Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Environ Monit Assess ; 195(12): 1453, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37947882

RESUMO

We present an inexpensive, versatile, and robust mounting system for Hester-Dendy (HD) multiplate samplers that are useful in aquatic biological studies and freshwater biomonitoring programs. Detailed instructions are provided outlining the construction and deployment of a concrete block system featuring threaded anchors for screwing in HD columns in a vertical position. Additionally, eye bolts provide a central attachment point for cabling the block securely to the stream or river bank, and for attachment of a buoy or physiochemical data logger if desired. All the components of the block system are inexpensive, readily available, and assembled with no special skills required. The system offers superior ease-of-use and a more standardized sampling device compared to other methods.


Assuntos
Monitoramento Ambiental , Invertebrados , Animais , Monitoramento Ambiental/métodos , Rios , Monitoramento Biológico , Ecossistema
2.
Mar Biodivers ; 53(4): 49, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37424747

RESUMO

Hull fouling is considered to be the most significant vector of introduction of marine non-indigenous species (NIS) in the Madeira Archipelago (NE Atlantic) because these islands provide a vital passage route for many ships. The transfer of species between boat hulls and artificial substrates in marinas is known to be high. Bryozoans are among the most common groups of marine invertebrates growing on this type of substrate. In recent years, significant advances have been made in our knowledge about the biodiversity of bryozoans in the Madeira Archipelago. Nonetheless, the currently recognized numbers remain far from reflecting the actual bryozoan species richness. In this context, we examine bryozoan samples stemming from NIS monitoring surveys on artificial substrates along the southern coast of the Madeira Archipelago, in four recreational marinas and in two offshore aquaculture farms. This has yielded new information about ten bryozoan species. Two of them, Crisia noronhai sp. nov. and Amathia maderensis sp. nov., are described for the first time, although at least the first one was previously recorded from Madeira but misidentified. Bugula ingens, Cradoscrupocellaria insularis, Scruparia ambigua, and Celleporaria brunnea are recorded for the first time in Madeira. Moreover, the material of C. brunnea was compared with the type, and a biometric analysis was performed with material from the Atlantic and Mediterranean. All samples identified as C. brunnea in both regions are the same species, and the variations described in the literature apparently reflect high intracolonial variability. Finally, we provide new information for the descriptions of 4 additional bryozoans, namely, Crisia sp. aff. elongata, Cradoscrupocellaria bertholletii, Scrupocaberea maderensis, and Tricellaria inopinata.

3.
Toxins (Basel) ; 15(3)2023 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-36977108

RESUMO

Vulcanodinium rugosum is an emerging benthopelagic neuro-toxic dinoflagellate species responsible for seasonal Pinnatoxins and Portimines contaminations of shellfish and marine animals. This species is challenging to detect in the environment, as it is present in low abundance and difficult to be identified using light microscopy. In this work, we developed a method using artificial substrates coupled with qPCR (AS-qPCR) to detect V. rugosum in a marine environment. This sensitive, specific and easy-to-standardize alternative to current techniques does not require specialized expertise in taxonomy. After determining the limits and specificity of the qPCR, we searched for the presence of V. rugosum in four French Mediterranean lagoons using artificial substrates collected every two weeks for one year. The AS-qPCR method revealed its occurrences in summer 2021 in every studied lagoon and detected cells in more samples than light microscopy. As V. rugosum development induces shellfish contamination even at low microalga densities, the AS-qPCR method is accurate and relevant for monitoring V. rugosum in a marine environment.


Assuntos
Dinoflagellida , Animais , Dinoflagellida/genética , Frutos do Mar , Alimentos Marinhos , Bioensaio
4.
Harmful Algae ; 117: 102271, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35944952

RESUMO

The study of epibenthic assemblages of harmful dinoflagellates (BHABs) is commonly conducted in shallow infralittoral zones (0 - 5 m) and are seldom investigated at deeper waters. In this study, the distribution with depth of five BHAB genera (Gambierdiscus, Ostreopsis, Prorocentrum, Coolia and Amphidinium) was investigated in the south of El Hierro island (Canary Islands, Spain). Sampling involved the use of a standardized artificial substrate deployed at three depth levels (5, 10 and 20 m) that were visited at three different times throughout one year. The influence of three depth-correlated abiotic parameters, i.e. light, water motion and water temperature, on the vertical and seasonal distribution of the BHAB assemblage was also assessed. Two vertical distribution patterns were observed consistently through time: cell abundances of Ostreopsis and Coolia decreased from 5 to 20 m while those of Gambierdiscus, Prorocentrum and Amphidinium showed the reverse pattern, although significant differences were only observed between 5 and 10 - 20 m depth. In April, two members of the latter group, Gambierdiscus and Amphidinium, were even absent at 5 m depth. The recorded environmental parameters explained a high percentage of the observed distribution. In particular, model selection statistical approaches indicated that water motion was the most significant parameter. An analysis of Gambierdiscus at species level revealed the co-occurrence of four species in the study area: G. australes, G. belizeanus, G. caribaeus and G. excentricus. The species G. excentricus, reported here for the first time in El Hierro, showed a more restricted vertical and seasonal distribution than the other species, which may explain not being detected in previous studies in the area. The results obtained in this study highlight the importance of considering a wider depth range and different seasons of the year when investigating the ecology of BHABs and assessing their risk and impacts on human health and the environment. Only then, efficient monitoring programs will be implemented in the Canary Islands and globally in areas affected by these events.


Assuntos
Dinoflagellida , Humanos , Espanha , Temperatura , Água
5.
Environ Monit Assess ; 194(9): 597, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35861877

RESUMO

The objectives of this study were to test an artificial substrate sampler method for aquaculture ponds and assess the water quality based on the benthic macroinvertebrate community living in fishpond sediment at four farms with tilapia production in the Baixa Mogiana region of São Paulo State, Brazil. Benthic macroinvertebrates were monitored every 15 days for 3 months. Approximately 500,000 organisms distributed in 47 taxa were collected. Chironomidae, Glossiphonidae, Hirudinidae, Libelullidae, Oligochaeta, and Polycentropodidae were present in all collected samples, with the dominance of Chironomidae in the benthic community. Polycentropodidae, a sensitive family to organic pollution, had a greater abundance in fish farms with better environmental conditions. Significant differences in dissolved oxygen and pH were observed among fishponds at different fish farms. Biomonitoring with artificial substrate is a simple and low-cost alternative to monitoring water quality of tilapia culture in fishponds. The artificial substrate sampling method was effective, but the evaluation of more critical conditions of water quality would improve the method and enhance the knowledge of taxa and ecology of macrobenthic organisms in fishponds.


Assuntos
Oligoquetos , Tilápia , Animais , Monitoramento Biológico , Brasil , Monitoramento Ambiental/métodos , Invertebrados , Qualidade da Água
6.
Artigo em Inglês | MEDLINE | ID: mdl-35162107

RESUMO

A community of benthic invertebrates, including sessile adult-stage invertebrates, can negatively effect corrosion, deformation, and increased fuel consumption by attaching to artificial structures, a phenomenon known as marine biofouling. Investigating the relationship between benthic communities and artificial structures or substrates (to which the organisms attach) can help clarify the factors influencing marine biofouling. Therefore, in our study, natural (stone) and artificial (rubber, tarpaulin, and iron) substrates were installed in three harbors (Mokpo, Tongyeong, and Busan), and the structures of the communities attached to each substrate were compared. The total study period was 15 months (September 2016 to December 2017), and field surveys were performed at 3-month intervals. The three survey sites had significant differences in the structure of the sessile community present. In particular, Tongyeong was significantly different from Mokpo and Busan due to the continuous dominance of Cirripedia. When comparing natural and artificial substrate by sites, significant differences were observed in the community structure in all three surveyed sites. In Mokpo and Busan, colonial ascidians were dominant on natural substrate rather than artificial substrates; post-summer, Cirripedia coverage was higher on artificial substrates than natural substrate due to corrosion. Tongyeong showed a different pattern from that of Mokpo and Busan. After the summer, Bivalvia dominated on natural substrate over artificial substrates, affecting the differences between natural and artificial substrates. Our results demonstrate the recruitment patterns of sessile marine invertebrates according to substrate characteristics and can be used as basic information for biofouling management in marine environment.


Assuntos
Incrustação Biológica , Bivalves , Animais , Organismos Aquáticos , Ecossistema , Invertebrados
7.
J Agric Food Chem ; 70(4): 1203-1211, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-34994555

RESUMO

Enantiomerically pure d-amino acids are important intermediates as chiral building blocks for peptidomimetics and semisynthetic antibiotics. Here, a transcriptional factor-based screening strategy was used for the rapid screening of d-stereospecific amino acid amidase via an enzyme-specific amidophenol substrate. We used a d-threonine amidophenyl derivative to produce 2-aminophenol that serves as a putative enzyme indicator in the presence of d-threonine amidases. Comparative analyses of known bacterial species indicated that several Bacillus strains produce amidase and form putative indicators in culture media. The estimated amidase was cloned and subjected to rapid directed evolution through biosensor cells. Consequently, we characterized the F119A mutation that significantly improved the catalytic activity toward d-alanine, d-threonine, and d-glutamate. Its beneficial effects were confirmed by higher conversions and recurrent applications of the mutant enzyme, compared to the wild-type. This study showed that rapid directed evolution with biosensors coupled to designed substrates is useful to develop biocatalytic processes.


Assuntos
Bacillus , Técnicas Biossensoriais , Amidoidrolases/genética , Amidoidrolases/metabolismo , Aminoácidos , Bacillus/genética , Bacillus/metabolismo , Mutação , Especificidade por Substrato
8.
Mar Environ Res ; 173: 105518, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34763317

RESUMO

The effects of applying scenarios of increasing CO2 and temperature, using a mesocosm experiment, on the structure of a macrofaunal coral reef peracarid community were investigated for the first time. Samples were taken from artificial substrate units (ASUs), colonized by macrofauna from the coral reef subtidal zone of Serrambi beach (Brazil). In the laboratory, the ASUs were exposed to a Control (Ctrl) treatment and three climate change Scenarios (Sc) (increase of T° of 0.6, 2, and 3 °C, and pH drop of 0.1, 0.3, and 0.7 units for Sc I, II and III respectively), and were collected after 15 and 29 days of exposure. Our results showed that the effect of different temperature and acidity levels under experimental climate change scenarios significantly impacted density, diversity and community structure. Major differences were observed when applying Sc II and III. Peracarida also showed a reduction in specimen number when comparing both exposure times. Overall, Amphipoda, Tanaidacea and Isopoda communities all displayed a reduction in the number of individuals for both scenarios and exposure time factors, while Cumacea responded negatively in all scenarios, suggesting that these individuals were more sensitive to the experimental conditions. Dissimilarities were greatest between the Ctrl and Sc III, particularly after 29 days. Two species, Elasmopus longipropodus (Amphipoda) and Chondrochelia dubia (Tanaidacea), greatly contributed to these dissimilarities. This study demonstrates that even an intermediate level of increasing ocean temperature and acidification will negatively impact the structure of the Peracarida macrofaunal community on coral reefs. Also demonstrates that different species of Peracarida exhibit divergent response patterns, highlighting the specific responses of these taxa to the impacts of environmental stressors. These outcomes highlight the importance of studying the effects of climate change on benthic peracarids, especially because they incubate their eggs. This characteristic can reduce migration potential and thereby reduces the individual's ability to disperse in response to a changing environment.


Assuntos
Antozoários , Recifes de Corais , Animais , Dióxido de Carbono , Mudança Climática , Crustáceos , Humanos , Concentração de Íons de Hidrogênio , Água do Mar , Temperatura
9.
Small ; 17(35): e2101455, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34310077

RESUMO

Highly evolved substrate channels in natural enzymes facilitate the rapid capture of substrates and direct transfer of intermediates between cascaded catalytic units, thus rationalizing their efficient catalysis. In this study, a nanoscale ordered mesoporous Ce-based metal-organic framework (OMUiO-66(Ce)) is designed as an artificial substrate channel, where MnO2 is coupled to Ce-O clusters as a super-active catalase (CAT). An in situ soft template reduction strategy is developed to deposit well-dispersed and exposed MnO2 in the mesochannels of OMUiO-66(Ce). Several synthesis parameters are optimized to minimize the particle size to ≈150 nm for efficient intracellular endocytosis. The mesochannels provide interaction guidance that not only rapidly drove H2 O2 substrates to CAT-like catalytic centers, but also seamlessly transfer H2 O2 intermediates between superoxide dismutase-like and CAT-like biocatalytic cascades. As a result, the biomimetic system exhibits high efficiency, low dosage, and long-lasting intracellular antioxidant function. Under disease-related oxidative stress, the artificial substrate channels promote the rate of the reactions catalyzed by MnO2 , which exceeds that of the reactions catalyzed by natural CAT. Based on this observation, a set of design rules for substrate channels are proposed to guide the rational design of super-active biomimetic systems.


Assuntos
Compostos de Manganês , Metaloproteínas , Biomimética , Catálise , Óxidos
10.
Bioorg Chem ; 110: 104810, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33744806

RESUMO

A new myo-inositol pentakisphosphate was synthesized, which featured a dansyl group at position C-5. The fluorescent tag was removed from the inositol by a 6-atom spacer to prevent detrimental steric interactions in the catalytic site of phytases. The PEG linker was used in order to enhance hydrophilicity and biocompatibility of the new artificial substrate. Computational studies showed a favorable positioning in the catalytic site of phytases. Enzymatic assays demonstrated that the tethered myo-inositol was processed by two recombinant phytases Phy-A and Phy-C, classified respectively as acid and alkaline phytases, with similar rates of phosphate release compared to their natural substrate.


Assuntos
6-Fitase/análise , Corantes Fluorescentes/química , Fosfatidilcolinas/química , Ácido Fítico/química , 6-Fitase/metabolismo , Corantes Fluorescentes/síntese química , Modelos Moleculares , Estrutura Molecular , Ácido Fítico/síntese química , Especificidade por Substrato
11.
Toxins (Basel) ; 12(5)2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32413988

RESUMO

Ciguatera poisoning is a foodborne illness caused by the consumption of seafood contaminated with ciguatoxins (CTXs) produced by dinoflagellates from the genera Gambierdiscus and Fukuyoa. The suitability of Solid Phase Adsorption Toxin Tracking (SPATT) technology for the monitoring of dissolved CTXs in the marine environment has recently been demonstrated. To refine the use of this passive monitoring tool in ciguateric areas, the effects of deployment time and sampler format on the adsorption of CTXs by HP20 resin were assessed in Anaho Bay (Nuku Hiva Island, French Polynesia), a well-known ciguatera hotspot. Toxicity data assessed by means of the mouse neuroblastoma cell-based assay (CBA-N2a) showed that a 24 h deployment of 2.5 g of resin allowed concentrating quantifiable amounts of CTXs on SPATT samplers. The CTX levels varied with increasing deployment time, resin load, and surface area. In addition to CTXs, okadaic acid (OA) and dinophysistoxin-1 (DTX1) were also detected in SPATT extracts using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS), consistent with the presence of Gambierdiscus and Prorocentrum species in the environment, as assessed by quantitative polymerase chain reaction (qPCR) and high-throughput sequencing (HTS) metabarcoding analyses conducted on passive window screen (WS) artificial substrate samples. Although these preliminary findings await further confirmation in follow-up studies, they highlight the usefulness of SPATT samplers in the routine surveillance of CP risk on a temporal scale, and the monitoring of other phycotoxin-related risks in ciguatera-prone areas.


Assuntos
Ciguatera/microbiologia , Ciguatoxinas/análise , Dinoflagellida/metabolismo , Monitoramento Ambiental , Água do Mar/parasitologia , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida , Ciguatoxinas/toxicidade , Código de Barras de DNA Taxonômico , Dinoflagellida/genética , Dinoflagellida/crescimento & desenvolvimento , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Camundongos , Oceanos e Mares , Reação em Cadeia da Polimerase , Polinésia , Medição de Risco , Extração em Fase Sólida , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
12.
Microorganisms ; 8(4)2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-32326100

RESUMO

Trace elements (TEs) are vital for anaerobic digestion (AD), due to their role as cofactors in many key enzymes. The aim of this study was to evaluate the effects of specific TE deficiencies on mixed microbial communities during AD of soluble polymer-free substrates, thus focusing on AD after hydrolysis. Three mesophilic (37 °C) continuous stirred-tank biogas reactors were depleted either of Co, Ni, or a combination of Se and W, respectively, by discontinuing their supplementation. Ni and Se/W depletion led to changes in methane kinetics, linked to progressive volatile fatty acid (VFA) accumulation, eventually resulting in process failure. No significant changes occurred in the Co-depleted reactor, indicating that the amount of Co present in the substrate in absence of supplementation was sufficient to maintain process stability. Archaeal communities remained fairly stable independent of TE concentrations, while bacterial communities gradually changed with VFA accumulation in Ni- and Se-/W-depleted reactors. Despite this, the communities remained relatively similar between these two reactors, suggesting that the major shifts in composition likely occurred due to the accumulating VFAs. Overall, the results indicate that Ni and Se/W depletion primarily lead to slower metabolic activities of methanogenic archaea and their syntrophic partners, which then has a ripple effect throughout the microbial community due to a gradual accumulation of intermediate fermentation products.

13.
MethodsX ; 7: 100854, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32292712

RESUMO

Farming of Sargassum to produce harvestable crop can be a challenging task to seaweed farmers.•Sexually-produced Sargassum seedlings can be propagated in a hatchery using 140-liter plastic tanks connected with PVC pipes and seawater supply directly pumped from the sea, passing through a filter system.•First step of this method is to collect large amount of fertilized eggs from special branches called receptacles, found at the ends of lateral branches of Sargassum, excised from fertile thalli during its spawning season and collecting their eggs for recruitment into artificial substrate tanks.•Egg collection involves force-releasing the fertilized eggs by vigorous shaking of a small vessel where 100-200 egg-bearing receptacles excised from fertile plants are contained. Each tank can produce up to 2000-3000 seedlings that can supply at least a hectare of farm. Scaling up the production to several hectares of farm is done by simply increasing the number of recruitment tanks and the number of recruitment panels in the hatchery system.

14.
Harmful Algae ; 87: 101634, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31349892

RESUMO

The suitability of the 'artificial substrate' method, i.e. standardized surfaces of fiberglass screens, for the quantification of four benthic harmful algal bloom (BHAB) dinoflagellates (Gambierdiscus, Ostreopsis, Prorocentrum and Coolia) was tested relative to estimates from natural macroalgal substrates. Sampling took place in a variety of intertidal and subtidal coastal habitats under different water motion conditions, at depths from 1 to 7 m, in two archipelagos of the Macaronesia region: The Canary Islands and Cape Verde. An immersion time of 24 h was sufficient to adequately estimate dinoflagellate abundances. Seven replicates were established as the ideal replication level, considering both reproducibility and sampling effort. In most cases, cell abundances of the four dinoflagellate genera showed lower variability on artificial substrates than on macroalgae, leading to more reliable estimates of abundances. The ratio of mean cell abundances on artificial substrates to mean cell abundances on macroalgae highly varied among sampling sites for each genus. This was especially true for Ostreopsis and Coolia. Thus, given the potentially harmful nature of benthic dinoflagellates, the transformation of abundances expressed as cells g-1 of macroalgae to abundances expressed as cells cm-2 is risky, and it should not be attempted in monitoring and management programs of harmful microalgae. In summary, results of this study support the use of artificial substrates in monitoring programs of BHAB dinoflagellates, while the risks of using macroalgae are stressed.


Assuntos
Dinoflagellida , Microalgas , Proliferação Nociva de Algas , Reprodutibilidade dos Testes , Espanha
15.
Environ Sci Pollut Res Int ; 26(21): 21161-21171, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31119534

RESUMO

Artificial substrates (ASs) and floating treatment wetlands (FTWs) have been widely used in the treatment of polluted surface water. In fact, periphyton on ASs functions in nutrient removal, while the plant-periphyton complex functions in FTWs. However, the nutrient removal performance of the periphyton on ASs and the plant-periphyton complex in FTWs has not been systematically compared. Thus, ASs and FTWs were established in a mesocosm experiment to compare nitrogen and phosphorus removal between the two ecological treatment techniques. The results showed that the total nitrogen removal efficiency was 60.4% in the AS treatments and 65.3% in the FTWs, while the total phosphorus removal efficiency was 83.7% in the AS treatments and 39.45% in the FTWs. Periphyton on the ASs absorbed 2.5 g N m-2 and 0.85 g P m-2, accounting for 20.8% of the N removal and 18.7% of the P removal. Sedimentation contributed to 71.3% of the N removal and 56.1% of the P removal in the AS treatments. For the plant-periphyton complex in the FTWs, 25.1% of the N and 53.0% of the P accumulated in plant tissue. Most of the reduced N (47.1%) was removed by other pathways, which was likely the effect of periphyton attached on plant roots and floating rafts. The nutrient removal efficiencies and pathways of AS and FTW treatments showed different characteristics, providing a reference for the selection of treatment measures for polluted surface water remediation.


Assuntos
Perifíton , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Áreas Alagadas , Nitrogênio/análise , Fósforo/análise , Plantas/metabolismo , Poluição da Água
16.
Biota Neotrop. (Online, Ed. ingl.) ; 19(2): e20180568, 2019. tab, graf
Artigo em Inglês | LILACS | ID: biblio-989415

RESUMO

Abstract: Knowledge of biodiversity in oligotrophic aquatic ecosystems is fundamental to plan conservation strategies for protected areas. This study assessed the diatom diversity from an urban reservoir with oligotrophic conditions. The Piraquara I reservoir is located in an Environmental Protection Area and is responsible for the public supply of Curitiba city and the metropolitan region. Samples were collected seasonally between October 2007 and August 2008. Periphytic samples were obtained by removing the biofilm attached to Polygonum hydropiperoides stems and to glass slides. The taxonomic study resulted in the identification of 87 diatom taxa. The most representative genera regarding the species richness were Pinnularia (15 species) and Eunotia (14 species). Five species were registered for the first time in Brazil and seven in the State of Paraná. Taxonomic and ecological comments of the species registered are provided.


Resumo: O conhecimento da biodiversidade em ecossistemas aquáticos oligotróficos é fundamental para planejar estratégias de conservação de áreas protegidas. Este estudo teve como objetivo conhecer a diversidade de diatomáceas em um reservatório urbano com condições oligotróficas. O reservatório do Piraquara I está inserido em uma Área de Proteção Ambiental em região de manancial e é responsável pelo abastecimento público de Curitiba e região metropolitana. Foram realizadas coletas estacionais entre os meses de outubro de 2007 e agosto de 2008. As amostras perifíticas foram obtidas pela remoção do biofilme aderido a caules de Polygonum hydropiperoides e de lâminas de vidro. O estudo taxonômico resultou na identificação de 87 táxons. Os gêneros mais representativos, considerando a riqueza de espécies, foram Pinnularia (15 espécies) e Eunotia (14 espécies). Cinco espécies de diatomáceas foram registradas pela primeira vez no Brasil e sete no estado do Paraná. Comentários taxonômicos e ecológicos também são apresentados para as espécies encontradas.

17.
Journal of Medical Biomechanics ; (6): E307-E314, 2019.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-802459

RESUMO

Objective Based on fibroblast cell model and photopolymerized hydrogel substrate with moderate gradient stiffness, to analyze the effect of process and performance parameters on cell migration and provide theoretical guidance for artificial scaffold design and fabrication. Methods A mathematical model of the test system was built and the corresponding numerical program was compiled, including viscoelastic dynamic finite element of the cell model, reaction kinetic equation of focal adhesions, and the strategy to deal with dynamic boundary and multi-scale time. Results The relationship between process parameters and performance parameters was formulated based on experimental data; cell migration speed and traction increased with the substrate stiffness increasing and were accompanied by rapid fluctuation when stiffness gradient was constant, then cell movement gradually stabilized with the extension of observation time. Increasing stiffness gradient moderately obviously promoted cell migration, and cells could maintain a limited speed on substrate with a large stiffness gradient. Smaller photomask opacity gradient resulted in larger substrate stiffness gradient and less time spent for cell to reach the target. These results agreed with the experimental results reported in the literature. Conclusions The experimental result provided an effective digital simulation platform to test the influence of process and performance parameter of photopolymerized hydrogel substrate with moderate gradient stiffness on cell migration.

18.
Mar Pollut Bull ; 135: 1107-1116, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30301009

RESUMO

Most lost fishing gear is made of non-biodegradable plastics that may sink to the sea floor or drift around in currents. It may remain unnoticed until it shows up on coral reefs, beaches and in other coastal habitats. Stony corals have fragile skeletons and soft tissues that can easily become damaged when they get in contact with lost fishing gear. During a dive survey around Koh Tao, a small island in the Gulf of Thailand, the impact of lost fishing gear (nets, ropes, cages, lines) was studied on corals representing six different growth forms: branching, encrusting, foliaceous, free-living, laminar, and massive. Most gear (>95%) contained plastic. Besides absence of damage (ND), three categories of coral damage were assessed: fresh tissue loss (FTL), tissue loss with algal growth (TLAG), and fragmentation (FR). The position of the corals in relation to the fishing gear was recorded as either growing underneath (Un) or on top (On), whereas corals adjacent to the gear (Ad) were used as controls. Nets formed the dominant type of lost gear, followed by ropes, lines and cages, respectively. Branching corals were most commonly found in contact with the gear and also around it. Tubastraea micranthus was the most commonly encountered coral species, either Un, On, or Ad. Corals underneath gear showed most damage, which predominantly consisted of tissue loss. Fragmentation was less common than expected, which may be related to the low fragility of T. micranthus as dominant branching species. Even if nets serve as substrate for corals, it is recommended to remove them from reefs, where they form a major component of the plastic pollution and cause damage to corals and other reef organisms.


Assuntos
Recifes de Corais , Poluição da Água , Animais , Antozoários , Ecossistema , Inquéritos e Questionários , Tailândia , Poluição da Água/efeitos adversos
19.
Ecol Evol ; 8(17): 8908-8920, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30271554

RESUMO

In a world of declining biodiversity, monitoring is becoming crucial. Molecular methods, such as metabarcoding, have the potential to rapidly expand our knowledge of biodiversity, supporting assessment, management, and conservation. In the marine environment, where hard substrata are more difficult to access than soft bottoms for quantitative ecological studies, Artificial Substrate Units (ASUs) allow for standardized sampling. We deployed ASUs within five regional seas (Baltic Sea, Northeast Atlantic Ocean, Mediterranean Sea, Black Sea, and Red Sea) for 12-26 months to measure the diversity and community composition of macroinvertebrates. We identified invertebrates using a traditional approach based on morphological characters, and by metabarcoding of the mitochondrial cytochrome oxidase I (COI) gene. We compared community composition and diversity metrics obtained using the two methods. Diversity was significantly correlated between data types. Metabarcoding of ASUs allowed for robust comparisons of community composition and diversity, but not all groups were successfully sequenced. All locations were significantly different in taxonomic composition as measured with both kinds of data. We recovered previously known regional biogeographical patterns in both datasets (e.g., low species diversity in the Black and Baltic Seas, affinity between the Bay of Biscay and the Mediterranean). We conclude that the two approaches provide complementary information and that metabarcoding shows great promise for marine monitoring. However, until its pitfalls are addressed, the use of metabarcoding in monitoring of rocky benthic assemblages should be used in addition to classical approaches rather than instead of them.

20.
Harmful Algae ; 78: 56-68, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30196925

RESUMO

Few studies have investigated the effect of fine-scale habitat differences on the dynamics of benthic harmful dinoflagellate assemblages. To determine how these microhabitat differences affect the distribution and abundance of the major benthic harmful dinoflagellate genera in a tropical coral reef ecosystem, a field study was undertaken between April-September 2015 and January 2016 on the shallow reef flat of the fringing reef of Rawa Island, Terengganu, Malaysia. Sampling of benthic dinoflagellates was carried out using an artificial substrate sampling method (fiberglass screens). Benthic microhabitats surrounding the sampling screens were characterized simultaneously from photographs of a 0.25-m2 quadrat based on categories of bottom substrate types. Five taxonomic groups of benthic dinoflagellates, Ostreopsis, Gambierdiscus, Prorocentrum, Amphidinium, and Coolia were identified, and cells were enumerated using a light microscope. The results showed Gambierdiscus was less abundant than other genera throughout the study period, with maximum abundance of 1.2 × 103 cells 100 cm-2. While most taxa were present on reefs with high coral cover, higher cell abundances were observed in reefs with high turf algal cover and coral rubble, with the exception of Ostreopsis, where the abundance reached a maximum of 3.4 × 104 cells 100 cm-2 in habitats with high coral cover. Microhabitat heterogeneity was identified as a key factor governing the benthic harmful dinoflagellate assemblages and may account for much of the observed variability in dominant taxa. This finding has significant implications for the role of variability in the benthic harmful algal bloom (BHAB) outbreaks and the potential in identifying BHAB-related toxin transfer pathways and the key vectors in the food webs.


Assuntos
Recifes de Corais , Dinoflagellida/fisiologia , Biota , Malásia , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...