely expressed in various tissues, particularly in the alimentary canal and Malpighian tubules. Functional analysis of BterAQPs in the Xenopus laevis oocytes expressing system showed distinct water and glycerol selectivity, with BterDrip exhibiting the highest water permeability. Molecular modeling of BterDrip revealed six transmembrane domains, two NPA motifs, and an ar/R constriction region (Phe131, His256, Ser265, and Arg271), likely contributing to its water selectivity. Silencing BterDRIP accelerated mortality in B. terrestris under cold stress, highlighting the crucial role of BterDRIP in their cold tolerance and providing a molecular mechanism for their cold adaptation.

9.
Front Pediatr ; 12: 1376088, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948240

RESUMO

Neuromyelitis optica spectrum disorder (NMOSD) is a rare inflammatory disorder of the central nervous system (CNS) that is known to be associated with other neurologic and organ-specific autoimmune conditions. There has been increasing recognition of the association between NMOSD and systemic autoimmune disease, most commonly systemic lupus erythematosus and Sjogren's syndrome. We report a case of an adolescent presenting with anti-melanoma differentiation-associated protein 5 juvenile dermatomyositis (anti-MDA5 JDM) and NMOSD, exhibiting clinical features of myelitis, polyarthritis, myositis, and skin involvement. Currently, only two other published cases have described NMOSD associated with anti-MDA5 dermatomyositis, both in adults. To the best of our knowledge, this is the first reported case in an adolescent patient.

10.
Sci Rep ; 14(1): 15992, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987432

RESUMO

Aquaporins (AQPs) are a family of water permeable channels expressed on the plasma membrane with AQP5 being the major channel expressed in several human tissues including salivary and lacrimal glands. Anti-AQP5 autoantibodies have been observed in patients with Sjögren's syndrome who are characterised by dryness of both salivary and lacrimal glands, and they have been implicated in the underlying mechanisms of glandular dysfunction. AQP5 is formed by six transmembrane helices linked with three extracellular and two intracellular loops. Develop antibodies against membrane protein extracellular loops can be a challenge due to the difficulty in maintaining these proteins as recombinant in their native form. Therefore, in this work we aimed to generate an efficient stable-transfected cell line overexpressing human AQP5 (CHO-K1/AQP5) to perform primarily cell-based phage display biopanning experiments to develop new potential recombinant antibodies targeting AQP5. We also showed that the new CHO-K1/AQP5 cell line can be used to study molecular mechanisms of AQP5 sub-cellular trafficking making these cells a useful tool for functional studies.


Assuntos
Aquaporina 5 , Cricetulus , Aquaporina 5/metabolismo , Aquaporina 5/genética , Células CHO , Humanos , Animais , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Anticorpos/metabolismo , Biblioteca de Peptídeos
11.
Front Neurol ; 15: 1416493, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38988608

RESUMO

Background: Research on the relationship between mild COVID-19 and the subsequent development of isolated optic neuritis (ON) with antibodies specific to myelin oligodendrocyte glycoprotein (MOG-ON) and aquaporin 4 (AQP4-ON) is limited, particularly case-control studies that directly compare these conditions within the same affected population. Methods: A retrospective analysis of initial MOG-ON and AQP4-ON cases during the COVID-19 peak and subsequent months. Patients were classified as possible COVID-19 related ON (PCRON) or non-COVID-19 related ON (NCRON). The study compared epidemiology, comorbidities, and clinical features between these groups. Results: Patients with MOG-ON tended to develop ON symptoms closer in time to a mild COVID-19 infection compared to those with AQP4-ON (6.87 ± 6.25 weeks vs. 11.06 ± 5.84 weeks; p = 0.038), a significantly higher proportion of patients with MON-ON developing symptoms within 6 weeks after COVID-19 compared to those with AQP4-ON (15/23 [65.2%] vs. 5/17 [29.4%]; p = 0.025). Comparing MOG-ON and AQP4-ON patients, MOG-ON patients were more likely to have a recent infection before ON onset (73.1% vs. 30%; p = 0.007) and had better peak and post-treatment visual acuity (p = 0.01; p < 0.001). In contrast, AQP4-ON patients frequently showed comorbid connective tissue diseases (30.0% vs. 0%, p = 0.004) and antinuclear antibody abnormalities (40.0% vs. 7.7%, p = 0.012). Among MOG-ON patients, PCRON had increased rates of atherosclerotic vascular diseases (AVDs) (53.3% vs. 9.1%, p = 0.036), phospholipid antibody abnormalities (60.0% vs. 18.2%, p = 0.04), and bilateral visual impairment (66.7% vs. 9.1%, p = 0.005). Multivariate analysis pinpointed AVDs (OR = 15.21, p = 0.043) and bilateral involvement (OR = 25.15, p = 0.015) as independent factors related to COVID-19 associated MOG-ON, with both being good discriminators for PCRON (AUC = 0.879). No differences were found between the PCRON and NCRON groups in AQP4-ON patients. Conclusion: Mild COVID-19 is more likely associated with MOG-ON than AQP4-ON. MOG-ON that develops within 6 weeks following a COVID-19 infection may be associated with the COVID-19 infection. AVDs may have a synergistic effect on MOG-ON in patients with COVID-19, which warrants further investigation. COVID-19 related MOG-ON often affects both eyes, and acute visual function damage can be severe, but generally has a good prognosis.

12.
Front Endocrinol (Lausanne) ; 15: 1346082, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38982989

RESUMO

Introduction: Blood pressure (BP) regulation is a complex process involving several factors, among which water-sodium balance holds a prominent place. Arginin-vasopressin (AVP), a key player in water metabolism, has been evoked in hypertension development since the 1980s, but, to date, the matter is still controversial. Hyaluronic acid metabolism has been reported to be involved in renal water management, and AVP appears to increase hyaluronidase activity resulting in decreased high-molecular-weight hyaluronan content in the renal interstitium, facilitating water reabsorption in collecting ducts. Hence, our aim was to evaluate urinary hyaluronidase activity in response to an oral water load in hypertensive patients (HT, n=21) compared to normotensive subjects with (NT+, n=36) and without (NT-, n=29) a family history of hypertension, and to study its association with BP and AVP system activation, expressed by serum copeptin levels and urine Aquaporin 2 (AQP2)/creatinine ratio. Methods: Eighty-six Caucasian men were studied. Water load test consisted in oral administration of 15-20 ml of water/kg body weight over 40-45 min. BP, heart rate, serum copeptin, urine hyaluronidase activity and AQP2 were monitored for 4 hours. Results: In response to water drinking, BP raised in all groups with a peak at 20-40 min. Baseline levels of serum copeptin, urinary hyaluronidase activity and AQP2/creatinine ratio were similar among groups and all decreased after water load, reaching their nadir at 120 min and then gradually recovering to baseline values. Significantly, a blunted reduction in serum copeptin, urinary hyaluronidase activity and AQP2/creatinine ratio was observed in NT+ compared to NT- subjects. A strong positive correlation was also found between urinary hyaluronidase activity and AQP2/creatinine ratio, and, although limited to the NT- group, both parameters were positively associated with systolic BP. Discussion: Our results demonstrate for the first time the existence in men of a close association between urinary hyaluronidase activity and vasopressinergic system and suggest that NT+ subjects have a reduced ability to respond to water loading possibly contributing to the blood volume expansion involved in early-stage hypertension. Considering these data, AVP could play a central role in BP regulation by affecting water metabolism through both hyaluronidase activity and AQP2 channel expression.


Assuntos
Pressão Sanguínea , Hialuronoglucosaminidase , Hipertensão , Humanos , Masculino , Hialuronoglucosaminidase/urina , Hialuronoglucosaminidase/metabolismo , Hipertensão/metabolismo , Hipertensão/urina , Pessoa de Meia-Idade , Adulto , Aquaporina 2/urina , Aquaporina 2/metabolismo , Arginina Vasopressina/metabolismo , Vasopressinas/metabolismo , Glicopeptídeos
13.
J Hazard Mater ; 476: 134905, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38941827

RESUMO

Numerous studies shown that silicon (Si) enhanced plants' resistance to cadmium (Cd). Most studies primarily focused on investigating the impact of Si on Cd accumulation. However, there is a lack of how Si enhanced Cd resistance through regulation of water balance. The study demonstrated that Si had a greater impact on increasing fresh weight compared to dry weight under Cd stress. This effect was mainly attributed to Si enhanced plant relative water content (RWC). Plant water content depends on the dynamic balance of water loss and water uptake. Our findings revealed that Si increased transpiration rate and stomatal conductance, leading to higher water loss. This, in turn, negatively impacted water content. The increased water content caused by Si could ascribe to improve root water uptake. The Si treatment significantly increased root hydraulic conductance (Lpr) by 131 % under Cd stress. This enhancement was attributed to Si upregulation genes expression of NtPIP1;1, NtPIP1;2, NtPIP1;3, and NtPIP2;1. Through meticulously designed scientific experiments, this study showed that Si enhanced AQP activity, leading to increased water content that diluted Cd concentration and ultimately improved plant Cd resistance. These findings offered fresh insights into the role of Si in bolstering plant resistance to Cd.

14.
Int J Mol Sci ; 25(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38891923

RESUMO

The ocular glymphatic system subserves the bidirectional polarized fluid transport in the optic nerve, whereby cerebrospinal fluid from the brain is directed along periarterial spaces towards the eye, and fluid from the retina is directed along perivenous spaces following upon its axonal transport across the glial lamina. Fluid homeostasis and waste removal are vital for retinal function, making the ocular glymphatic fluid pathway a potential route for targeted manipulation to combat blinding ocular diseases such as age-related macular degeneration, diabetic retinopathy, and glaucoma. Several lines of work investigating the bidirectional ocular glymphatic transport with varying methodologies have developed diverging mechanistic models, which has created some confusion about how ocular glymphatic transport should be defined. In this review, we provide a comprehensive summary of the current understanding of the ocular glymphatic system, aiming to address misconceptions and foster a cohesive understanding of the topic.


Assuntos
Sistema Glinfático , Humanos , Sistema Glinfático/fisiologia , Sistema Glinfático/metabolismo , Animais , Nervo Óptico/metabolismo , Nervo Óptico/fisiologia , Retina/metabolismo , Retina/fisiologia , Olho/metabolismo , Glaucoma/metabolismo , Glaucoma/fisiopatologia , Glaucoma/patologia
15.
J Nutr Biochem ; 131: 109676, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38851516

RESUMO

Torreya grandis (T. grandis) oil has been reported to alleviate symptoms of slow transit constipation (STC). However, the impact of sciadonic acid (SA), a distinctive fatty acid found in T. grandis oil, on the pathological progression of STC remains unclear. This study aimed to evaluate the effect of SA on STC and uncover the underlying mechanisms. The STC model was established by feeding Balb/c mice with loperamide. After 2 weeks of intervention, SA significantly improved weight loss and intestinal motility decline induced by STC, along with enhancing plasma indices and reducing colon pathological damage. SA effectively reversed the STC-induced decrease in the 5-HT4/cAMP/PKA/AQP4 signaling pathway genes and expression. Furthermore, 16S rRNA analysis demonstrated that SA mitigated the imbalance of the intestinal microbiota induced by STC, by reducing the ratio of Firmicutes to Bacteroidetes (F/B) and increasing the abundance of beneficial bacteria such as Akkermansia. In conclusion, SA intervention alleviated colonic dysfunction in STC mice. The activation of the SA-mediated 5-HT4/cAMP/PKA/AQP4 signaling pathway may serve as a potential target for STC treatment. These findings suggest that SA holds promise as a treatment option for STC and could potentially be extended to other related gut diseases for further investigation.

16.
J Integr Neurosci ; 23(6): 119, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38940087

RESUMO

OBJECTIVES: The majority of neuromyelitis optica spectrum disorders (NMOSD) patients are seropositive for aquaporin-4 (AQP4)-specific antibodies [also named neuromyelitis optica immunoglobulin G antibodies (NMO-IgG)]. Although NMO-IgG can induce pathological changes in the central nervous system (CNS), the immunological changes in the CNS and peripheral tissue remain largely unknown. We investigated whether NMO-IgG binds to tissue expressing AQP4 and induces immunological changes in the peripheral tissue and CNS. METHODS: C57BL/6 female mice were assigned into an NMOSD or control group. Pathological and immunological changes in peripheral tissue and CNS were measured by immunostaining and flow cytometry, respectively. Motor impairment was measured by open-field test. RESULTS: We found that NMO-IgG did bind to astrocyte- and AQP4-expressing peripheral tissue, but induced glial fibrillary acidic protein and AQP4 loss only in the CNS. NMO-IgG induced the activation of microglia and modulated microglia polarization toward the classical (M1) phenotype, but did not affect innate or adaptive immune cells in the peripheral immune system, such as macrophages, neutrophils, Th17/Th1, or IL-10-producing B cells. In addition, NMOSD mice showed significantly less total distance traveled and higher immobility time in the open field. CONCLUSIONS: We found that injection of human NMO-IgG led to astrocytopathic lesions with microglial activation in the CNS. However, there were no significant pathological or immunological changes in the peripheral tissues.


Assuntos
Aquaporina 4 , Imunoglobulina G , Camundongos Endogâmicos C57BL , Neuromielite Óptica , Animais , Neuromielite Óptica/imunologia , Neuromielite Óptica/patologia , Aquaporina 4/imunologia , Feminino , Humanos , Camundongos , Modelos Animais de Doenças , Microglia/metabolismo , Microglia/imunologia , Microglia/efeitos dos fármacos , Autoanticorpos/imunologia , Astrócitos/imunologia , Astrócitos/metabolismo , Astrócitos/patologia , Proteína Glial Fibrilar Ácida/metabolismo , Proteína Glial Fibrilar Ácida/imunologia , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia
17.
Int J Mol Sci ; 25(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38928258

RESUMO

Aquaporins (AQPs), particularly AQP4, play a crucial role in regulating fluid dynamics in the brain, impacting the development and resolution of edema following traumatic brain injury (TBI). This review examines the alterations in AQP expression and localization post-injury, exploring their effects on brain edema and overall injury outcomes. We discuss the underlying molecular mechanisms regulating AQP expression, highlighting potential therapeutic strategies to modulate AQP function. These insights provide a comprehensive understanding of AQPs in TBI and suggest novel approaches for improving clinical outcomes through targeted interventions.


Assuntos
Aquaporinas , Lesões Encefálicas Traumáticas , Lesões Encefálicas Traumáticas/metabolismo , Humanos , Animais , Aquaporinas/metabolismo , Edema Encefálico/metabolismo , Edema Encefálico/etiologia , Aquaporina 4/metabolismo , Hidrodinâmica , Encéfalo/metabolismo
18.
Int J Mol Sci ; 25(12)2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38928322

RESUMO

Despite continuous medical advancements, traumatic brain injury (TBI) remains a leading cause of death and disability worldwide. Consequently, there is a pursuit for biomarkers that allow non-invasive monitoring of patients after cranial trauma, potentially improving clinical management and reducing complications and mortality. Aquaporins (AQPs), which are crucial for transmembrane water transport, may be significant in this context. This study included 48 patients, with 27 having acute (aSDH) and 21 having chronic subdural hematoma (cSDH). Blood plasma samples were collected from the participants at three intervals: the first sample before surgery, the second at 15 h, and the third at 30 h post-surgery. Plasma concentrations of AQP1, AQP2, AQP4, and AQP9 were determined using the sandwich ELISA technique. CT scans were performed on all patients pre- and post-surgery. Correlations between variables were examined using Spearman's nonparametric rank correlation coefficient. A strong correlation was found between aquaporin 2 levels and the volume of chronic subdural hematoma and midline shift. However, no significant link was found between aquaporin levels (AQP1, AQP2, AQP4, and AQP9) before and after surgery for acute subdural hematoma, nor for AQP1, AQP4, and AQP9 after surgery for chronic subdural hematoma. In the chronic SDH group, AQP2 plasma concentration negatively correlated with the midline shift measured before surgery (Spearman's ρ -0.54; p = 0.017) and positively with hematoma volume change between baseline and 30 h post-surgery (Spearman's ρ 0.627; p = 0.007). No statistically significant correlation was found between aquaporin plasma levels and hematoma volume for AQP1, AQP2, AQP4, and AQP9 in patients with acute SDH. There is a correlation between chronic subdural hematoma volume, measured radiologically, and serum AQP2 concentration, highlighting aquaporins' potential as clinical biomarkers.


Assuntos
Aquaporina 2 , Biomarcadores , Edema Encefálico , Humanos , Masculino , Feminino , Biomarcadores/sangue , Pessoa de Meia-Idade , Idoso , Prognóstico , Edema Encefálico/sangue , Edema Encefálico/etiologia , Edema Encefálico/diagnóstico por imagem , Aquaporina 2/sangue , Aquaporina 2/metabolismo , Adulto , Traumatismos Craniocerebrais/sangue , Traumatismos Craniocerebrais/complicações , Hematoma Subdural Crônico/sangue , Hematoma Subdural Crônico/cirurgia , Aquaporina 1/sangue , Aquaporina 1/metabolismo , Tomografia Computadorizada por Raios X , Lesões Encefálicas Traumáticas/sangue , Lesões Encefálicas Traumáticas/diagnóstico , Aquaporinas/sangue , Aquaporinas/metabolismo
19.
J Physiol ; 602(13): 3151-3168, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38924526

RESUMO

Aquaporin-4 (AQP4) is the main water channel in brain and is enriched in perivascular astrocyte processes abutting brain microvessels. There is a rich literature on the role of AQP4 in experimental stroke. While its role in oedema formation following middle cerebral artery occlusion (MCAO) has been studied extensively, its specific impact on infarct volume remains unclear. This study investigated the effects of total and partial AQP4 deletion on infarct volume in mice subjected to distal medial cerebral artery (dMCAO) occlusion. Compared to MCAO, this model induces smaller infarcts confined to neocortex, and less oedema. We show that AQP4 deletion significantly reduced infarct volume as assessed 1 week after dMCAO, suggesting that the role of AQP4 in stroke goes beyond its effect on oedema formation and dissolution. The reduction in infarct volume was associated with increased astrocyte reactivity in the peri-infarct areas. No significant differences were observed in the number of microglia among the genotypes. These findings provide new insights in the role of AQP4 in ischaemic injury indicating that AQP4 affects both infarct volume and astrocyte reactivity in the peri-infarct zone. KEY POINTS: Aquaporin-4 (AQP4) is the main water channel in brain and is enriched in perivascular astrocyte processes abutting microvessels. A rich literature exists on the role of AQP4 in oedema formation following middle cerebral artery occlusion (MCAO). We investigated the effects of total and partial AQP4 deletion on infarct volume in mice subjected to distal medial cerebral artery occlusion (dMCAO), a model inducing smaller infarcts confined to neocortex and less oedema compared to MCAO. AQP4 deletion significantly reduced infarct volume 1 week after dMCAO, suggesting a broader role for AQP4 in stroke beyond oedema formation. The reduction in infarct volume was associated with increased astrocyte reactivity in the peri-infarct areas, while no significant differences were observed in the number of microglia among the genotypes. These findings provide new insights into the role of AQP4 in stroke, indicating that AQP4 affects both infarct volume and astrocyte reactivity in the peri-infarct zone.


Assuntos
Aquaporina 4 , Astrócitos , Animais , Aquaporina 4/genética , Aquaporina 4/metabolismo , Astrócitos/metabolismo , Astrócitos/patologia , Camundongos , Masculino , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/genética , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/fisiopatologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/genética , Camundongos Knockout , Edema Encefálico/patologia , Edema Encefálico/metabolismo , Edema Encefálico/genética
20.
Exp Eye Res ; 245: 109957, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38843983

RESUMO

Clouding of the eye lens or cataract is an age-related anomaly that affects middle-aged humans. Exploration of the etiology points to a great extent to oxidative stress due to different forms of reactive oxygen species/metabolites such as Hydrogen peroxide (H2O2) that are generated due to intracellular metabolism and environmental factors like radiation. If accumulated and left unchecked, the imbalance between the production and degradation of H2O2 in the lens could lead to cataracts. Our objective was to explore ex vivo the effects of H2O2 on lens physiology. We investigated transparency, intracellular pH (pHi), intercellular gap junction coupling (GJC), hydrostatic pressure (HP) and membrane water permeability after subjecting two-month-old C57 wild-type (WT) mouse lenses for 3 h or 8 h in lens saline containing 50 µM H2O2; the results were compared with control lenses incubated in the saline without H2O2. There was a significant decrease in lens transparency in H2O2-treated lenses. In control lenses, pHi decreases from ∼7.34 in the surface fiber cells to 6.64 in the center. Experimental lenses exposed to H2O2 for 8 h showed a significant decrease in surface pH (from 7.34 to 6.86) and central pH (from 6.64 to 6.56), compared to the controls. There was a significant increase in GJC resistance in the differentiating (12-fold) and mature (1.4-fold) fiber cells compared to the control. Experimental lenses also showed a significant increase in HP which was ∼2-fold higher at the junction between the differentiating and mature fiber cells and ∼1.5-fold higher at the center compared to these locations in control lenses; HP at the surface was 0 mm Hg in either type lens. Fiber cell membrane water permeability significantly increased in H2O2-exposed lenses compared to controls. Our data demonstrate that elevated levels of lens intracellular H2O2 caused a decrease in intracellular pH and led to acidosis which most likely uncoupled GJs, and increased AQP0-dependent membrane water permeability causing a consequent rise in HP. We infer that an abnormal increase in intracellular H2O2 could induce acidosis, cause oxidative stress, alter lens microcirculation, and lead to the development of accelerated lens opacity and age-related cataracts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...