Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.865
Filtrar
1.
BMC Med Imaging ; 24(1): 162, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38956470

RESUMO

BACKGROUND: The image quality of computed tomography angiography (CTA) images following endovascular aneurysm repair (EVAR) is not satisfactory, since artifacts resulting from metallic implants obstruct the clear depiction of stent and isolation lumens, and also adjacent soft tissues. However, current techniques to reduce these artifacts still need further advancements due to higher radiation doses, longer processing times and so on. Thus, the aim of this study is to assess the impact of utilizing Single-Energy Metal Artifact Reduction (SEMAR) alongside a novel deep learning image reconstruction technique, known as the Advanced Intelligent Clear-IQ Engine (AiCE), on image quality of CTA follow-ups conducted after EVAR. MATERIALS: This retrospective study included 47 patients (mean age ± standard deviation: 68.6 ± 7.8 years; 37 males) who underwent CTA examinations following EVAR. Images were reconstructed using four different methods: hybrid iterative reconstruction (HIR), AiCE, the combination of HIR and SEMAR (HIR + SEMAR), and the combination of AiCE and SEMAR (AiCE + SEMAR). Two radiologists, blinded to the reconstruction techniques, independently evaluated the images. Quantitative assessments included measurements of image noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), the longest length of artifacts (AL), and artifact index (AI). These parameters were subsequently compared across different reconstruction methods. RESULTS: The subjective results indicated that AiCE + SEMAR performed the best in terms of image quality. The mean image noise intensity was significantly lower in the AiCE + SEMAR group (25.35 ± 6.51 HU) than in the HIR (47.77 ± 8.76 HU), AiCE (42.93 ± 10.61 HU), and HIR + SEMAR (30.34 ± 4.87 HU) groups (p < 0.001). Additionally, AiCE + SEMAR exhibited the highest SNRs and CNRs, as well as the lowest AIs and ALs. Importantly, endoleaks and thrombi were most clearly visualized using AiCE + SEMAR. CONCLUSIONS: In comparison to other reconstruction methods, the combination of AiCE + SEMAR demonstrates superior image quality, thereby enhancing the detection capabilities and diagnostic confidence of potential complications such as early minor endleaks and thrombi following EVAR. This improvement in image quality could lead to more accurate diagnoses and better patient outcomes.


Assuntos
Artefatos , Angiografia por Tomografia Computadorizada , Procedimentos Endovasculares , Humanos , Estudos Retrospectivos , Feminino , Angiografia por Tomografia Computadorizada/métodos , Idoso , Masculino , Procedimentos Endovasculares/métodos , Pessoa de Meia-Idade , Aneurisma da Aorta Abdominal/cirurgia , Aneurisma da Aorta Abdominal/diagnóstico por imagem , Aprendizado Profundo , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Stents , Correção Endovascular de Aneurisma
2.
Phys Med Biol ; 69(14)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38959913

RESUMO

Objective. Follow-up computed tomography angiography (CTA) is necessary for ensuring occlusion effect of endovascular coiling. However, the implanted metal coil will introduce artifacts that have a negative spillover into radiologic assessment.Method. A framework named ReMAR is proposed in this paper for metal artifacts reduction (MARs) from follow-up CTA of patients with coiled aneurysms. It employs preoperative CTA to provide the prior knowledge of the aneurysm and the expected position of the coil as a guidance thus balances the metal artifacts removal performance and clinical feasibility. The ReMAR is composed of three modules: segmentation, registration and MAR module. The segmentation and registration modules obtain the metal coil knowledge via implementing aneurysms delineation on preoperative CTA and alignment of follow-up CTA. The MAR module consisting of hybrid convolutional neural network- and transformer- architectures is utilized to restore sinogram and remove the artifact from reconstructed image. Both image quality and vessel rendering effect after metal artifacts removal are assessed in order to responding clinical concerns.Main results. A total of 137 patients undergone endovascular coiling have been enrolled in the study: 13 of them have complete diagnosis/follow-up records for end-to-end validation, while the rest lacked of follow-up records are used for model training. Quantitative metrics show ReMAR significantly reduced the metal-artifact burden in follow-up CTA. Qualitative ranks show ReMAR could preserve the morphology of blood vessels during artifact removal as desired by doctors.Significance. The ReMAR could significantly remove the artifacts caused by implanted metal coil in the follow-up CTA. It can be used to enhance the overall image quality and convince CTA an alternative to invasive follow-up in treated intracranial aneurysm.


Assuntos
Artefatos , Angiografia por Tomografia Computadorizada , Procedimentos Endovasculares , Metais , Humanos , Procedimentos Endovasculares/instrumentação , Processamento de Imagem Assistida por Computador/métodos , Seguimentos , Feminino
3.
Mitochondrial DNA B Resour ; 9(7): 861-864, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38983844

RESUMO

The complete mitochondrial genome of Blue-fronted Redstart (Phoenicurus frontalis), GenBank accession number MT360379 (NC_053917), was published by Li and colleages in 2020. Here we show that this mitogenome is actually a chimera containing DNA fragments of both P. frontalis (15,518 bp, 92.5%) and Pink-rumped Rosefinch (Carpodacus waltoni eos, 1258 bp, 7.5%). This mitogenome has been re-used in at least three phylogenies. Our study confirms that mitogenomes are best verified with multiple gene trees, and that any anomalies should be investigated by direct comparison of sequences.

4.
Front Neuroimaging ; 3: 1336887, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38984197

RESUMO

Introduction: Use of functional MRI in awake non-human primate (NHPs) has recently increased. Scanning animals while awake makes data collection possible in the absence of anesthetic modulation and with an extended range of possible experimental designs. Robust awake NHP imaging however is challenging due to the strong artifacts caused by time-varying off-resonance changes introduced by the animal's body motion. In this study, we sought to thoroughly investigate the effect of a newly proposed dynamic off-resonance correction method on brain activation estimates using extended awake NHP data. Methods: We correct for dynamic B0 changes in reconstruction of highly accelerated simultaneous multi-slice EPI acquisitions by estimating and correcting for dynamic field perturbations. Functional MRI data were collected in four male rhesus monkeys performing a decision-making task in the scanner, and analyses of improvements in sensitivity and reliability were performed compared to conventional image reconstruction. Results: Applying the correction resulted in reduced bias and improved temporal stability in the reconstructed time-series data. We found increased sensitivity to functional activation at the individual and group levels, as well as improved reliability of statistical parameter estimates. Conclusions: Our results show significant improvements in image fidelity using our proposed correction strategy, as well as greatly enhanced and more reliable activation estimates in GLM analyses.

5.
Abdom Radiol (NY) ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980403

RESUMO

OBJECTIVES: To compare the image quality of 1.5T and 3T prostate MRIs of the same post-hip arthroplasty patients, with a specific focus on the degree of susceptibility artifacts. METHODS: This single-center retrospective study included post-hip arthroplasty patients who underwent 1.5T prostate MRIs between 2021 and 2023, as well as comparative 3T prostate MRIs. Three blinded abdominal radiologists retrospectively reviewed their diffusion-weighted imaging (DWI, 50 s/mm2), T2-weighted imaging (T2WI), and dynamic contrast-enhanced imaging (DCE) to evaluate the image quality. The degree of susceptibility artifacts was categorized using a three-point scale, with 3 indicating the least artifact and 1 indicating the most. Image quality was also evaluated using Prostate Imaging Quality (PI-QUAL) version 2. The median of the three raters' scores was compared between 1.5T and 3T prostate MRIs using the Wilcoxon signed-rank test. The inter-rater agreement was evaluated using the multi-rater generalized kappa. RESULTS: Twenty pairs of 1.5T and 3T prostate MRI examinations from 20 unique patients were included. The DWI susceptibility artifact score at 1.5T was significantly higher than at 3T (mean score ± standard deviation, 2.80 ± 0.41 vs. 2.35 ± 0.93, p = 0.014). In contrast, no significant differences were observed in the susceptibility artifact scores in T2WI and DCE, or in the PI-QUAL score. The inter-reader agreement in the susceptibility artifact score was moderate (multi-rater generalized kappa: 0.60) in DWI, perfect in T2WI (not applicable), and substantial (0.65) in DCE. The inter-reader agreement was fair (0.27) in the PI-QUAL score. CONCLUSION: Using 1.5T scanners may be preferable to reduce susceptibility artifacts from hip prostheses in DWI.

6.
Eur Radiol ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38987398

RESUMO

OBJECTIVES: To investigate the effect of motion-compensated reconstruction (MCR) algorithm on improving the image quality of coronary computed tomography angiography (CCTA) using second-generation dual-layer spectral detector computed tomography (DLCT), and to evaluate the influence of heart rate (HR) on the motion-correction efficacy of this algorithm. MATERIALS AND METHODS: We retrospectively enrolled 127 patients who underwent CCTA for suspected coronary artery disease using second-generation DLCT. We divided the patients into two subgroups according to their average HR during scanning: the "HR < 75 bpm" group and the "HR ≥ 75 bpm" group. All images were reconstructed by the standard (STD) algorithm and MCR algorithm. Subjective image quality (4-point Likert scale), interpretability, and objective image quality between the STD and MCR in the whole population and within each subgroup were compared. RESULTS: MCR showed significantly higher Likert scores and interpretability than STD on the per-segment (3.58 ± 0.69 vs. 2.82 ± 0.93, 98.4% vs. 91.9%), per-vessel (3.12 ± 0.81 vs. 2.12 ± 0.74, 96.3% vs. 78.7%) and per-patient (2.57 ± 0.76 vs. 1.62 ± 0.55, 90.6% vs. 59.1%) levels (all p < 0.001). In the analysis of HR subgroups on a per-vessel basis of interpretability, significant differences were observed only in the right coronary artery in the low HR group, whereas significant differences were noted in three major coronary arteries in the high HR group. For objective image quality assessment, MCR significantly improved the SNR (13.22 ± 4.06 vs. 12.72 ± 4.06) and the contrast-to-noise ratio (15.84 ± 4.82 vs. 15.39 ± 4.38) compared to STD (both p < 0.001). CONCLUSION: MCR significantly improves the subjective image quality, interpretability, and objective image quality of CCTA, especially in patients with higher HRs. CLINICAL RELEVANCE STATEMENT: The motion-compensated reconstruction algorithm of the second-generation dual-layer spectral detector computed tomography is helpful in improving the image quality of coronary computed tomography angiography in clinical practice, especially in patients with higher heart rates. KEY POINTS: Motion artifacts from cardiac movement affect the quality and interpretability of coronary computed tomography angiography (CCTA). This motion-compensated reconstruction (MCR) algorithm significantly improves the image quality of CCTA in clinical practice. Image quality improvement by using MCR was more significant in the high heart rate group.

7.
J Belg Soc Radiol ; 108(1): 68, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38974910

RESUMO

Teaching point: To emphasize the importance of recognizing mirror image artifacts in musculoskeletal ultrasound to avoid misdiagnosis, unnecessary interventions, and additional diagnostic procedures that can lead to patient anxiety, increased healthcare costs, and potential harm.

8.
Int J Neural Syst ; : 2450052, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38989919

RESUMO

Quality assessment (QA) of magnetic resonance imaging (MRI) encompasses several factors such as noise, contrast, homogeneity, and imaging artifacts. Quality evaluation is often not standardized and relies on the expertise, and vigilance of the personnel, posing limitations especially with large datasets. Machine learning based on convolutional neural networks (CNNs) is a promising approach to address these challenges by performing automated inspection of MR images. In this study, a CNN for the detection of random head motion artifacts (RHM) in T1-weighted MRI as one aspect of image quality is proposed. A two-step approach aimed to first identify images exhibiting pronounced motion artifacts, and second to evaluate the feasibility of a more detailed three-class classification. The utilized dataset consisted of 420 T1-weighted whole-brain image volumes with isotropic resolution. Human experts assigned each volume to one of three classes of artifact prominence. Results demonstrate an accuracy of 95% for the identification of images with pronounced artifact load. The addition of an intermediate class retained an accuracy of 76%. The findings highlight the potential of CNN-based approaches to increase the efficiency of post-hoc QAs in large datasets by flagging images with potentially relevant artifact loads for closer inspection.

9.
Indian J Nucl Med ; 39(2): 139-141, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38989303

RESUMO

Comprehension of the typical distribution pattern of 99mTc-methylenediphosphonate (MDP) is crucial for precise interpretation of bone scintigraphy. The presence of nonskeletal activity is predominantly confined to the kidneys and bladder, attributed to the standard renal excretion of 99mTc-MDP. We discuss a 70-year-old woman with a known case of brucellosis using rifampin, doxycycline, trimethoprim/sulfamethoxazole (co-trimoxazole), and ciprofloxacin for the past 8 months. Anterior and posterior aspects of the whole-body bone scan showed diffuse increased uptake in the bodies of L2 and L3 vertebrae and related intervertebral disks. However, unexpected uptake is noted in the right upper quadrant in the region of the gallbladder. Radiochemical impurities did not show during radiopharmaceutical (MDP) quality control, and the other patients showed normal distribution. This gallbladder uptake may be attributed to the altered distribution of the radiotracer and/or gallbladder injury caused by the administration of antibiotic therapy.

10.
J Biophotonics ; : e202400104, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38955360

RESUMO

A number of hardware-based and software-based strategies have been suggested to eliminate motion artifacts for improvement of 3D-optical coherence tomography (OCT) image quality. However, the hardware-based strategies have to employ additional hardware to record motion compensation information. Many software-based strategies have to need additional scanning for motion correction at the expense of longer acquisition time. To address this issue, we propose a motion artifacts correction and motion estimation method for OCT volumetric imaging of anterior segment, without requirements of additional hardware and redundant scanning. The motion correction effect with subpixel accuracy for in vivo 3D-OCT has been demonstrated in experiments. Moreover, the physiological information of imaging object, including respiratory curve and respiratory rate, has been experimentally extracted using the proposed method. The proposed method offers a powerful tool for scientific research and clinical diagnosis in ophthalmology and may be further extended for other biomedical volumetric imaging applications.

11.
Pflugers Arch ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38955833

RESUMO

Cellular responses to hypoxia are crucial in various physiological and pathophysiological contexts and have thus been extensively studied. This has led to a comprehensive understanding of the transcriptional response to hypoxia, which is regulated by hypoxia-inducible factors (HIFs). However, the detailed molecular mechanisms of HIF regulation in hypoxia remain incompletely understood. In particular, there is controversy surrounding the production of mitochondrial reactive oxygen species (ROS) in hypoxia and how this affects the stabilization and activity of HIFs. This review examines this controversy and attempts to shed light on its origin. We discuss the role of physioxia versus normoxia as baseline conditions that can affect the subsequent cellular response to hypoxia and highlight the paucity of data on pericellular oxygen levels in most experiments, leading to variable levels of hypoxia that might progress to anoxia over time. We analyze the different outcomes reported in isolated mitochondria, versus intact cells or whole organisms, and evaluate the reliability of various ROS-detecting tools. Finally, we examine the cell-type and context specificity of oxygen's various effects. We conclude that while recent evidence suggests that the effect of hypoxia on ROS production is highly dependent on the cell type and the duration of exposure, efforts should be made to conduct experiments under carefully controlled, physiological microenvironmental conditions in order to rule out potential artifacts and improve reproducibility in research.

12.
Imaging Sci Dent ; 54(2): 139-145, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38948185

RESUMO

Purpose: This study examined the influence of a metal artifact reduction (MAR) tool, sharpening filters, and their combination on the diagnosis of vertical root fracture (VRF) in teeth with metallic posts using cone-beam computed tomography (CBCT). Materials and Methods: Twenty single-rooted human premolars - 9 with VRF and 11 without - were individually placed in a human mandible. A metallic post composed of a cobalt-chromium alloy was inserted into the root canal of each tooth. CBCT scans were then acquired under the following parameters: 8 mA, a 5×5 cm field of view, a voxel size of 0.085 mm, 90 kVp, and with MAR either enabled or disabled. Five oral and maxillofacial radiologists independently evaluated the CBCT exams under each MAR mode and across 3 sharpening filter conditions: no filter, Sharpen 1×, and Sharpen 2×. The diagnostic performance was quantified by the area under the receiver operating characteristic curve (AUC), sensitivity, and specificity. These metrics were compared using 2-way analysis of variance with a significance level of α=5%. Intra- and inter-examiner agreement were assessed using the weighted kappa test. Results: Neither MAR nor the application of sharpening filters significantly impacted AUC or specificity (P>0.05). However, sensitivity increased when MAR was combined with Sharpen 1× and Sharpen 2× (P=0.015). The intra-examiner agreement ranged from fair to substantial (0.34-0.66), while the inter-examiner agreement ranged from fair to moderate (0.27-0.41). Conclusion: MAR in conjunction with sharpening filters improved VRF detection; therefore, their combined use is recommended in cases of suspected VRF.

13.
Imaging Sci Dent ; 54(2): 191-199, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38948193

RESUMO

Purpose: The aim of this study was to evaluate image artifacts in the vicinity of dental implants in cone-beam computed tomography (CBCT) scans obtained with different spatial orientations, tube current levels, and metal artifact reduction algorithm (MAR) conditions. Materials and Methods: One dental implant and 2 tubes filled with a radiopaque solution were placed in the posterior region of a mandible using a surgical guide to ensure parallel alignment. CBCT scans were acquired with the mandible in 2 spatial orientations in relation to the X-ray projection plane (standard and modified) at 3 tube current levels: 5, 8, and 11 mA. CBCT scans were repeated without the implant and were reconstructed with and without MAR. The mean voxel and noise values of each tube were obtained and compared using multi-way analysis of variance and the Tukey test (α=0.05). Results: Mean voxel values were significantly higher and noise values were significantly lower in the modified orientation than in the standard orientation (P<0.05). MAR activation and tube current levels did not show significant differences in most cases of the modified spatial orientation and in the absence of the dental implant (P>0.05). Conclusion: Modifying the spatial orientation of the head increased brightness and reduced spatial orientation noise in adjacent regions of a dental implant, with no influence from the tube current level and MAR.

14.
Magn Reson Med ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38968132

RESUMO

PURPOSE: To reduce the ringing artifacts of the motion-resolved images in free-breathing dynamic pulmonary MRI. METHODS: A golden-step based interleaving (GSI) technique was proposed to reduce ringing artifacts induced by diaphragm drifting. The pulmonary MRI data were acquired using a superior-inferior navigated 3D radial UTE sequence in an interleaved manner during free breathing. Successive interleaves were acquired in an incoherent fashion along the polar direction. Four-dimensional images were reconstructed from the motion-resolved k-space data obtained by retrospectively binning. The reconstruction algorithms included standard nonuniform fast Fourier transform (NUFFT), Voronoi-density-compensated NUFFT, extra-dimensional UTE, and motion-state weighted motion-compensation reconstruction. The proposed interleaving technique was compared with a conventional sequential interleaving (SeqI) technique on a phantom and eight subjects. RESULTS: The quantified ringing artifacts level in the motion-resolved image is positively correlated with the quantified nonuniformity level of the corresponding k-space. The nonuniformity levels of the end-expiratory and end-inspiratory k-space binned from GSI data (0.34 ± 0.07, 0.33 ± 0.05) are significantly lower with statistical significance (p < 0.05) than that binned from SeqI data (0.44 ± 0.11, 0.42 ± 0.12). Ringing artifacts are substantially reduced in the dynamic images of eight subjects acquired using the proposed technique in comparison with that acquired using the conventional SeqI technique. CONCLUSION: Ringing artifacts in the motion-resolved images induced by diaphragm drifting can be reduced using the proposed GSI technique for free-breathing dynamic pulmonary MRI. This technique has the potential to reduce ringing artifacts in free-breathing liver and kidney MRI based on full-echo interleaved 3D radial acquisition.

15.
Front Neuroergon ; 5: 1286586, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903906

RESUMO

The optical brain imaging method functional near-infrared spectroscopy (fNIRS) is a promising tool for real-time applications such as neurofeedback and brain-computer interfaces. Its combination of spatial specificity and mobility makes it particularly attractive for clinical use, both at the bedside and in patients' homes. Despite these advantages, optimizing fNIRS for real-time use requires careful attention to two key aspects: ensuring good spatial specificity and maintaining high signal quality. While fNIRS detects superficial cortical brain regions, consistently and reliably targeting specific regions of interest can be challenging, particularly in studies that require repeated measurements. Variations in cap placement coupled with limited anatomical information may further reduce this accuracy. Furthermore, it is important to maintain good signal quality in real-time contexts to ensure that they reflect the true underlying brain activity. However, fNIRS signals are susceptible to contamination by cerebral and extracerebral systemic noise as well as motion artifacts. Insufficient real-time preprocessing can therefore cause the system to run on noise instead of brain activity. The aim of this review article is to help advance the progress of fNIRS-based real-time applications. It highlights the potential challenges in improving spatial specificity and signal quality, discusses possible options to overcome these challenges, and addresses further considerations relevant to real-time applications. By addressing these topics, the article aims to help improve the planning and execution of future real-time studies, thereby increasing their reliability and repeatability.

16.
Diagnostics (Basel) ; 14(11)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38893602

RESUMO

Incorrect scatter scaling of positron emission tomography (PET) images can lead to halo artifacts, quantitative bias, or reconstruction failure. Tail-fitted scatter scaling (TFSS) possesses performance limitations in multiple cases. This study aims to investigate a novel method for scatter scaling: maximum-likelihood scatter scaling (MLSS) in scenarios where TFSS tends to induce artifacts or are observed to cause reconstruction abortion. [68Ga]Ga-RGD PET scans of nine patients were included in cohort 1 in the scope of investigating the reduction of halo artifacts relative to the scatter estimation method. PET scans of 30 patients administrated with [68Ga]Ga-uPAR were included in cohort 2, used for an evaluation of the robustness of MLSS in cases where TFSS-integrated reconstructions are observed to fail. A visual inspection of MLSS-corrected images scored higher than TFSS-corrected reconstructions of cohort 1. The quantitative investigation near the bladder showed a relative difference in tracer uptake of up to 94.7%. A reconstruction of scans included in cohort 2 resulted in failure in 23 cases when TFSS was used. The lesion uptake values of cohort 2 showed no significant difference. MLSS is suggested as an alternative scatter-scaling method relative to TFSS with the aim of reducing halo artifacts and a robust reconstruction process.

17.
Forensic Sci Int Genet ; 72: 103086, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38897164

RESUMO

Significant progress has been made in recent years in the development of techniques for Next Generation Sequencing (NGS), or Massively Parallel Sequencing (MPS), of forensically relevant short tandem repeat (STR) loci. However, as these technologies are investigated and adopted by forensic laboratories, new challenges unfold that require further scrutiny. In the analysis of DNA profiles generated using the MiSeq FGx sequencing system, we have observed noise sequences with relatively high readcounts that are challenging to distinguish from genuine alleles. These high read count noise sequences appear as allele sequences with one or a few substituted bases compared to a known allele sequence within the profile. An examination of ForenSeq DNA Signature Prep Kit STR noise sequences revealed that the substituted base of a parent allele can align to the same position on the sequence across noise sequences. This suggests that these substitution events occur at specific positions within the amplicon, resulting in multiple noise reads with substitutions at the same position. Mapping of the noise events onto the original raw read positions revealed a high number of events, or "noise spikes", occurring at specific positions within a given sequencing run. These noise spikes affected reads across the entire run, agnostic of locus or sample, while the position, occurrence, and amplitude of the spikes differed across runs. The majority of noise sequences with high read counts in a DNA profile were generated from base changes at these spike positions, and could be classified as "noise spike artefacts". In this paper we present evidence of the noise spike artefacts and their genesis during the sequencing process in the sequencing-by-synthesis (SBS) cycles, as well as the methods developed to detect them. The information and methods will assist laboratories with detecting noise spikes in MiSeq FGx sequencing runs, differentiating authentic allele sequences from noise spike artefacts, and developing protocols for analyst review and handling of MiSeq FGx data.

18.
World J Clin Cases ; 12(17): 3130-3137, 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38898845

RESUMO

BACKGROUND: Neurological complications are common in the management of venoarterial extracorporeal membrane oxygenation (VA-ECMO), with most patients requiring sedation and intubation, limiting the assessment of neurological function. There-fore, we must rely on advanced neuroimaging techniques, such as computed tomography angiography (CTA) and computed tomography perfusion (CTP). Because ECMO changes the normal blood flow pattern, it may interfere with the contrast medium in some special cases, leading to artifacts and ultimately mis-leading clinical decisions. CASE SUMMARY: A 61-year-old man presented to a local hospital with chest tightness and pain 1 d prior to presentation. The patient was treated with VA-ECMO after sudden car-diac and respiratory arrest at a local hospital. For further treatment, the patient was transferred to our hospital. The initial consciousness assessment was not clear, and routine CTP was performed to understand the intracranial changes, which suggested a large area of cerebral infarction on the right side; however, the cerebral oxygen was not consistent with the CTP results, and the reexamination of CTA still suggested a right cerebral infarction. To identify this difference, bedside transcranial Doppler was performed, and the blood flow on both sides was different. By reducing the ECMO flow, CTP reexamination showed that the results were normal and consistent with the clinical results. On day 3, the patient was alert and showed good limb movements. CONCLUSION: In patients with peripheral VA-ECMO, cerebral perfusion confirmed by CTP and CTA may lead to false cerebral infarction.

19.
Cureus ; 16(5): e60656, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38899261

RESUMO

PURPOSE: Motion artifacts caused by heart motion during myocardial perfusion single-photon emission computed tomography (SPECT) can compromise image quality and diagnostic accuracy. This study aimed to evaluate the efficacy of the novel respiratory motion reduction block (RRB) device in reducing motion artifacts by compressing the hypochondrium and improving SPECT image quality. METHODS: In total, 91 patients who underwent myocardial perfusion SPECT with 99mTc-sestamibi were retrospectively analyzed. Patients (n = 28) who underwent SPECT without the RRB were included in the control group, and those (n = 63) who underwent SPECT with the RRB were in the RRB group. The distance of heart motion during dynamic acquisition was measured, and projection data were assessed for patient motion and motion artifacts. Patient motion was classified into various levels, and motion artifacts on SPECT images were visually examined. RESULTS: The distances of heart motion without and with the RRB were 15.4 ± 5.3 and 7.5 ± 2.3, respectively. Compared with the control group, the RRB group had a lower frequency of heart motion based on the projection data, particularly in terms of creep and shift motion. The RRB group had a significantly lower incidence of motion artifacts on SPECT images than the control group. CONCLUSIONS: The RRB substantially reduced specific types of motion, such as shift and creep, and had a low influence on bounce motion. However, it could effectively suppress respiratory-induced heart motion and reduce motion artifacts on myocardial perfusion SPECT, thereby emphasizing its potential for improving image quality.

20.
Neuroimage ; 296: 120661, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38838840

RESUMO

Optically pumped magnetometer magnetoencephalography (OPM-MEG) holds significant promise for clinical functional brain imaging due to its superior spatiotemporal resolution. However, effectively suppressing metallic artifacts, particularly from devices such as orthodontic braces and vagal nerve stimulators remains a major challenge, hindering the wider clinical application of wearable OPM-MEG devices. A comprehensive analysis of metal artifact characteristics from time, frequency, and time-frequency perspectives was conducted for the first time using an OPM-MEG device in clinical medicine. This study focused on patients with metal orthodontics, examining the modulation of metal artifacts by breath and head movement, the incomplete regular sub-Gaussian distribution, and the high absolute power ratio in the 0.5-8 Hz band. The existing metal artifact suppression algorithms applied to SQUID-MEG, such as fast independent component analysis (FastICA), information maximization (Infomax), and algorithms for multiple unknown signal extraction (AMUSE), exhibit limited efficacy. Consequently, this study introduced the second-order blind identification (SOBI) algorithm, which utilized multiple time delays for the component separation of OPM-MEG measurement signals. We modified the time delays of the SOBI method to improve its efficacy in separating artifact components, particularly those in the ultralow frequency range. This approach employs the frequency-domain absolute power ratio, root mean square (RMS) value, and mutual information methods to automate the artifact component screening process. The effectiveness of this method was validated through simulation experiments involving four subjects in both resting and evoked experiments. In addition, the proposed method was also validated by the actual OPM-MEG evoked experiments of three subjects. Comparative analyses were conducted against the FastICA, Infomax, and AMUSE algorithms. Evaluation metrics included normalized mean square error, normalized delta band power error, RMS error, and signal-to-noise ratio, demonstrating that the proposed method provides optimal suppression of metal artifacts. This advancement holds promise for enhancing data quality and expanding the clinical applications of OPM-MEG.


Assuntos
Artefatos , Magnetoencefalografia , Humanos , Magnetoencefalografia/métodos , Magnetoencefalografia/instrumentação , Adulto , Feminino , Masculino , Algoritmos , Metais , Processamento de Sinais Assistido por Computador , Adulto Jovem , Encéfalo/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...