Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.601
Filtrar
1.
Z Med Phys ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38960810

RESUMO

PURPOSE: To apply velocity selective arterial spin labeling (VSASL) combined with a navigator-based (NAV) prospective motion compensation method for a free-breathing liver perfusion measurement without contrast agent. METHODS: Sinc-modulated Velocity Selective Inversion (sinc-VSI) pulses were applied as labeling and control pulses. In order to account for respiratory motion, a navigator was employed in the form of a single gradient-echo projection readout, located at the diaphragm along the inferior-superior direction. Prior to each transverse imaging slice of the spin-echo EPI based readouts, navigator and fat suppression were incorporated. Motion data was obtained from the navigator and transmitted back to the sequence, allowing real-time adjustments to slice positioning. The sinc-VSI without velocity-selective gradients during the control condition but with velocity-selective gradients along all three directions during labeling was chosen for the VSASL. The VSASL was compared with pseudo-continuous ASL (pCASL) methods, which selectively tagged the moving spins using a tagging plane placed at the portal vein and hepatic artery. RESULTS: The motion caused by respiratory activity was effectively computed using the navigator signal. The coefficients of variation (CoV) of average liver voxel in NAV were significantly decreased when compared to breath-hold (BH), with an average reduction of 29.4 ±â€¯18.44% for control images, and 29.89 ±â€¯20.83% for label images (p < 0.001). The resulting maps of normalized ASL signal (normalized to M0) showed significantly higher perfusion weightings in the NAV-compensated VSASL, when compared to the NAV-compensated pCASL techniques. CONCLUSIONS: This study demonstrates the feasibility of using a navigator-based prospective motion compensation technique in conjunction with VSASL for the measurement of liver perfusion without the use of contrast agents while allowing for free-breathing.

2.
Alzheimers Dement ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958557

RESUMO

INTRODUCTION: Cerebral blood flow (CBF) is reduced in cognitively impaired (CI) Alzheimer's disease (AD) patients. We checked the sensitivity of time-encoded arterial spin labeling (te-ASL) in measuring CBF alterations in individuals with positive AD biomarkers and associations with relevant biomarkers in cognitively unimpaired (CU) individuals. METHODS: We compared te-ASL with single-postlabel delay (PLD) ASL in measuring CBF in 59 adults across the AD continuum, classified as CU amyloid beta (Aß) negative (-), CU Aß positive (+), and CI Aß+. We sought associations of CBF with biomarkers of AD, cerebrovascular disease, synaptic dysfunction, neurodegeneration, and cognition in CU participants. RESULTS: te-ASL was more sensitive at detecting CBF reduction in the CU Aß+ and CI Aß+ groups. In CU participants, lower CBF was associated with altered biomarkers of Aß, tau, synaptic dysfunction, and neurodegeneration. DISCUSSION: CBF reduction occurs early in the AD continuum. te-ASL is more sensitive than single-PLD ASL at detecting CBF changes in AD. HIGHLIGHTS: Lower CBF can be detected in CU subjects in the early AD continuum. te-ASL is more sensitive than single-PLD ASL at detecting CBF alterations in AD. CBF is linked to biomarkers of AD, synaptic dysfunction, and neurodegeneration.

3.
BMC Neurol ; 24(1): 235, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969967

RESUMO

BACKGROUND: Mild traumatic brain injury (mTBI) can result in lasting brain damage that is often too subtle to detect by qualitative visual inspection on conventional MR imaging. Although a number of FDA-cleared MR neuroimaging tools have demonstrated changes associated with mTBI, they are still under-utilized in clinical practice. METHODS: We investigated a group of 65 individuals with predominantly mTBI (60 mTBI, 48 due to motor-vehicle collision, mean age 47 ± 13 years, 27 men and 38 women) with MR neuroimaging performed in a median of 37 months post-injury. We evaluated abnormalities in brain volumetry including analysis of left-right asymmetry by quantitative volumetric analysis, cerebral perfusion by pseudo-continuous arterial spin labeling (PCASL), white matter microstructure by diffusion tensor imaging (DTI), and neurometabolites via magnetic resonance spectroscopy (MRS). RESULTS: All participants demonstrated atrophy in at least one lobar structure or increased lateral ventricular volume. The globus pallidi and cerebellar grey matter were most likely to demonstrate atrophy and asymmetry. Perfusion imaging revealed significant reductions of cerebral blood flow in both occipital and right frontoparietal regions. Diffusion abnormalities were relatively less common though a subset analysis of participants with higher resolution DTI demonstrated additional abnormalities. All participants showed abnormal levels on at least one brain metabolite, most commonly in choline and N-acetylaspartate. CONCLUSION: We demonstrate the presence of coup-contrecoup perfusion injury patterns, widespread atrophy, regional brain volume asymmetry, and metabolic aberrations as sensitive markers of chronic mTBI sequelae. Our findings expand the historic focus on quantitative imaging of mTBI with DTI by highlighting the complementary importance of volumetry, arterial spin labeling perfusion and magnetic resonance spectroscopy neurometabolite analyses in the evaluation of chronic mTBI.


Assuntos
Neuroimagem , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Neuroimagem/métodos , Imageamento por Ressonância Magnética/métodos , Imagem de Tensor de Difusão/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Encéfalo/metabolismo , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Atrofia/patologia , Circulação Cerebrovascular/fisiologia , Espectroscopia de Ressonância Magnética/métodos
4.
Imaging Neurosci (Camb) ; 2: 1-15, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38947942

RESUMO

Vascular risk factors contribute to cognitive aging, with one such risk factor being dysfunction of the blood brain barrier (BBB). Studies using non-invasive magnetic resonance imaging (MRI) techniques, such as diffusion prepared arterial spin labeling (DP-ASL), can estimate BBB function by measuring water exchange rate (kw). DP-ASL kw has been associated with cognition, but the directionality and strength of the relationship is still under investigation. An additional variable that measures water in extracellular space and impacts cognition, MRI free water (FW), may help explain prior findings. A total of 94 older adults without dementia (Mean age = 74.17 years, 59.6% female) underwent MRI (DP-ASL, diffusion weighted imaging (DWI)) and cognitive assessment. Mean kw was computed across the whole brain (WB), and mean white matter FW was computed across all white matter. The relationship between kw and three cognitive domains (executive function, processing speed, memory) was tested using multiple linear regression. FW was tested as a mediator of the kw-cognitive relationship using the PROCESS macro. A positive association was found between WB kw and executive function [F(4,85) = 7.81, p < .001, R2= 0.269; ß = .245, p = .014]. Further, this effect was qualified by subsequent results showing that FW was a mediator of the WB kw-executive function relationship (indirect effect results: standardized effect = .060, bootstrap confidence interval = .0006 to .1411). Results suggest that lower water exchange rate (kw) may contribute to greater total white matter (WM) FW which, in turn, may disrupt executive function. Taken together, proper fluid clearance at the BBB contributes to higher-order cognitive abilities.

5.
Sci Rep ; 14(1): 14950, 2024 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-38942754

RESUMO

This study utilized arterial spin labeling-magnetic resonance imaging (ASL-MRI) to explore the developmental trajectory of brain activity associated with attention deficit hyperactivity disorder (ADHD). Pulsed arterial spin labeling (ASL) data were acquired from 157 children with ADHD and 109 children in a control group, all aged 6-12 years old. Participants were categorized into the age groups of 6-7, 8-9, and 10-12, after which comparisons were performed between each age group for ASL analysis of cerebral blood flow (CBF). In total, the ADHD group exhibited significantly lower CBF in the left superior temporal gyrus and right middle frontal gyrus regions than the control group. Further analysis revealed: (1) The comparison between the ADHD group (N = 70) aged 6-7 and the age-matched control group (N = 33) showed no statistically significant difference between. (2) However, compared with the control group aged 8-9 (N = 39), the ADHD group of the same age (N = 53) showed significantly lower CBF in the left postcentral gyrus and left middle frontal gyrus regions. (3) Further, the ADHD group aged 10-12 (N = 34) demonstrated significantly lower CBF in the left superior occipital region than the age-matched control group (N = 37). These age-specific differences suggest variations in ADHD-related domains during brain development post age 6-7.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Circulação Cerebrovascular , Imageamento por Ressonância Magnética , Marcadores de Spin , Humanos , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico por imagem , Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Criança , Masculino , Feminino , Imageamento por Ressonância Magnética/métodos , Circulação Cerebrovascular/fisiologia , Estudos de Casos e Controles , Encéfalo/diagnóstico por imagem , Encéfalo/irrigação sanguínea , Encéfalo/fisiopatologia
6.
Indian J Radiol Imaging ; 34(3): 533-538, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38912234

RESUMO

Background Arterial spin labeling (ASL) perfusion imaging is widely used since its main advantage is that no intravenous contrast is needed. Given that perfusion is a crucial biological characteristic for identifying tumor lesions, the qualitative noncontrast perfusion characteristics of these lesions were examined. Aim We attempted utilizing the three-dimensional (3D) ASL technique to characterize skull base lesions and to highlight its crucial role in differentiating lesions. Methods and Material 3D ASL imaging of 20 patients with posterior skull base lesions was performed in a 3-T magnetic resonance (MR) system (Siemens Healthineers, Skyra, Erlangen, Germany). The common differential diagnoses of skull base lesions could be distinguished based on this qualitative evaluation. Results and Conclusions Glomus tumor has a strikingly increased perfusion when compared to meningiomas. The perfusion characteristics of metastasis depends on the primary tumor. Chondrosarcomas have a heterogeneously increased perfusion. Chordomas have variable perfusion, which helps in prognosticating the tumors. ASL benefits pediatric patients and in renal failure as well since it avoids the ethical ambiguity associated with contrast agents.

7.
Alzheimers Dement (Amst) ; 16(2): e12601, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38912306

RESUMO

INTRODUCTION: Recent work suggests that amyloid beta (Aß) positron emission tomography (PET) tracer uptake shortly after injection ("early phase") reflects brain metabolism and perfusion. We assessed this modality in a predominantly amyloid-negative neurodegenerative condition, Parkinson's disease (PD), and hypothesized that early-phase 18F-florbetaben (eFBB) uptake would reproduce characteristic hypometabolism and hypoperfusion patterns associated with cognitive decline in PD. METHODS: One hundred fifteen PD patients across the spectrum of cognitive impairment underwent dual-phase Aß PET, structural and arterial spin labeling (ASL) magnetic resonance imaging (MRI), and neuropsychological assessments. Multiple linear regression models compared eFBB uptake to cognitive performance and ASL MRI perfusion. RESULTS: Reduced eFBB uptake was associated with cognitive performance in brain regions previously linked to hypometabolism-associated cognitive decline in PD, independent of amyloid status. Furthermore, eFBB uptake correlated with cerebral perfusion across widespread regions. DISCUSSION: EFBB uptake is a potential surrogate measure for cerebral perfusion/metabolism. A dual-phase PET imaging approach may serve as a clinical tool for assessing cognitive impairment. Highlights: Images taken at amyloid beta (Aß) positron emission tomography tracer injection may reflect brain perfusion and metabolism.Parkinson's disease (PD) is a predominantly amyloid-negative condition.Early-phase florbetaben (eFBB) in PD was associated with cognitive performance.eFBB uptake reflects hypometabolism-related cognitive decline in PD.eFBB correlated with arterial spin labeling magnetic resonance imaging measured cerebral perfusion.eFBB distinguished dementia from normal cognition and mild cognitive impairment.Findings were independent of late-phase Aß burden.Thus, eFBB may serve as a surrogate measure for brain metabolism/perfusion.

8.
Artigo em Inglês | MEDLINE | ID: mdl-38912380

RESUMO

Arterial spin labeling (ASL) perfusion MRI is the only non-invasive imaging technique for quantifying regional cerebral blood flow (CBF), which is a fundamental physiological variable. ASL MRI has a relatively low signal-to-noise-ratio (SNR). In this study, we proposed a novel ASL denoising method by simultaneously exploiting the inter- and intra-receive channel data correlations. MRI including ASL MRI data have been routinely acquired with multi-channel coils but current denoising methods are designed for denoising the coil-combined data. Indeed, the concurrently acquired multi-channel images differ only by coil sensitivity weighting and random noise, resulting in a strong low-rank structure of the stacked multi-channel data matrix. In our method, this matrix was formed by stacking the vectorized slices from different channels. Matrix rank was then approximately measured through the logarithm-determinant of the covariance matrix. Notably, our filtering technique is applied directly to complex data, avoiding the need to separate magnitude and phase or divide real and imaginary data, thereby ensuring minimal information loss. The degree of low-rank regularization is controlled based on the estimated noise level, striking a balance between noise removal and texture preservation. A noteworthy advantage of our framework is its freedom from parameter tuning, distinguishing it from most existing methods. Experimental results on real-world imaging data demonstrate the effectiveness of our proposed approach in significantly improving ASL perfusion quality. By effectively mitigating noise while preserving important textural information, our method showcases its potential for enhancing the utility and accuracy of ASL perfusion MRI, paving the way for improved neuroimaging studies and clinical diagnoses.

9.
Clin Kidney J ; 17(6): sfae101, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38915436

RESUMO

Background: The aim of this work was to create and evaluate a preoperative non-contrast-enhanced (CE) magnetic resonance imaging (MRI)/angiography (MRA) protocol to assess renal function and visualize renal arteries and any abnormalities in potential living kidney donors. Methods: In total, 28 subjects were examined using scintigraphy to determine renal function. In addition, 3D-pseudocontinuous arterial spin labeling (pCASL), a 2D-non-CE electrocardiogram-triggered radial quiescent interval slice-selective (QISS-MRA), and 4D-CE time-resolved angiography with interleaved stochastic trajectories (CE-MRA) were performed to assess renal perfusion, visualize renal arteries and detect any abnormalities. Two glomerular filtration rates [described by Gates (GFRG) and according to the Chronic Kidney Disease Epidemiology Collaboration formula (GFRCKD-EPI)]. The renal volumes were determined using both MRA techniques. Results: The mean value of regional renal blood flow (rRBF) on the right side was significantly higher than that on the left. The agreements between QISS-MRA and CE-MRA concerning the assessment of absence or presence of an aberrant artery and renal arterial stenosis were perfect. The mean renal volumes measured in the right kidney with QISS-MRA were lower than the corresponding values of CE-MRA. In contrast, the mean renal volumes measured in the left kidney with both MRA techniques were similar. The correlation between the GFRG and rRBF was compared in the same manner as that between GFRCKD-EPI and rRBF. Conclusion: The combination of pCASL and QISS-MRA constitute a reliable preoperative protocol with a total measurement time of <10 min without the potential side effects of gadolinium-based contrast agents or radiation exposure.

10.
Diagnostics (Basel) ; 14(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38928651

RESUMO

PURPOSE: To evaluate the amide proton transfer (APT), tumor blood flow (TBF), and apparent diffusion coefficient (ADC) combined diagnostic value for differentiating intracranial malignant tumors (MTs) from benign tumors (BTs) in young patients, as defined by the 2021 World Health Organization classification of central nervous system tumors. METHODS: Fifteen patients with intracranial MTs and 10 patients with BTs aged 0-30 years underwent MRI with APT, pseudocontinuous arterial spin labeling (pCASL), and diffusion-weighted imaging. All tumors were evaluated through the use of histogram analysis and the Mann-Whitney U test to compare 10 parameters for each sequence between the groups. The diagnostic performance was evaluated using receiver operating characteristic (ROC) curve analysis. RESULTS: The APT maximum, mean, 10th, 25th, 50th, 75th, and 90th percentiles were significantly higher in MTs than in BTs; the TBF minimum (min) was significantly lower in MTs than in BTs; TBF kurtosis was significantly higher in MTs than in BTs; the ADC min, 10th, and 25th percentiles were significantly lower in MTs than in BTs (all p < 0.05). The APT 50th percentile (0.900), TBF min (0.813), and ADC min (0.900) had the highest area under the curve (AUC) values of the parameters in each sequence. The AUC for the combination of these three parameters was 0.933. CONCLUSIONS: The combination of APT, TBF, and ADC evaluated through histogram analysis may be useful for differentiating intracranial MTs from BTs in young patients.

11.
Magn Reson Med Sci ; 23(3): 352-366, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38880616

RESUMO

Arterial spin labeling (ASL), a non-invasive MRI technique, has emerged as a valuable tool for researchers that can measure blood flow and related parameters. This review aims to provide a qualitative overview of the technical principles and recent developments in ASL and to highlight its potential clinical applications. A growing literature demonstrates impressive ASL sensitivity to a range of neuropathologies and treatment responses. Despite its potential, challenges persist in the translation of ASL to widespread clinical use, including the lack of standardization and the limited availability of comprehensive training. As experience with ASL continues to grow, the final stage of translation will require moving beyond single site observational studies to multi-site experience and measurement of the added contribution of ASL to patient care and outcomes.


Assuntos
Circulação Cerebrovascular , Marcadores de Spin , Humanos , Circulação Cerebrovascular/fisiologia , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/irrigação sanguínea
12.
J Magn Reson Imaging ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38899965

RESUMO

BACKGROUND: Distinguishing high-grade gliomas (HGGs) from brain metastases (BMs) using perfusion-weighted imaging (PWI) remains challenging. PWI offers quantitative measurements of cerebral blood flow (CBF) and cerebral blood volume (CBV), but optimal PWI parameters for differentiation are unclear. PURPOSE: To compare CBF and CBV derived from PWIs in HGGs and BMs, and to identify the most effective PWI parameters and techniques for differentiation. STUDY TYPE: Systematic review and meta-analysis. POPULATION: Twenty-four studies compared CBF and CBV between HGGs (n = 704) and BMs (n = 488). FIELD STRENGTH/SEQUENCE: Arterial spin labeling (ASL), dynamic susceptibility contrast (DSC), dynamic contrast-enhanced (DCE), and dynamic susceptibility contrast-enhanced (DSCE) sequences at 1.5 T and 3.0 T. ASSESSMENT: Following the PRISMA guidelines, four major databases were searched from 2000 to 2024 for studies evaluating CBF or CBV using PWI in HGGs and BMs. STATISTICAL TESTS: Standardized mean difference (SMD) with 95% CIs was used. Risk of bias (ROB) and publication bias were assessed, and I2 statistic was used to assess statistical heterogeneity. A P-value<0.05 was considered significant. RESULTS: HGGs showed a significant modest increase in CBF (SMD = 0.37, 95% CI: 0.05-0.69) and CBV (SMD = 0.26, 95% CI: 0.01-0.51) compared with BMs. Subgroup analysis based on region, sequence, ROB, and field strength for CBF (HGGs: 375 and BMs: 222) and CBV (HGGs: 493 and BMs: 378) values were conducted. ASL showed a considerable moderate increase (50% overlapping CI) in CBF for HGGs compared with BMs. However, no significant difference was found between ASL and DSC (P = 0.08). DATA CONCLUSION: ASL-derived CBF may be more useful than DSC-derived CBF in differentiating HGGs from BMs. This suggests that ASL may be used as an alternative to DSC when contrast medium is contraindicated or when intravenous injection is not feasible. TECHNICAL EFFICACY: Stage 2.

13.
Surg Neurol Int ; 15: 176, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38840624

RESUMO

Background: Pituitary apoplexy (PA) is a rare clinical condition presenting with acute headache, visual disturbance, and disorientation. PA can cause strokes due to acute internal cervical artery occlusion (ICO), which is an extremely rare condition. Arterial spin labeling (ASL) on magnetic resonance imaging (MRI) is a popular technique, which is a quantitative perfusion imaging useful for the diagnosis of ischemia. We report a treatment with acute pseudo-ICO in which ASL on MRI was useful for the decision of surgery timing. Case Description: A 50-year-old male presented with a sudden headache and nausea. MRI and magnetic resonance angiography revealed a large pituitary tumor and left ICO. However, the left middle cerebral and anterior cerebral arteries were depicted due to a cross-flow through the anterior communicating artery. ASL on MRI showed decreased perfusion of the left hemisphere, suggesting acute ICO. As he had no neurological deficit, we treated him conservatively, following the guidelines. Two days after admission, he presented with sensory aphasia and incomplete right paralysis. Emergency head computed tomography revealed a low-density area in his left temporal lobe. We decided on emergency tumor decompression surgery to prevent ischemic progression. We performed endonasal transsphenoidal surgery. Postoperative MRI showed recanalization of the left internal carotid artery (ICA). His incomplete right paralysis improved immediately after surgery but remains mild sensory aphasia. Conclusion: ICO-related PA is a very rare occasion but there are few similar reports. Some cases of successful ICO treatment due to PA have been reported, but the question of whether emergency or elective surgery is better remains unanswered. Our case may have been no neurological deficit if we had decided to have surgery on admission. Hypoperfusion of the ICA area due to PA may be an adaptation of emergency surgery. Perfusion images like ASL could be a useful technique to decide on surgery or conservative treatment.

14.
Epilepsia Open ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38884502

RESUMO

The blood-brain barrier (BBB) is a barrier protecting the brain and a milieu of continuous exchanges between blood and brain. There is emerging evidence that the BBB plays a major role in epileptogenesis and drug-resistant epilepsy, through several mechanisms, such as water homeostasis dysregulation, overexpression of drug transporters, and inflammation. Studies have shown abnormal water homeostasis in epileptic tissue and altered aquaporin-4 water channel expression in animal epilepsy models. This review focuses on abnormal water exchange in epilepsy and describes recent non-invasive MRI methods of quantifying water exchange. PLAIN LANGUAGE SUMMARY: Abnormal exchange between blood and brain contribute to seizures and epilepsy. The authors describe why correct water balance is necessary for healthy brain functioning and how it is impacted in epilepsy. This review also presents recent MRI methods to measure water exchange in human brain. These measures would improve our understanding of factors leading to seizures.

15.
Magn Reson Med ; 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38852172

RESUMO

PURPOSE: Multiparametric arterial spin labeling (MP-ASL) can quantify cerebral blood flow (CBF) and arterial cerebral blood volume (CBVa). However, its accuracy is compromised owing to its intrinsically low SNR, necessitating complex and time-consuming parameter estimation. Deep neural networks (DNNs) offer a solution to these limitations. Therefore, we aimed to develop simulation-based DNNs for MP-ASL and compared the performance of a supervised DNN (DNNSup), physics-informed unsupervised DNN (DNNUns), and the conventional lookup table method (LUT) using simulation and in vivo data. METHODS: MP-ASL was performed twice during resting state and once during the breath-holding task. First, the accuracy and noise immunity were evaluated in the first resting state. Second, CBF and CBVa values were statistically compared between the first resting state and the breath-holding task using the Wilcoxon signed-rank test and Cliff's delta. Finally, reproducibility of the two resting states was assessed. RESULTS: Simulation and first resting-state analyses demonstrated that DNNSup had higher accuracy, noise immunity, and a six-fold faster computation time than LUT. Furthermore, all methods detected task-induced CBF and CBVa elevations, with the effect size being larger with the DNNSup (CBF, p = 0.055, Δ = 0.286; CBVa, p = 0.008, Δ = 0.964) and DNNUns (CBF, p = 0.039, Δ = 0.286; CBVa, p = 0.008, Δ = 1.000) than that with LUT (CBF, p = 0.109, Δ = 0.214; CBVa, p = 0.008, Δ = 0.929). Moreover, all the methods exhibited comparable and satisfactory reproducibility. CONCLUSION: DNNSup outperforms DNNUns and LUT with respect to estimation performance and computation time.

16.
Magn Reson Med ; 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38852173

RESUMO

PURPOSE: Velocity selective arterial spin labeling (VSASL) quantification assumes that the labeled bolus continuously moves into the imaging voxel during the post-labeling delay (PLD). Faster blood flow could lead to a bolus duration shorter than the applied PLD of VSASL and cause underestimation of cerebral blood flow (CBF). This study aims to evaluate the performance of velocity-selective inversion (VSI) prepared arterial spin labeling (ASL) with different PLDs and pseudo-continuous ASL (PCASL) for quantification of hypercapnia-induced cerebrovascular reactivity (CVR), using phase-contrast (PC) MRI as a global reference. METHODS: We compared CVR obtained by VSI-ASL with PLD of 1520 ms (VSASL-1520), 1000 ms (VSASL-1000), and 500 ms (VSASL-500), PCASL with PLD of 1800 ms (PCASL-1800), and PC MRI on eight healthy volunteers at two sessions. RESULTS: Compared with PC MRI, VSASL-1520 produced significantly lower global CVR values, while PCASL-1800, VSASL-1000, and VSASL-500 yielded more consistent results. The reduced CVR in VSASL-1520 was more pronounced in carotid territories including frontal and temporal lobes than in vertebral territories such as the occipital lobe. This is largely caused by the underestimated perfusion during hypercapnia due to the reduced bolus duration being less than the PLD. CONCLUSION: Although VSASL offers certain advantages over spatially selective ASL due to its reduced susceptibility to delayed ATT, this technique is prone to biases when the ATT is excessively short. Therefore, a short PLD should be employed for reliable perfusion and CVR quantification in populations or conditions with fast flow.

17.
J Neurosurg ; : 1-6, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38848585

RESUMO

OBJECTIVE: Hereditary hemorrhagic telangiectasia (HHT) is an autosomal-dominant disorder characterized by multiple vascular malformations. Brain arteriovenous malformations (bAVMs) are a significant manifestation of HHT. The surgical management of these lesions in patients with HHT remains debated, with limited literature on postoperative outcomes. The goal of this study was to evaluate the safety and efficacy of surgical treatment for bAVMs in patients with HHT and propose a treatment rationale based on a single-center experience. METHODS: This retrospective review included 20 patients diagnosed with HHT who underwent resection of 23 bAVMs at the Stanford University Medical Center between January 2007 and September 2023. Data were also collected on bAVMs treated conservatively, with embolization, or with radiosurgery at the authors' institution, for comparison. RESULTS: There were 16 Spetzler-Martin (SM) grade I, 6 SM grade II, and 1 SM grade IV bAVM. Six of the bAVMs presented with neurological symptoms (3 with hemorrhage and 3 with focal neurological deficits), while the rest were detected on routine screening. Complete excision was angiographically confirmed in all patients, with a mean overall hospital stay of 2.1 days and a mean follow-up of 36 months. Postoperative complications were limited to transient mild weakness in 2 patients, 1 of whom also had transient speech deficits, and visual field deficits in 3 patients, 2 of whom improved on long-term follow-up. CONCLUSIONS: In this most extensive surgical series published to date, resection of bAVMs in patients with HHT showed favorable outcomes with a low complication rate, suggesting that the benefits of surgery outweigh the risks, especially considering the potential cumulative lifetime risk of hemorrhage. MR arterial spin labeling was found to be the most sensitive noninvasive measure of detecting bAVMs in patients with HHT.

18.
Exp Gerontol ; 194: 112478, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38866193

RESUMO

BACKGROUND: Cerebral small vessel disease (CSVD) closely correlates to cognitive impairment, but its pathophysiology and the neurovascular mechanisms of cognitive deficits were unclear. We aimed to explore the dysfunctional patterns of neurovascular coupling (NVC) in patients with CSVD and further investigate the neurovascular mechanisms of CSVD-related cognitive impairment. METHODS: Forty-three patients with CSVD and twenty-four healthy controls were recruited. We adopted resting-state functional magnetic resonance imaging combined with arterial spin labeling to investigate the NVC dysfunctional patterns in patients with CSVD. The Human Brain Atlas with 246 brain regions was applied to extract the NVC coefficients for each brain region. Partial correlation analysis and mediation analysis were used to explore the relationship between CSVD pathological features, NVC dysfunctional patterns, and cognitive decline. RESULTS: 8 brain regions with NVC dysfunction were found in patients with CSVD (p < 0.025, Bonferroni correction). The NVC dysfunctional patterns in regions of the default mode network and subcortical nuclei were negatively associated with lacunes, white matter hyperintensities burden, and the severity of CSVD (FDR correction, q < 0.05). The NVC decoupling in regions located in the default mode network positively correlated with delayed recall deficits (FDR correction, q < 0.05). Mediation analysis suggested that the decreased NVC pattern of the left superior frontal gyrus partially mediated the impact of white matter hyperintensities on delayed recall (Mediation effect: -0.119; 95%CI: -11.604,-0.458; p < 0.05). CONCLUSION: The findings of this study reveal the NVC dysfunctional pattern in patients with CSVD and illustrate the neurovascular mechanism of CSVD-related cognitive impairment. The NVC function in the left superior frontal gyrus may serve as a promising biomarker and therapeutic target for memory deficits in patients with CSVD.

19.
Artigo em Inglês | MEDLINE | ID: mdl-38876805

RESUMO

AIMS: This study aimed to demonstrate the feasibility and evaluate the dosimetric effect and clinical impact of dose-painting proton radiotherapy (PRT) guided by functional MRI in non-enhancing high-grade gliomas (NE-HGGs). MATERIALS AND METHODS: The 3D-ASL and T2 FLAIR MR images of ten patients with NE-HGGs before radiotherapy were studied retrospectively. The hyperintensity on T2 FLAIR was used to generate the planning target volume (PTV), and the high-perfusion volume on 3D-ASL (PTV-ASL) was used to generate the simultaneous integrated boost (SIB) volume. Each patient received pencil beam scanning PRT and photon intensity-modulated radiotherapy (IMRT). There were five plans in each modality: (1) Uniform plans (IMRT60 vs. PRT60): 60Gy in 30 fractions to the PTV. (2)-(5) SIB plans (IMRT72, 84, 96, 108 vs. PRT72, 84, 96, 108): Uniform plan plus additional dose boost to PTV-ASL in 30 fractions to 72, 84, 96, 108 Gy. The dosimetric differences between various plans were compared. The clinical effects of target volume and organs at risk (OARs) were assessed using biological models for both tumor control probability (TCP) and normal tissue complication probability (NTCP). RESULTS: Compared with the IMRT plan, the D2 and D50 of the PRT plans with the same prescription dose increased by 1.27-4.12% and 0.64-2.01%, respectively; the R30 decreased by > 32%; the dose of brainstem and chiasma decreased by > 27% and >32%; and the dose of normal brain tissue (Br-PTV), optic nerves, eyeballs, lens, cochlea, spinal cord, and hippocampus decreased by > 50% (P < 0.05). The maximum necessary dose was 96GyE to achieve >98% TCP for PRT, and it was 84Gy to achieve >91% TCP for IMRT. The average NTCP of Br-PTV was 1.30% and 1.90% for PRT and IMRT at the maximum dose escalation, respectively. The NTCP values of the remaining OARs approached zero in all PRT plans. CONCLUSION: The functional MRI-guided dose escalation using PRT is feasible while sparing the OARs constraints and demonstrates a potential clinical benefit by improving TCP with no or minimal increase in NCTP for tissues outside the PTV. This retrospective study suggested that the use of PRT-based SIB guided by functional MRI may represent a strategy to provide benefits for patients with NE-HGGs.

20.
Brain Behav ; 14(6): e3598, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38923330

RESUMO

PURPOSE: To assess changes in neurovascular coupling (NVC) by evaluating the relationship between cerebral perfusion and brain connectivity in patients with end-stage renal disease (ESRD) undergoing hemodialysis versus in healthy control participants. And by exploring brain regions with abnormal NVC associated with cognitive deficits in patients, we aim to provide new insights into potential preventive and therapeutic interventions. MATERIALS AND METHODS: A total of 45 patients and 40 matched healthy controls were prospectively enrolled in our study. Montreal Cognitive Assessment (MoCA) was used to assess cognitive function. Arterial spin labeling (ASL) was used to calculate cerebral blood flow (CBF), and graph theory-based analysis of results from resting-state functional magnetic resonance imaging (rs-fMRI) was used to calculate brain network topological parameters (node betweenness centrality [BC], node efficiency [Ne], and node degree centrality [DC]). Three NVC biomarkers (CBF-BC, CBF-Ne, and CBF-DC coefficients) at the whole brain level and 3 NVC biomarkers (CBF/BC, CBF/Ne, and CBF/DC ratios) at the local brain region level were used to assess NVC. Mann-Whitney U tests were used to compare the intergroup differences in NVC parameters. Spearman's correlation analysis was used to evaluate the relationship among NVC dysfunctional pattern, cognitive impairment, and clinical characteristics multiple comparisons were corrected using a voxel-wise false-discovery rate (FDR) method (p < .05). RESULTS: Patients showed significantly reduced global coupling coefficients for CBF-Ne (p = .023) and CBF-BC (p = .035) compared to healthy controls. Coupling ratios at the local brain region level were significantly higher in patients in 33 brain regions (all p values < .05). Coupling ratio changes alone or accompanied by changes in CBF, node properties, or both CBF and node properties were identified. In patients, negative correlations were seen between coupling ratios and MoCA scores in many brain regions, including the left dorsolateral superior frontal gyrus, the bilateral median cingulate and paracingulate gyri, and the right superior parietal gyrus. The correlations remained even after adjusting for hemoglobin and hematocrit levels. CONCLUSION: Disrupted NVC may be one mechanism underlying cognitive impairment in dialysis patients.


Assuntos
Encéfalo , Disfunção Cognitiva , Falência Renal Crônica , Imageamento por Ressonância Magnética , Acoplamento Neurovascular , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Acoplamento Neurovascular/fisiologia , Falência Renal Crônica/fisiopatologia , Falência Renal Crônica/terapia , Falência Renal Crônica/diagnóstico por imagem , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Adulto , Circulação Cerebrovascular/fisiologia , Diálise Renal , Neuroimagem/métodos , Idoso , Estudos Prospectivos , Testes de Estado Mental e Demência , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...