Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Gels ; 9(8)2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-37623073

RESUMO

Inorganic arsenic in drinking water from groundwater sources is one of the potential causes of arsenic-contaminated environments, and it is highly toxic to human health even at low concentrations. The purpose of this study was to develop a magnetic adsorbent capable of removing arsenic from water. Fe3O4-monolithic resorcinol-formaldehyde carbon xerogels are a type of porous material that forms when resorcinol and formaldehyde (RF) react to form a polymer network, which is then cross-linked with magnetite. Sonication-assisted direct and indirect methods were investigated for loading Fe3O4 and achieving optimal mixing and dispersion of Fe3O4 in the RF solution. Variations of the molar ratios of the catalyst (R/C = 50, 100, 150, and 200), water (R/W = 0.04 and 0.05), and Fe3O4 (M/R = 0.01, 0.03, 0.05, 0.1, 0.15, and 0.2), and thermal treatment were applied to evaluate their textural properties and adsorption capacities. Magnetic carbon xerogel monoliths (MXRF600) using indirect sonication were pyrolyzed at 600 °C for 6 h with a nitrogen gas flow in the tube furnace. Nanoporous carbon xerogels with a high surface area (292 m2/g) and magnetic properties were obtained. The maximum monolayer adsorption capacity of As(III) and As(V) was 694.3 µg/g and 1720.3 µg/g, respectively. The incorporation of magnetite in the xerogel structure was physical, without participation in the polycondensation reaction, as confirmed by XRD, FTIR, and SEM analysis. Therefore, Fe3O4-monolithic resorcinol-formaldehyde carbon xerogels were developed as a potential adsorbent for the effective removal of arsenic with low and high ranges of As(III) and As(V) concentrations from groundwater.

2.
Environ Sci Pollut Res Int ; 29(58): 88066-88077, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35821321

RESUMO

Arsenic (As) is the cause for concern worldwide due to its high toxicity. Its presence in agricultural soils and groundwater adversely affects soybean (Glycine max L.) growth and yield and also endangers food safety. Plant growth-promoting rhizobacteria (PGPR) could be used as part of cost-effective and eco-friendly strategies to mitigate As phytotoxicity. However, simple inoculation of soybean with PGPR Bradyrhizobium japonicum E109 (E109), a common practice in Argentina, is not effective in counteracting the effects of As exposure. Our aim was to assess whether the response of soybean to arsenate (AsV) and arsenite (AsIII) could be helpfully modulated by co-inoculating E109 with the free-living PGPRs Azospirillum brasilense Cd (Cd) or Bacillus pumilus SF5 (SF5). Co-inoculation with E109 + SF5 alleviated As-induced depletion of chlorophyll a and b, and carotenoid content, reaching an increase of 26, 28 y 31%, respectively. It also enhanced nodulation (15-19%) under As exposure. E109 + Cd and E109 + SF5 induced changes in the antioxidant system, which could be related to the maintenance of redox homeostasis. Moreover, As accumulation was reduced by 53% in aerial parts of plants inoculated with E109 + Cd, and by 16% in the roots of those inoculated with E109 + SF5. The strains selected show interesting potential for the development of biotechnological schemes to improve soybean yield while guaranteeing safer food production.


Assuntos
Arsênio , Azospirillum brasilense , Glycine max , Arsênio/toxicidade , Cádmio , Clorofila A , Raízes de Plantas/microbiologia
3.
Anim Reprod ; 19(4): e20220119, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36819483

RESUMO

Arsenic exposure is a global health concern. This toxic metalloid is ubiquitous in the environment and contaminates food and drinking water. Once ingested, it undergoes a complex metabolic process within the body, which contributes to its accumulation and reactivity. Arsenic toxicity stems from the induction of oxidative stress, inhibition of thiol-containing proteins, and mimicry of inorganic phosphates. Arsenic poisoning is associated with the development of reproductive disorders. In males, arsenic causes a reduction in testicular weight and alterations in steroidogenesis and spermatogenesis. Moreover, it reduces the number and quality of spermatozoa harvested from the cauda epididymis. The mitochondria are targets of arsenic toxicity because of the production of free radicals and their high content of cysteine-rich proteins and fatty acids. Mitochondrial dysfunction may contribute to reproductive disorders because this organelle is crucial for controlling testicular and epididymal events related to sperm production and maturation. All of these alterations mediated by arsenic exposure contribute to the failure of male reproductive competence by reducing gamete viability. This review describes the potential mechanisms of arsenic toxicity, its detrimental effects on male reproductive organs, and consequences on sperm fertility.

4.
Environ Pollut ; 292(Pt A): 118241, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34582918

RESUMO

Arsenic (As) pollution remains a major threat to the quality of global soils and drinking water. The health effects of As pollution are often severe and have been largely reported across Asia and South America. This study investigated the possibility of using unmodified biochar derived from rice husk (RB) and aspen wood (WB) at 400 °C and 700 °C to enhance the precipitation of calcium/arsenic compounds for the removal of As(III) from solution. The approach was based on utilizing calcium to precipitate arsenic in solution and adding unmodified biochar to enhance the process. Using this approach, As(III) concentration in aqueous solution decreased by 58.1% when biochar was added, compared to 25.4% in the absence of biochar. Varying the pH from acidic to alkaline enabled an investigation into the pH dependent dynamics of the approach. Results indicated that significant precipitation was only possible at near neutral pH (i.e. pH = 6.5) where calcium arsenites (i.e. Ca(AsO2)2, and CaAsO2OH•½H2O) and arsenates (i.e. Ca5(AsO4)3OH) were precipitated and deposited as aggregates in the pores of biochars. Arsenite was only slightly precipitated under acidic conditions (pH = 4.5) while no arsenite was precipitated under alkaline conditions (pH = 9.5). Arsenite desorption from wood biochar was lowest at pH 6.5 indicating that wood biochar was able to retain a large quantity of the precipitates formed at pH 6.5 compared to pH 4.5 and pH 9.5. Given that the removal of As(III) from solution is often challenging and that biochar modification invites additional cost, the study demonstrated that low cost unmodified biochar can be effective in enhancing the removal of As(III) from the environment through Ca-As precipitation.


Assuntos
Arsênio , Adsorção , Arseniatos , Cálcio , Carvão Vegetal
5.
J Hazard Mater ; 421: 126733, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34339991

RESUMO

The oxidation of arsenic (As) is a key step in its removal from water, and biological oxidation may provide a cost-effective and sustainable method. The biofilm-formation ability of Ancylobacter sp. TS-1, a novel chemolithoautotrophic As oxidizer, was studied for four materials: polypropylene, graphite, sand, and zeolite. After seven days under batch mixotrophic conditions, with high concentrations of As(III) (225 mg·L-1), biofilm formation was detected on all materials except for polypropylene. The results demonstrate As(III)-oxidation of TS-1 biofilms and suggest that the number of active cells was similar for graphite, sand, and zeolite. However, the biofilm biomass follows the specific surface area of each material: 7.0, 2.4, and 0.4 mg VSS·cm-3 for zeolite, sand, and graphite, respectively. Therefore, the observed biofilm-biomass differences were probably associated with different amounts of EPS and inert biomass. Lastly, As(III)-oxidation kinetics were assessed for the biofilms formed on graphite and zeolite under chemolithoautotrophic conditions. The normalized oxidation rate for biofilms formed on these materials was 3.6 and 1.0 mg·L-1·h-1·cm-3, resulting among the highest reported values for As(III)-oxidizing biofilms operated at high-As(III) concentrations. Our findings suggest that biofilm reactors based on Ancylobacter sp. TS-1 are highly promising for their utilization in As(III)-oxidation pre-treatment of high-As(III) polluted waters.


Assuntos
Arsênio , Biofilmes , Oxirredução , Silicatos , Titânio
6.
Anim. Reprod. (Online) ; 19(4): e20220119, 2022. ilus
Artigo em Inglês | VETINDEX | ID: biblio-1414520

RESUMO

Arsenic exposure is a global health concern. This toxic metalloid is ubiquitous in the environment and contaminates food and drinking water. Once ingested, it undergoes a complex metabolic process within the body, which contributes to its accumulation and reactivity. Arsenic toxicity stems from the induction of oxidative stress, inhibition of thiol-containing proteins, and mimicry of inorganic phosphates. Arsenic poisoning is associated with the development of reproductive disorders. In males, arsenic causes a reduction in testicular weight and alterations in steroidogenesis and spermatogenesis. Moreover, it reduces the number and quality of spermatozoa harvested from the cauda epididymis. The mitochondria are targets of arsenic toxicity because of the production of free radicals and their high content of cysteine-rich proteins and fatty acids. Mitochondrial dysfunction may contribute to reproductive disorders because this organelle is crucial for controlling testicular and epididymal events related to sperm production and maturation. All of these alterations mediated by arsenic exposure contribute to the failure of male reproductive competence by reducing gamete viability. This review describes the potential mechanisms of arsenic toxicity, its detrimental effects on male reproductive organs, and consequences on sperm fertility.(AU)


Assuntos
Humanos , Animais , Masculino , Intoxicação por Arsênico/diagnóstico , Fármacos para a Fertilidade Masculina/análise , Mitocôndrias/química , Estresse Oxidativo/fisiologia , Epididimo/química
7.
Electron. j. biotechnol ; Electron. j. biotechnol;53: 1-7, Sep.2021. ilus, graf
Artigo em Inglês | LILACS | ID: biblio-1444436

RESUMO

BACKGROUND Arsenic contamination in the ground water of rural India is a recurrent problem and decon tamination is mostly based on the chemical or physical treatments until now. Microbial bioremediation is eco-friendly, cheap, time-efficient and does not produce any toxic by-products. RESULT In the present study, a high arsenic tolerant bacteria Brevundimonas aurantiaca PFAB1 was iso lated from Panifala hot spring located in West Bengal, India. Previously Panifala was also reported to be an arsenic-rich hot spring. B. aurantiaca PFAB1 exhibited both positive arsenic reductase and arsenite oxidase activity. It was tolerant to arsenite up to 90 mM and arsenate up to 310 mM. Electron microscopy has proved significant changes in cellular micromorphology and stalk appearance under the presence of arsenic in growth medium. Bioaccumulation of arsenic in As (III) treated cells were 0.01% of the total cell weight, while 0.43% in case of As (V) treatment. CONCLUSIONS All experimental lines of evidence prove the uptake/accumulation of arsenic within the bac terial cell. All these features will help in the exploitation of B. aurantiaca PFAB1 as a potent biological weapon to fight arsenic toxicity in the near future


Assuntos
Arsênio/toxicidade , Arsênio/química , Águas Termais/química , Caulobacteraceae/metabolismo , Caulobacteraceae/química , Arsênio/metabolismo , Índia
8.
Microorganisms ; 9(3)2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33668956

RESUMO

Arsenic (As), a semimetal toxic for humans, is commonly associated with serious health problems. The most common form of massive and chronic exposure to As is through consumption of contaminated drinking water. This study aimed to isolate an As resistant bacterial strain to characterize its ability to oxidize As (III) when immobilized in an activated carbon batch bioreactor and to evaluate its potential to be used in biological treatments to remediate As contaminated waters. The diversity of bacterial communities from sediments of the As-rich Camarones River, Atacama Desert, Chile, was evaluated by Illumina sequencing. Dominant taxonomic groups (>1%) isolated were affiliated with Proteobacteria and Firmicutes. A high As-resistant bacterium was selected (Pseudomonas migulae VC-19 strain) and the presence of aio gene in it was investigated. Arsenite detoxification activity by this bacterial strain was determined by HPLC/HG/AAS. Particularly when immobilized on activated carbon, P. migulae VC-19 showed high rates of As(III) conversion (100% oxidized after 36 h of incubation). To the best of our knowledge, this is the first report of a P. migulae arsenite oxidizing strain that is promising for biotechnological application in the treatment of arsenic contaminated waters.

9.
J Environ Manage ; 282: 111602, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33495037

RESUMO

Photocatalytic oxidation of arsenite (As(III)) to arsenate (As(V)) was studied in aqueous solution using a series of WO3/TiO2 semiconductors readily synthesized through sol-gel method with WO3 content in the range of 1-5 wt%. The resulting materials showed enhanced photocatalytic activity towards As(III) photo-oxidation compared to their individual counterparts under UV radiation. The amount of As(III) and As(V) species in the irradiated solution was determined using the molybdenum blue method. The efficiency of photoinduced carriers separation was further affirmed by electrical impedance spectroscopy (EIS) and photocurrent tests. The maximum catalytic efficiency was observed when the binary oxide 3%WO3/TiO2 (TW3) was used, reaching a 99% conversion of As(III) to As(V) within the first 25 min under UV irradiation. The enhanced photocatalytic performance of the heterostructures could be explained as consequent to an improved charge separation due to the migration of photoproduced holes in TW3 photocatalyst. Based on the electric band structure of WO3 and TiO2, a reasonable mechanism for the photo-oxidation of As(III) over TW3 novel catalyst has been proposed.


Assuntos
Arsênio , Nanoestruturas , Catálise , Titânio
10.
Environ Sci Pollut Res Int ; 28(5): 5714-5730, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32968906

RESUMO

Environmental contamination has been a cause of concern worldwide, being aggravated by anthropogenic activities carried out without the correct disposal of toxic products in the various habitats on our planet. In Brazil, mining companies are responsible for the contamination of large river basins with toxic elements from mining activities. Among these elements, arsenic draws attention because it is highly carcinogenic and found in waters in concentrations above those recommended by regulatory agencies. Here, Fe2(MoO4)3 nanoparticles are synthesized and used as a filter medium in water purification systems contaminated with arsenic. The adsorption kinetics of arsenic by Fe2(MoO4)3 nanoparticles is fast, showing pseudo-second-order rate constants of 0.0044, 0.0080, and 0.0106 g mg-1 min-1 for As3+, As5+, and MMA, respectively. The adsorption isotherms are better adjusted with the Langmuir and Redlich-Peterson models, indicating that the arsenic adsorption occurs in monolayers on the Fe2(MoO4)3 surface. The Fe2(MoO4)3 adsorption capacities determined for the As3+, As5+, and MMA species are 16.1, 23.1, and 23.5 mg g-1, respectively. The Fe2(MoO4)3 filter is efficient in purifying arsenic-contaminated water, reducing its initial concentration from 1000 µg L-1 to levels close to zero. Biological tests indicate that Fe2(MoO4)3 nanoparticles and filtered water have no cytotoxic, genotoxic, and mutagenic risks to human life. Those results suggest that the Fe2(MoO4)3 filter can be used as an efficient and safe technology for the purification of water contaminated by arsenic.


Assuntos
Arsênio , Poluentes Químicos da Água , Purificação da Água , Adsorção , Arsênio/análise , Bioensaio , Brasil , Dano ao DNA , Humanos , Concentração de Íons de Hidrogênio , Ferro , Cinética , Molibdênio , Mutagênicos , Água , Poluentes Químicos da Água/análise
11.
Braz. arch. biol. technol ; Braz. arch. biol. technol;64: e21200093, 2021. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1153294

RESUMO

HIGHLIGHTS Sodium arsenite can cause neoplastic transformation in cells. Curcumin reduced cell viability and increased LDH activity in transformed Balb/c 3T3 cells. Curcumin caused DNA damage in transformed Balb/c 3T3 cells. Curcumin may play a protective role in sodium arsenite-induced toxicity.


Abstract Arsenic is a toxic substance that spreads widely around the environment and accumulates as metalloid in the earth's crust. Arsenic and its derivatives are found in drinking water, nutrients, soil, and air. Exposure to arsenic is associated with lung, blood, skin cancer and various lesions. Curcumin is a polyphenolic compound derived from Curcuma longa (turmeric) rhizome and is one of the main curcuminoids. Curcumin is known to be antioxidant, antibacterial, anti-inflammatory, analgesic effects. This study aimed to investigate the potential of sodium arsenite to transform embryonic fibroblast cells and to evaluate the cytotoxic and genotoxic effects of curcumin in neoplastic transformed cells. Neoplastic cells transformation was induced by sodium arsenite in Balb/c 3T3 cells at the end of 32 days. After transformation assay, the transformed cells were treated with various concentration of curcumin to evaluate cell viability, lactate dehydrogenase activity and DNA damage for 24h. The results revealed that curcumin decreased cell viability and increased the activity of lactate dehydrogenase enzyme in neoplastic transformed Balb/c 3T3 cells. In conclusion, the results demonstrated that curcumin has an anticancer effect on neoplastic transformed Balb/c 3T3 cells by causing DNA damage.


Assuntos
Animais , Camundongos , Arsênio/toxicidade , Dano ao DNA , Transformação Celular Neoplásica , Curcumina/farmacologia , Fibroblastos/efeitos dos fármacos , Células 3T3 BALB , Fibroblastos/patologia
12.
Braz. arch. biol. technol ; Braz. arch. biol. technol;64: e21200132, 2021. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1153298

RESUMO

HIGHLIGHTS Arsenic is considered as one of the highly hazardous elements in the environment and a serious carcinogen for the human health. An enzymatic method has been described by using arsenite oxidase for arsenic detection. Residual activity of the immobilized enzyme was 43% of the initial activity after being recycled 10 times.


Abstract Arsenic is considered as one of the highly hazardous elements in the environment and a serious carcinogen for the human health. More attention has taken towards the arsenic due to its presence in ground water in India, China, Bangladesh, Inner Mongolia and several other regions of the world. It's been a challenge to remove arsenic due to the lack of its efficient detection approach in the complicated environmental matrix. The proposed method describes an enzymatic method for arsenic determination using arsenite oxidase, which catalyzes the oxidation of arsenite to arsenate. Hence, a colorimetric PVC strip with immobilized arsenite oxidase has been developed to detect the arsenic concentration and also having potential for the field-testing. The influence of the optimal conditions i.e. pH, temperature, storage stability, and reusability of free and immobilized enzyme were evaluated and compared. The results have shown that the stabilities were significantly enhanced compared with free counterpart. Residual activity of the immobilized enzyme was 43% of the initial activity after being recycled 10 times. We approve that this novel low cost immobilized carrier presents a new approach in large scale applications and expected to act as a model for establishment of indigenous arsenic sensor in miniature form.


Assuntos
Humanos , Arsênio/análise , Cloreto de Polivinila/análise , Poluentes Químicos da Água/análise , Água Subterrânea/análise , Enzimas Imobilizadas/análise , Oxirredutases , Biodegradação Ambiental
13.
Toxicol Appl Pharmacol ; 409: 115304, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33127376

RESUMO

Arsenic induces reproductive disorders in pubertal males after prepubertal exposure. However, it is unclear the extent to which those effects remain in testis and epididymis of sexually mature rats after arsenic insult. This study evaluated the effects of prepubertal arsenic exposure in male organs of pubertal rats, and their reversibility in adult rats. Male pups of Wistar rats on postnatal day (PND) 21 were divided into two groups (n = 20/group): Control animals received filtered water and exposed rats received 10 mg L--1 arsenic from PND 21 to PND 51. At PND 52, testis and epididymis of ten animals per group were examined for toxic effects under morphological, functional, and molecular approaches. The other animals were kept alive under free arsenic conditions until PND 82, and further analyzed for the same parameters. Pubertal rats overexpressed mRNA levels of SOD1, SOD2, CAT, GSTK1, and MT1 in their testis and SOD1, CAT, and GSTK1 in their epididymis. In those organs, catalase activity was altered, generating byproducts of oxidative stress. The antioxidant gene expression was unchanged in adult rats in contrast to the altered activity of antioxidant enzymes. Histological alterations of testis and epididymis tissues were observed in pubertal and adult rats. Interestingly, only adult rats exhibited a remarkable decrease in serum testosterone levels. Prepubertal exposure to arsenic caused morphological and functional alterations in male reproductive organs of pubertal rats. In adult rats, these damages disappeared, remained, get worsened, or recovered depending on the parameter analyzed, indicating potential male fertility disorders during adulthood.


Assuntos
Arsênio/toxicidade , Reprodução/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Antioxidantes/metabolismo , Epididimo/efeitos dos fármacos , Epididimo/metabolismo , Masculino , Tamanho do Órgão/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Testículo/efeitos dos fármacos , Testículo/metabolismo , Testosterona/metabolismo
14.
Toxicology ; 437: 152440, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32197950

RESUMO

Arsenic is an endocrine disruptor that promotes breast cancer (BCa) development. Estrogen synthesis, through aromatase activation, is essential for BCa promotion and progression through activating the G-coupled estrogen receptor 1 (GPER1), regulating rapid nongenomic effects involved in cell proliferation and migration of BCa cells. Herein, was studied the role of aromatase activation and the GPER1 pathway on sodium arsenite-induced promotion and progression of MDA-MB-231 and MDA-MB-453 BCa cell lines. Our results demonstrated that 0.1 µM of sodium arsenite induces cell proliferation, migration, invasion, and stimulates aromatase activity of BCa cell lines MDA-MB-231, MDA-MB-453, MCF-7, but not in a nontumorigenic breast epithelial cell line (MCF-12A). Using letrozole (an aromatase inhibitor) and G-15 (a GPER1-selective antagonist), we demonstrated that sodium arsenite-induced proliferation and migration is mediated by induction of aromatase enzyme and, at least in part, by GPER1 activation in MDA-MB-231 and MDA-MB-453 cells. Sodium arsenite induced phosphorylation of Src that participated in sodium arsenite-induced aromatase activity, and -cell proliferation of MDA-MB-231 cell line. Overall, data suggests that sodium arsenite induces a positive-feedback loop, resulting in the promotion and progression of BCa cells, through induction of aromatase activity, E2 production, GPER1 stimulation, and Src activation.


Assuntos
Aromatase/metabolismo , Arsenitos/toxicidade , Neoplasias da Mama/enzimologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ativadores de Enzimas/toxicidade , Compostos de Sódio/toxicidade , Neoplasias da Mama/patologia , Ativação Enzimática , Estradiol/metabolismo , Feminino , Humanos , Células MCF-7 , Invasividade Neoplásica , Fosforilação , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Quinases da Família src/metabolismo
15.
Environ Toxicol ; 35(5): 553-560, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31846182

RESUMO

Arsenic (As) can contaminate air, soil, water, and organisms through mobilization of natural mineralogical deposits or anthropogenic actions. Inorganic-As compounds are more toxic and widely available in aquatic environments, including drinking water reservoir catchments. Since little is known about its effects on prepubertal mammals, the present study focused on it. Hence, As was administered through drinking water to male Wistar rats from postnatal day 23 to 53. Negative control group received vehicle only (filtered water); As 1 group received AsNaO2 at 0.01 mg L-1 and As2 group received AsNaO2 at 10 mg L-1 . It was investigated hepatic and renal toxicity of AsNaO2 (ie, histopathology and apoptosis analysis), as well as its mutagenicity (ie, micronucleus test in liver and bone marrow), cytotoxicity (ie, frequency and type of erythrocytes in blood), and genotoxicity (ie, comet assay in blood). Also, As determination was performed in hepatic and renal tissues. Data obtained revealed that immature organisms present a pattern of arsenic accumulation similar to that observed in adults, suggesting similarity in metabolic processes. In addition, liver showed to be an important target tissue for As toxicity in these experimental conditions, exhibiting infiltrate of defense cells, DNA damages, and increased apoptosis rates.


Assuntos
Envelhecimento/efeitos dos fármacos , Arsenitos/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Dano ao DNA , Poluentes Ambientais/toxicidade , Micronúcleos com Defeito Cromossômico/induzido quimicamente , Compostos de Sódio/toxicidade , Envelhecimento/genética , Animais , Doença Hepática Induzida por Substâncias e Drogas/genética , Ensaio Cometa , Relação Dose-Resposta a Droga , Masculino , Testes para Micronúcleos , Ratos , Ratos Wistar
16.
Heliyon ; 5(10): e02601, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31687490

RESUMO

The toxicity of glyphosate-based herbicide (GBH) and arsenite (As(III)) as individual toxicants and in mixture (50:50 v/v, GBH-As(III)) was determined in Rhinella arenarum tadpoles during acute (48 h) and chronic assays (22 days). In both types of assays, the levels of enzymatic activity [Acetylcholinesterase (AChE), Carboxylesterase (CbE), and Glutathione S-transferase (GST)] and the levels of thyroid hormones (triiodothyronine; T3 and thyroxine; T4) were examined. Additionally, the mitotic index (MI) of red blood cells (RBCs) and DNA damage index were calculated for the chronic assay. The results showed that the LC50 values at 48 h were 45.95 mg/L for GBH, 37.32 mg/L for As(III), and 30.31 mg/L for GBH-As(III) (with similar NOEC = 10 mg/L and LOEC = 20 mg/L between the three treatments). In the acute assay, Marking's additive index (S = 2.72) indicated synergistic toxicity for GBH-As(III). In larvae treated with GBH and As(III) at the NOEC-48h (10 mg/L), AChE activity increased by 36.25% and 33.05% respectively, CbE activity increased by 22.25% and 39.05 % respectively, and GST activity increased by 46.75% with the individual treatment with GBH and by 131.65 % with the GBH-As(III) mixture. Larvae exposed to the GBH-As(III) mixture also showed increased levels of T4 (25.67 %). In the chronic assay at NOEC-48h/8 (1.25 mg/L), As(III) and GBH-As(III) inhibited AChE activity (by 39.46 % and 35.65%, respectively), but did not alter CbE activity. In addition, As(III) highly increased (93.7 %) GST activity. GBH-As(III) increased T3 (97.34%) and T4 (540.93%) levels. Finally, GBH-As(III) increased the MI of RBCs and DNA damage. This study demonstrated strong synergistic toxicity of the GBH-As(III) mixture, negatively altering antioxidant systems and thyroid hormone levels, with consequences on RBC proliferation and DNA damage in treated R. arenarum tadpoles.

17.
Artigo em Inglês | MEDLINE | ID: mdl-31301398

RESUMO

In fish of freshwaters environments, the accumulation and toxic effects of arsenite (AsIII) can be attenuated by detoxification proteins such as GST and ABCC transporters. We studied the effects of AsIII on the middle intestine of O. mykiss in ex-vivo and in vivo/ex vivo assays. For the ex vivo assays, we measured the transport rate of the ABCC substrate DNP-SG and GST activity in intestinal strips and everted sacs. AsIII inhibited DNP-SG transport in a concentration-dependent manner, specifically when we applied it on the basolateral side. GST activity increased when we applied a maximum concentration of AsIII. For the in vivo/ex vivo assays, we kept fish in water with or without 7.7 µmol L-1 of AsIII for 48 h. Then, we measured DNP-SG transport rate, GST activity, and PP1 activity in intestine strips during one hour. For PP1 activity, we incubated the strips with or without microcystin-LR (MCLR), a toxin excreted through ABCC2 proteins. We also analyzed Abcc2 and Gst-π mRNA expression in intestine and liver tissue. In the group exposed in vivo to AsIII, DNP-SG transport rate and GST activity were higher and the effect of MCLR over PP1 activity was attenuated. AsIII significantly induced only Abcc2 mRNA expression in both middle intestine and liver. Our results suggest that, in the middle intestine of O. mykiss, AsIII is absorbed mainly at the basolateral side of the enterocytes, excreted to the lumen by ABCC2 transporters, and is capable of modulating Abcc2 mRNA expression by a transcriptional mechanism.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Arsenitos , Glutationa S-Transferase pi/metabolismo , Intestinos/enzimologia , Fígado/metabolismo , Oncorhynchus mykiss/metabolismo , Animais , Arsenitos/metabolismo , Arsenitos/farmacocinética , Arsenitos/toxicidade , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica , RNA Mensageiro , Xenobióticos/metabolismo , Xenobióticos/farmacocinética , Xenobióticos/toxicidade
18.
Biochim Biophys Acta Gene Regul Mech ; 1862(6): 657-669, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31075539

RESUMO

Variation in Disrupted-in-Schizophrenia 1 (DISC1) increases the risk for neurodegenerative diseases, schizophrenia, and other mental disorders. However, the functions of DISC1 associated with the development of these diseases remain unclear. DISC1 has been reported to inhibit Akt/mTORC1 signaling, a major regulator of translation, and recent studies indicate that DISC1 could exert a direct role in translational regulation. Here, we present evidence of a novel role of DISC1 in the maintenance of protein synthesis during oxidative stress. In order to investigate DISC1 function independently of Akt/mTORC1, we used Tsc2-/- cells, where mTORC1 activation is independent of Akt. DISC1 knockdown enhanced inhibition of protein synthesis in cells treated with sodium arsenite (SA), an oxidative agent used for studying stress granules (SGs) dynamics and translational control. N-acetyl-cysteine inhibited the effect of DISC1, suggesting that DISC1 affects translation in response to oxidative stress. DISC1 decreased SGs number in SA-treated cells, but resided outside SGs and maintained protein synthesis independently of a proper SG nucleation. DISC1-dependent stimulation of translation in SA-treated cells was supported by its interaction with eIF3h, a component of the canonical translation initiation machinery. Consistent with a role in the homeostatic maintenance of translation, DISC1 knockdown or overexpression decreased cell viability after SA exposure. Our data suggest that DISC1 is a relevant component of the cellular response to stress, maintaining certain levels of translation and preserving cell integrity. This novel function of DISC1 might be involved in its association with pathologies affecting tissues frequently exposed to oxidative stress.


Assuntos
Arsenitos/farmacologia , Proteínas do Tecido Nervoso/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Compostos de Sódio/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Grânulos Citoplasmáticos/metabolismo , DNA Helicases/metabolismo , Fator de Iniciação 3 em Eucariotos/metabolismo , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Proteínas do Tecido Nervoso/genética , Proteína Oncogênica v-akt , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Transcriptoma , Proteína 2 do Complexo Esclerose Tuberosa/genética
19.
World J Microbiol Biotechnol ; 34(10): 142, 2018 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-30203106

RESUMO

The Burkholderia xenovorans LB400 multireplicon genome displays a relatively high proportion of redundant genes, including several genes predicted to be related to arsenic resistance. These comprise an ars gene cluster, composed of the arsR3, acr3, arsC1 and arsH genes, as well as two arsB, arsC2, and seven individual arsR genes. The objective of this work was to elucidate the involvement of the ars gene cluster in arsenic resistance by the LB400 strain. Susceptibility tests showed that B. xenovorans LB400 is highly resistant to arsenate and arsenite. Arsenic resistance was induced by prior exposure of LB400 to arsenate or arsenite. reverse transcription-polymerase chain reaction assays using total RNA from LB400 showed arsenite-induced transcription of the arsR3 gene, suggesting that the ars gene cluster constitutes an arsenite-responsive operon. Transfer of cloned LB400 ars genes to heterologous Escherichia coli or Pseudomonas aeruginosa strains demonstrated that the ArsR3 transcriptional repressor, ArsC1 arsenate reductase, and the Acr3 arsenite efflux pump encoded in the LB400 ars gene cluster, are all associated to the arsenic resistance phenotype of this strain. The ars gene cluster from Burkholderia xenovorans LB400 is responsible for the inducible arsenic-resistance phenotype of the bacterium.


Assuntos
Arsênio/metabolismo , Proteínas de Bactérias/genética , Burkholderia/genética , Farmacorresistência Bacteriana/genética , Família Multigênica/genética , Arseniato Redutases/genética , Arseniatos/metabolismo , Arseniatos/toxicidade , Arsênio/toxicidade , Arsenitos/metabolismo , Arsenitos/toxicidade , Proteínas de Bactérias/metabolismo , Sequência de Bases , Burkholderia/efeitos dos fármacos , Burkholderia/crescimento & desenvolvimento , Clonagem Molecular , DNA Bacteriano/análise , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Testes de Sensibilidade Microbiana , Óperon , Fenótipo , Filogenia , Pseudomonas aeruginosa/genética , Alinhamento de Sequência , Análise de Sequência de Proteína , Transativadores/genética
20.
Int J Phytoremediation ; 20(11): 1129-1135, 2018 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-30156918

RESUMO

This study aimed to evaluate the pH, phosphate, and nitrate in the process of arsenic absorption by Eichhornia crassipes (water hyacinth), using the surface response methodology, in order to optimize the process. The plants were exposed to a concentration of arsenic of 0.5 mg L-1 (NaAsO2) over a period of 10 days. The results indicated optimal levels for the absorption of arsenic by E. crassipes at pH equal to 7.5, absence of phosphate, and minimum nitrate level of 0.0887 mmol L-1. For the tested concentration, E. crassipes was able to accumulate 498.4 mg kg-1 of As (dry base) in its plant tissue and to reduce 83% of the initial concentration present in the aqueous medium where it was cultivated. The concentration of phosphorus in solution linearly increased the phosphorus content in the plants and negatively influenced the absorption of arsenic. The concentration of 0.5 mg L-1 of As did not significantly affect the relative growth rate (RGR) and the tolerance index (TI). 94% of As (III) initially solubilized in water was converted by the end of the experiment period into As (V). The water hyacinth was important in the phytoremediation of arsenic when cultivated under optimal conditions for its removal.


Assuntos
Arsênio/análise , Eichhornia , Poluentes Químicos da Água/análise , Biodegradação Ambiental , Fósforo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA