Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Mitochondrial DNA B Resour ; 9(8): 1005-1009, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39113748

RESUMO

Asarum chungbuensis, a species endemic to Korea, has a limited distribution across the Korean Peninsula and is used in traditional medicine. Despite its importance, the genome structure, genetic composition, and phylogenetic relationships based on its chloroplast genome have not been documented. In this study, the complete chloroplast genome of A. chungbuensis was newly assembled. The chloroplast genome is 190,179 base pairs (bp) long, and the overall GC content (%) of the plastid was 36.8%. The chloroplast genome size of A. chungbuensis is longer than that of the normal chloroplast genome (160 kb) because of an inverted small single-copy (SSC) duplication that incorporates the SSC into an inverted repeat (IR) region. By extension, this duplication event causes this chloroplast genome to lack an SSC, unlike other formal structures. The chloroplast genome, with a tripartite structure, consisted of a single-copy region of 93,351 bp with a 34.6% GC content and two IR regions, each with a length of 48,414 bp and a 38.8% GC content. Additionally, it was found to have 113 genes, including 79 PCG genes, 30 tRNA genes, and four rRNA genes. Phylogenetic analysis revealed that A. chungbuensis was grouped with A. heterotropoides var. seoulense, which diverged from the clade comprising A. koreanum and A. patens. The newly sequenced A. chungbuensis chloroplast genome could provide valuable genomic information for determining unique genome structures, especially for the assessment of genetic diversity, phylogenetic relationships, species conservation, and biogeographic studies of the genus Asarum.

2.
Chemosphere ; 362: 142604, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38876329

RESUMO

As global agriculture faces the pressing threat of salt stress, innovative solutions are imperative for sustainable agriculture. The remarkable potential of salicylic acid (SA) in enhancing plant resilience against environmental stressors has recently gained attention. However, the specific molecular mechanisms by which SA mitigates salt stress in Asarum sieboldii Miq., a valuable medicinal plant, remain poorly understood. Here, we evaluated the physiological and transcriptomic regulatory responses of A. sieboldii under salt stress (100 mM NaCl), both in the presence (1 mM SA) and absence of exogenous SA. The results highlighted that SA significantly alleviates salt stress, primarily through enhancing antioxidant activities as evidenced by increased superoxide dismutase, and peroxidase activities. Additionally, we observed an increment in chlorophyll (a and b), proline, total soluble sugar, and plant fresh weight, along with a decrease in malondialdehyde contents. Transcriptome analysis suggested consistency in the regulation of many differentially expressed genes and transcription factors (TFs); however, genes targets (GSTs, TIR1, and NPR1), and TFs (MYB, WRKY, TCP, and bHLH) possessed expressional uniqueness, and majority had significantly up-regulated trends in SA-coupled salt stress treatments. Further, bioinformatics and KEGG enrichment analysis indicated several SA-induced significantly enriched biological pathways. Specifically, plant hormone signal transduction was identified as being populated with key genes distinctive to auxin, cytokinin, ethylene, and salicylic acid signaling, suggesting their important role in salt stress alleviation. Inclusively, this report presents a comprehensive analysis encompassing gene targets, TFs, and biological pathways, and these insights may offer a valuable contribution to our knowledge of SA-mediated regulation and its crucial role in enhancing plant defense against diverse abiotic stressors.


Assuntos
Regulação da Expressão Gênica de Plantas , Ácido Salicílico , Estresse Salino , Ácido Salicílico/farmacologia , Ácido Salicílico/metabolismo , Estresse Salino/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Perfilação da Expressão Gênica , Transcriptoma/efeitos dos fármacos , Reguladores de Crescimento de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Clorofila/metabolismo , Antioxidantes/metabolismo
3.
Plant Methods ; 20(1): 72, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760854

RESUMO

BACKGROUND: Single-cell analysis, a rapidly evolving field, encounters significant challenges in detecting individual cells within complex plant tissues, particularly oil cells (OCs). The intricate process of single-cell isolation, coupled with the inherent chemical volatility of oil cells, necessitates a comprehensive methodology. RESULTS: This study presents a method for obtaining intact OC from Asari Radix et Rhizoma (ARR), a traditional herbal medicine. The developed approach facilitates both qualitative and quantitative analysis of diverse OCs. To determine the most reliable approach, four practical methods-laser capture microdissection, micromanipulation capturing, micromanipulation piping, and cell picking-were systematically compared and evaluated, unequivocally establishing cell picking as the most effective method for OC isolation and chemical analysis. Microscopic observations showed that OCs predominantly distribute in the cortex of adventitious and fibrous roots, as well as the pith and cortex of the rhizome, with distinct morphologies-oblong in roots and circular in rhizomes. Sixty-three volatile constituents were identified in OCs, with eighteen compounds exhibiting significant differences. Safrole, methyleugenol, and asaricin emerged as the most abundant constituents in OCs. Notably, cis-4-thujanol and tetramethylpyrazine were exclusive to rhizome OCs, while isoeugenol methyl ether was specific to fibrous root OCs based on the detections. ARR roots and rhizomes displayed marked disparities in OC distribution, morphology, and constituents. CONCLUSION: The study highlights the efficacy of cell picking coupled with HS-SPME-GC-MS as a flexible, reliable, and sensitive method for OC isolation and chemical analysis, providing a robust methodology for future endeavors in single-cell analyses.

4.
Zhongguo Zhong Yao Za Zhi ; 49(10): 2680-2688, 2024 May.
Artigo em Chinês | MEDLINE | ID: mdl-38812168

RESUMO

Methyleugenol is one of the main active constituents in the volatile oil of the traditional Chinese medicine Asari Radix et Rhizoma. It possesses various pharmacological effects such as analgesic, anesthetic, and anti-inflammatory properties. In biosynthesis, the initial precursor phenylalanine is finally converted into methyleugenol through a series of intermediate compounds including coniferyl acid, courmaryl acid, caffeic acid, ferulic acid/ferulic-CoA, coniferyl aldehyde, conferyl alcohol, cnfiferyl acetate, and eugenol/isoeugenol, which are produced through catalysis of a large number of enzymes. Eugenol O-methyltransferase(EOMT) is one of the key enzymes in the biosynthesis pathway, capable of methylating eugenol on the para-site hydroxyl group of the benzene ring, thereby generating methyleugenol. Here, an(iso)eugenol O-methyltransferase(IEMT) gene was cloned for the first time from Asarum siebo-ldii, holding an open reading frame that consisted of 1 113 bp and encoded a protein containing 370 amino acid residues. Bioinformatics analysis results showed that this protein was equipped with the characteristic structural domains of methyltransferases such as S-adenosylmethionine(SAM) binding sites and dimerization domains. The prokaryotic expression recombinant plasmid pET28a(+)-AsIEMT was constructed, and the candidate protein was induced and purified. In vitro enzyme assays confirmed that AsIEMT had dual functions. The enzyme could catalyze the production either of methyleugenol from eugenol or of methylisoeugenol from isoeugenol, although the latter was more prevalent. When isoeugenol was used as the substrate, the kinetics parameters K_m and V_(max) of catalytic reaction were(0.90±0.06) mmol·L~(-1) and(1.32±0.04)nmol·s~(-1)·mg~(-1), respectively. This study expanded our understandings of critical enzyme genes involved in phenylpropanoid metabolic pathways, and would facilitate the elucidation of quality formation mechanisms of the TCM Asari Radix et Rhizoma.


Assuntos
Asarum , Eugenol , Metiltransferases , Metiltransferases/genética , Metiltransferases/química , Metiltransferases/metabolismo , Eugenol/análogos & derivados , Eugenol/metabolismo , Eugenol/química , Asarum/genética , Asarum/química , Asarum/enzimologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Filogenia , Sequência de Aminoácidos , Clonagem Molecular
5.
Microorganisms ; 12(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38674636

RESUMO

Asarum is a traditional Chinese medicinal plant, and its dried roots are commonly used as medicinal materials. Research into the traits of the bacteria and fungus in the Asarum rhizosphere and how they relate to the potency of medicinal plants is important. During four cropping years and collecting months, we used ITS rRNA gene amplicon and sequencing to assess the population, diversity, and predominant kinds of bacteria and fungus in the rhizosphere of Asarum. HPLC was used to determine the three bioactive ingredients, namely asarinin, aristolochic acid I, and volatile oil. The mainly secondary metabolites of Asarum, relationships between microbial communities, soil physicochemical parameters, and possible influences on microbial communities owing to various cropping years and collecting months were all statistically examined. The cropping years and collecting months affected the abundance and diversity of rhizosphere bacteria and fungi, but the cropping year had a significant impact on the structures and compositions of the bacterial communities. The rhizosphere microorganisms were influenced by both the soil physicochemical properties and enzyme activities. Additionally, this study revealed that Trichoderma was positively correlated with the three bioactive ingredients of Asarum, while Tausonia showed entirely opposite results. Gibberella and Leptosphaeria demonstrated a significantly negative correlation with asarinin and violate oil, but they were weakly correlated with the aristolochic acid I content. This study revealed variations in the Asarum rhizosphere microorganism population, diversity, and dominant types across four cropping years and collecting months. The relationship between Asarum secondary metabolites, the soil physicochemical properties, enzyme activities, and rhizosphere microorganisms was discussed. Our results will guide the exploration of the soil characteristics and rhizosphere microorganisms' structures by regulating the microbial community to enhance Asarum quality.

6.
Am J Bot ; 111(3): e16300, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38469876

RESUMO

PREMISE: Many plastomes of autotrophic Piperales have been reported to date, describing a variety of differences. Most studies focused only on a few species or a single genus, and extensive, comparative analyses have not been done. Here, we reviewed publicly available plastome reconstructions for autotrophic Piperales, reanalyzed publicly available raw data, and provided new sequence data for all previously missing genera. Comparative plastome genomics of >100 autotrophic Piperales were performed. METHODS: We performed de novo assemblies to reconstruct the plastomes of newly generated sequence data. We used Sanger sequencing and read mapping to verify the assemblies and to bridge assembly gaps. Furthermore, we reconstructed the phylogenetic relationships as a foundation for comparative plastome genomics. RESULTS: We identified a plethora of assembly and annotation issues in published plastome data, which, if unattended, will lead to an artificial increase of diversity. We were able to detect patterns of missing and incorrect feature annotation and determined that the inverted repeat (IR) boundaries were the major source for erroneous assembly. Accounting for the aforementioned issues, we discovered relatively stable junctions of the IRs and the small single-copy region (SSC), whereas the majority of plastome variations among Piperales stems from fluctuations of the boundaries of the IR and the large single-copy (LSC) region. CONCLUSIONS: This study of all available plastomes of autotrophic Piperales, expanded by new data for previously missing genera, highlights the IR-LSC junctions as a potential marker for discrimination of various taxonomic levels. Our data indicates a pseudogene-like status for cemA and ycf15 in various Piperales. Based on a review of published data, we conclude that incorrect IR-SSC boundary identification is the major source for erroneous plastome assembly. We propose a gold standard for assembly and annotation of high-quality plastomes based on de novo assembly methods and appropriate references for gene annotation.


Assuntos
Magnoliopsida , Filogenia , Magnoliopsida/genética , Genômica
7.
J Ethnopharmacol ; 325: 117783, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38246480

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The roots of Asarum heterotropoides F. Maekawa var. mandshuricum F. Maekawa (AR) is a traditional herbal medicine used across Asia, including Korea, China, and Japan. AR exhibits a range of biological activities, such as anti-inflammatory, anti-cancer, cold treatment, and anti-nociceptive effects. Various extraction methods, including decoction, which utilizes traditional knowledge and techniques. The AR decoction extract expected to contain fewer toxicants and have reduced toxicity due to the use of hot water in the extraction process. However, scientific evidence on the toxicity of AR decoction extracts is lacking, necessitating further studies for safe usage. AIM OF THE STUDY: This study aimed to evaluate the genotoxicity and toxicity of single and repeated administration of AR decoction extracts. MATERIALS AND METHODS: The genotoxicity was assessed using a bacterial reverse mutation (Ames test), an in vitro mammalian chromosome aberration test (CA test), and an in vivo micronucleus test (MN test) in Sprague-Dawley (SD) rats. The general toxicity was evaluated through single-dose and 13-week repeated-dose toxicity studies. In the single-dose toxicity study, 40 SD rats were orally administered AR decoction extract at doses of 1000, 2000, and 5000 mg/kg. In the 13-week repeated-dose toxicity study, 140 SD rats received daily oral doses of 0, 250, 500, 1000, 2000, and 5000 mg/kg of AR decoction extract. RESULTS: The genotoxicity tests revealed that AR decoction extract was not genotoxic. The single-dose toxicity study showed no changes in body weight, clinical pathology, or macroscopic findings, with the approximate lethal dose (ALD) exceeding 5000 mg/kg. The 13-week repeated-dose toxicity study demonstrated no treatment-related changes in body weight, general symptoms, hematology, clinical chemistry, or urinalysis. Histopathological findings revealed hyperplasia of squamous cells in the forestomach after AR decoction extract administration, a treatment-related effect that resolved during the recovery period. The no observed adverse effect level (NOAEL) for both male and female rats was estimated to be 2000 mg/kg. CONCLUSIONS: This study establishes the non-toxic dose of AR decoction extract, providing a foundation for further non-clinical and clinical evaluations AR safety.


Assuntos
Asarum , Extratos Vegetais , Ratos , Masculino , Feminino , Animais , Extratos Vegetais/toxicidade , Ratos Sprague-Dawley , Anti-Inflamatórios/farmacologia , Peso Corporal , Mamíferos
8.
Int J Mol Sci ; 24(24)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38139216

RESUMO

(1) To examine the potential mechanism of the Asarum-Angelica drug pair against periodontitis and provide an experimental basis for the treatment of periodontitis with herbal medicine. (2) The core components and core targets of the Asarum-Angelica drug pair in the treatment of periodontitis were detected according to network pharmacology methods. Finally, the effect of the Asarum-Angelica drug pair on osteogenic differentiation was observed in mouse embryonic osteoblast precursor cells. (3) According to the results of network pharmacology, there are 10 potential active ingredients in the Asarum-Angelica drug pair, and 44 potential targets were obtained by mapping the targets with periodontitis treatment. Ten potential active ingredients, such as kaempferol and ß-sitosterol, may play a role in treating periodontitis. Cell experiments showed that the Asarum-Angelica drug pair can effectively promote the expression of osteoblast markers alkaline phosphatase (ALP), Runt-related Transcription Factor 2 (RUNX2), and BCL2 mRNA and protein in an inflammatory environment (p < 0.05). (4) Network pharmacology effectively analyzed the molecular mechanism of Asarum-Angelica in the treatment of periodontitis, and the Asarum-Angelica drug pair can promote the differentiation of osteoblasts.


Assuntos
Angelica , Asarum , Medicamentos de Ervas Chinesas , Periodontite , Animais , Camundongos , Farmacologia em Rede , Osteogênese , Periodontite/tratamento farmacológico , Simulação de Acoplamento Molecular
9.
Zhongguo Zhong Yao Za Zhi ; 48(20): 5519-5530, 2023 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-38114144

RESUMO

To explore the genetic diversity of Asarum sieboldii this study developed SSR markers based on transcriptome sequencing results and five populations of A.sieboldii from different regions were used as samples for genetic diversity assessment using software such as GenALEx 6.5, NTSYS 2.1, and Structure 2.3.4. The results showed that 16 SSR markers with high polymorphism and good repeatability were selected from the A.sieboldii transcriptome. Primers designed based on the flanking sequences of these markers successfully amplified 56 polymorphic fragments from 150 individual samples of the five A.sieboldii populations. On average, each primer amplified 3.5 polymorphic fragments, ranging from 2 to 8. The mean values of expected heterozygosity(H_e), Shannon's diversity index(I), Nei's gene diversity index(H), and the polymorphic information content(PIC) were 0.172, 0.281, 0.429, and 0.382, respectively. The mean population differentiation coefficient(F_(ST)) was 0.588, consistent with the analysis of molecular variance(AMOVA) results, which indicated greater genetic variation among A.sieboldii populations(69%) than that within populations(31%). The percentage of polymorphic loci(PPL) ranged from highest to lowest as SNJ>LN>SY>SZ>TB. Principal coordinate analysis(PCoA) and UPGMA clustering analysis further revealed genetic clustering of A.sieboldii individuals based on their geographical distribution, consistent with the results of the structure clustering analysis. In summary, the SSR markers developed from the transcriptome effectively assessed the genetic differentiation and population structure of natural A.sieboldii populations, revealing a relatively low genetic diversity in A.sieboldii, with genetic variation primarily observed at the population level and a correlation between population differentiation and geographic distance.


Assuntos
Asarum , Variação Genética , Humanos , Transcriptoma/genética , Repetições de Microssatélites/genética , Filogenia
10.
Metabolites ; 13(12)2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38132875

RESUMO

Asarum (Asarum sieboldii Miq. f. seoulense (Nakai) C. Y. Cheng et C. S. Yang) is a medicinal plant that contains asarinin and sesamin, which possess extensive medicinal value. The adaptation and distribution of Asarum's plant growth are significantly affected by altitude. Although most studies on Asarum have concentrated on its pharmacological activities, little is known about its growth and metabolites with respect to altitude. In this study, the physiology, ionomics, and metabolomics were investigated and conducted on the leaves and roots of Asarum along an altitude gradient, and the content of its medicinal components was determined. The results showed that soil pH and temperature both decreased along the altitude, which restricts the growth of Asarum. The accumulation of TOC, Cu, Mg, and other mineral elements enhanced the photosynthetic capacity and leaf plasticity of Asarum in high-altitude areas. A metabolomics analysis revealed that, at high altitude, nitrogen metabolism in leaves was enhanced, while carbon metabolism in roots was enhanced. Furthermore, the metabolic pathways of some phenolic substances, including syringic acid, vanillic acid, and ferulic acid, were altered to enhance the metabolism of organic acids. The study uncovered the growth and metabolic responses of Asarum to varying altitudes, providing a theoretical foundation for the utilization and cultivation of Asarum.

11.
Plant Physiol Biochem ; 201: 107855, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37433236

RESUMO

Asarum sieboldii Miq. possesses remarkable medicinal value due to its essential oil enriched with phenylpropenes (e.g., methyleugenol and safrole). Although the biosynthesis of phenylpropenes shares a common pathway with lignin, the regulation mechanisms in carbon flux allocation between them are unclear. This study is the first to genetically verify the carbon flux regulation mechanism in A. sieboldii roots. We regulated the expression of Caffeoyl-coenzyme A O-methyltransferase (CCoAOMT), an essential enzyme in the common pathway, to investigate carbon flux allocation in vegetative organs. Here, the lignin and phenylpropene content fluctuation was analyzed by wet chemistry and GC-MS methods. A bona fide CCoAOMT gene from A. sieboldii was firstly cloned and verified. Preliminary heterologous expression validation in transgenic Arabidopsis thaliana showed that RNAi-induced CCoAOMT down-regulation significantly decreased lignin content by 24% and increased the S/G ratio by 30%; however, AsCCoAOMT over-expression in A. thaliana resulted in a 40% increase in lignin content and a 20% decrease in the S/G ratio when compared to the wild type. Similar trends were noted in homologous transformation in A. sieboldii, although the variations were not conspicuous. Nevertheless, the transgenic A. sieboldii plants displayed substantial differences in the level of phenylpropene compounds methyleugenol and safrole leading to a 168% increase in the methyleugenol/safrole ratio in the over-expression line and a 73% reduction in RNAi-suppression line. These findings suggest that the biosynthesis of phenylpropene constituents methyleugenol and safrole seems to be prioritized over lignin. Furthermore, this study indicated that suppression of AsCCoAOMT resulted in marked root susceptibility to pathogenic fungal disease, implying a significant additional role of CCoAOMT in protecting plant vegetative parts from diseases. Overall, the present study provides important references and suggests that future research should be aimed at elucidating the detailed mechanisms of the carbon flux allocation between phenylpropenes and lignin biosynthesis, as well as the disease resistance competency.

12.
Bioorg Med Chem Lett ; 92: 129386, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37355024

RESUMO

Asarum sieboldii var. seoulense is a plant species under the family Aristolochiaceae and has been used for centuries as an ingredient in a well-known Traditional Chinese medicine (TCM), "Xixin", to treat symptoms of the neurodegenerative condition Parkinson's Disease (PD). Although there have been studies on the neuroprotective effect of this TCM, the phenotypic profiles of its chemical constituents against PD-implicated cellular organelles have not been reported. This research investigated the chemistry of A. sieboldii var. seoulense extract to identify the active small molecules that exhibited perturbation to the cellular compartments related to PD, potentially supporting its traditional application in treating this condition. 1H NMR-guided chemical investigation of this plant yielded twenty secondary metabolites which belong to isobutylamides, lignans and phenolics. The compounds were evaluated against an olfactory cell line derived from a PD patient using phenotypic assay. Several isolates, 2, 3, 7, 11, 13-16 and 18-20, were found to induce moderate perturbation to the staining of mitochondria, autophagosome and α-tubulin of the cells. Considering that PD pathogenesis is closely related to these cellular compartments, the results provided a rationale for the traditional application of Xixin in the treatment of PD.


Assuntos
Asarum , Doença de Parkinson , Humanos , Asarum/química , Doença de Parkinson/tratamento farmacológico , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Linhagem Celular , Compostos Fitoquímicos
13.
Front Pharmacol ; 14: 1196137, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37284321

RESUMO

Asarum essential oil (AEO) has been shown to have good pharmacological activities for the anti-inflammatory and analgesic effects, but increasing the dose may cause toxicity. Therefore, we studied the toxic and pharmacodynamic components of AEO by molecular distillation (MD). Anti-inflammatory activity was assessed using RAW264.7 cells. Neurotoxicity was assessed in PC12 cells and the overall toxicity of AEO was evaluated in the mouse acute toxicity assay. The results showed that AEO is primarily composed of safrole, methyl eugenol, and 3,5-dimethoxytoluene. After MD, three fractions were obtained and contained different proportions of volatile compounds relative to the original oil. The heavy fraction had high concentrations of safrole and methyl eugenol, while the light fraction contained high concentrations of α-pinene and ß- pinene. The original oil and all three fractions exhibited anti-inflammatory effects, but the light fraction demonstrated more excellent anti-inflammatory activity than the other fractions. Asarum virgin oil and MD products are all neurotoxic. The exposure of PC12 cells to high concentrations of AEO resulted in abnormal nuclei, an increased number of apoptotic cells, increased ROS formation, and decreased SOD levels. Moreover, the results of acute toxicity tests in mice revealed that the light fractions were less toxic than virgin oils and other fractions. In summary, the data suggest that the MD technology enables the enrichment and separation of essential oil components and contributes to the selection of safe concentrations of AEO.

14.
Molecules ; 28(6)2023 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-36985550

RESUMO

The essential oils (EOs) of the aerial parts of four Asarum species (A. geophilum, A. yentunensis, A. splendens and A. cordifolium) were isolated by steam distillation and analyzed by the GC/MS method. The A. cordifolium EO contains 33 constituents with the main component being elemicine (77.20%). The A. geophilum EO was contains 49 constituents with the main components being determined as 9-epi-(E)-caryophyllene (18.43%), eudesm-7(11)-en-4-ol (13.41%), ß-caryophyllene (8.05%) and phytol (7.23%). The A. yentunensis EO contains 26 constituents with the main components being safrole (64.74%) and sesquicineole (15.34%). The EO of A. splendens contains 41 constituents with the main components being 9-epi-(E)-caryophyllene (15.76%), eudesm-7(11)-en-4-ol (14.21%), ß-caryophyllene (9.52%) and trans-bicyclogermacrene (7.50%). For antimicrobial activity, the A. yentunensis EO exhibited the highest inhibition activity against Staphylococcus aureus and the A. cordifolium EO against Bacillus subtillis (MIC values of 100 µg/mL). For antioxidant activity, the A. geophilum EO showed the highest potential with an SC (%) value of 63.34 ± 1.0%, corresponding to an SC50 value of 28.57 µg/mL. For anti-inflammatory activity, the A. splendens EO exhibited the highest potential with an IC50 value of 21.68 µg/mL, corresponding to an inhibition rate of NO production of 69.58 ± 1.3% and the percentage of cell life was 81.85 ± 0.9%.


Assuntos
Asarum , Óleos Voláteis , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Vietnã , Testes de Sensibilidade Microbiana , Antioxidantes/farmacologia
15.
J Ethnopharmacol ; 305: 116012, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-36567041

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Asarum heterotropoides var. seoulense (Nakai) Kitag is a traditional herbal medicine used in Korea and China. It is effective in aphthous stomatitis, local anesthesia, headache, toothache, gingivitis, and inflammatory diseases. However, information on the toxicity of the root of Asarum heterotropoides var. seoulense (Nakai) Kitag (AR) is limited. Therefore, preclinical toxicity studies on AR are needed to reduce the risk of excessive intake. AIM OF THE STUDY: We aimed to evaluate genotoxicity and the potential toxicity due to repeated administration of AR powder. MATERIALS AND METHODS: In vitro bacterial reverse mutation assay (Ames), in vitro chromosomal aberration assay (CA), and in vivo micronucleus (MN) assay in ICR mice were conducted. As positive results were obtained in Ames and CA assays, alkaline comet assay and pig-a gene mutation test were conducted for confirmation. For evaluating the general toxicity of AR powder, a 13-week subchronic toxicity test was conducted, after determining the dose by performing a single and a 4-week dose range finding (DRF) test. A total of 152 Sprague-Dawley (SD) rats were orally administered AR powder at doses of 0, 150, 350, 500, 1000, and 2000 mg/kg/day in the 13-week subchronic toxicity test. Hematology, clinical chemistry, urinalysis, organ weight, macro-, and microscopic examination were conducted after rat necropsy. RESULTS: AR powder induced genotoxicity evidenced in the Ames test at 187.5, 750, 375, and 1500 µg/plate of TA100, TA98, TA1537, and E. coli WP2uvrA in the presence and absence of S9, respectively; CA test at 790 µg/mL for 6 h in the presence of S-9; 75 µg/mL for 6 h in the absence of S-9, and 70 µg/mL for 22 h in the absence of S-9 in the stomach in the comet assay but not in MN and pig-a assays. In the 13-week subchronic toxicity study, clinical signs including irregular respiration, noisy respiration, salivation, and decreased body weight or food consumption were observed in males and females in the 2000 mg/kg/day group. In hematology tests, clinical chemistry, urinalysis, organ weight, and macroscopic examination, changes were observed in the dose groups of 500 mg/kg/day and above. Microscopic examination revealed hyperplasia of the stomach as a test-related change. Hepatocellular adenoma and changes in liver-related clinical chemistry parameters were observed. The rat No Observed Adverse Effect Level (NOAEL) was 150 mg/kg/day in males and <150 mg/kg/day in females. CONCLUSIONS: AR powder is potentially toxic to the liver and stomach and should be used with caution in humans. A long-term study on carcinogenicity is necessitated because DNA damage or changes in tissue lesions were observed in SD rats.


Assuntos
Asarum , Camundongos , Humanos , Masculino , Feminino , Ratos , Animais , Ratos Sprague-Dawley , Testes de Mutagenicidade/métodos , Escherichia coli , Pós , Camundongos Endogâmicos ICR , Dano ao DNA , Aberrações Cromossômicas/induzido quimicamente
16.
Biotechnol Appl Biochem ; 70(1): 83-96, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35244949

RESUMO

Asarum sieboldii Miq., a perennial herb of the family Aristolochiaceae, is widely used in China to treat cold, fever, aphthous stomatitis, toothache, gingivitis, and rheumatoid arthritis. Methyleugenol is the most representative pharmacological constituent of this medicinal herb. Cinnamoyl-CoA reductase (CCR), which has been well known for occupying a critical position in the lignin biosynthesis pathway, is also shared with the biosynthesis of methyleugenol. To better understand the regulatory mechanisms of methyleugenol biosynthesis, a 1530-bp long promoter region of the AsCCR1 gene was isolated. PLACE and PlantCARE analysis affirmed the existence of the core promoter elements such as TATA and CAAT boxes, abiotic stress-responsive cis-regulation elements like abscisic acid-responsive element, G-box, and MBS in the isolated sequence. The histochemical assay suggested that it was a constitutive promoter, highly expressed in the root tissue. Moreover, the region of -200 bp to ATG (start codon) was enough to drive the expression of It GUS gene. Treatments with low temperature and high concentration of gibberellin or abscisic acid demonstrated the abiotic stress-induced expression of the AsCCR1 promoter. Overall, this study revealed the isolation and characterization of the AsCCR1 promoter. Moreover, it also provided a candidate gene for molecular breeding in A. sieboldii to enhance its pharmacological potential.


Assuntos
Asarum , Ácido Abscísico/farmacologia , Clonagem Molecular , Regulação da Expressão Gênica de Plantas
17.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1008748

RESUMO

To explore the genetic diversity of Asarum sieboldii this study developed SSR markers based on transcriptome sequencing results and five populations of A.sieboldii from different regions were used as samples for genetic diversity assessment using software such as GenALEx 6.5, NTSYS 2.1, and Structure 2.3.4. The results showed that 16 SSR markers with high polymorphism and good repeatability were selected from the A.sieboldii transcriptome. Primers designed based on the flanking sequences of these markers successfully amplified 56 polymorphic fragments from 150 individual samples of the five A.sieboldii populations. On average, each primer amplified 3.5 polymorphic fragments, ranging from 2 to 8. The mean values of expected heterozygosity(H_e), Shannon's diversity index(I), Nei's gene diversity index(H), and the polymorphic information content(PIC) were 0.172, 0.281, 0.429, and 0.382, respectively. The mean population differentiation coefficient(F_(ST)) was 0.588, consistent with the analysis of molecular variance(AMOVA) results, which indicated greater genetic variation among A.sieboldii populations(69%) than that within populations(31%). The percentage of polymorphic loci(PPL) ranged from highest to lowest as SNJ>LN>SY>SZ>TB. Principal coordinate analysis(PCoA) and UPGMA clustering analysis further revealed genetic clustering of A.sieboldii individuals based on their geographical distribution, consistent with the results of the structure clustering analysis. In summary, the SSR markers developed from the transcriptome effectively assessed the genetic differentiation and population structure of natural A.sieboldii populations, revealing a relatively low genetic diversity in A.sieboldii, with genetic variation primarily observed at the population level and a correlation between population differentiation and geographic distance.


Assuntos
Humanos , Variação Genética , Asarum , Transcriptoma/genética , Repetições de Microssatélites/genética , Filogenia
18.
Acta Pharmaceutica Sinica ; (12): 1364-1371, 2023.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-978676

RESUMO

The complete chloroplast genome of medicinal plant Asarum caudigerum Hance and its close relative A. cardiophyllum Franchet were sequenced using Illumina Hiseq technology, and assembled, annotated, and characterized by bioinformatic methods in this study. Then phylogenetic analysis of the complete chloroplast genomes of A. caudigerum, A. cardiophyllum, and twelve published species was conducted. The results indicated that the chloroplast genomes ranged from 186 215-186 985 bp in length, with a large single copy (LSC, 89 445-90 169 bp) and two inverted repeats (IRa/IRb, 48 387-48 408 bp). The overall GC content was 37.4%-37.5%. A total of 144 chloroplast genes were annotated, including 98 protein coding genes, 38 tRNA genes and 8 rRNA genes. In addition, complex genomic rearrangements were detected in the chloroplast genome of Asarum. Meanwhile, visual evaluation of the discrete type of the sequence indicated that the variation level of non-coding region was higher than that of coding region. Phylogenetic analyses suggested that A. caudigerum and A. cardiophyllum were clustered into a single clade and A. cardiophyllum, A. sieboldii var. seoulense, A. misandrum and A. maculatum were clustered into another single branch. These two clade were sister species. This study provides a scientific basis for the identification, phylogenetic relationship, molecular breeding of Asarum species.

19.
Zhongguo Zhong Yao Za Zhi ; 47(15): 4048-4054, 2022 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-36046894

RESUMO

Light is the main source for plants to obtain energy.Asarum forbesii is a typical shade medicinal plant, which generally grows in the shady and wet place under the bushes or beside the ditches.It can grow and develop without too much light intensity.This experiment explores the effects of shading on the growth, physiological characteristics and energy metabolism of A.forbesii, which can provide reference and guidance for its artificial planting.In this experiment, A.forbesii was planted under 80%, 60%, 40%, 20% and no shade.During the vigorous growth period, the photosynthetic physiological characteristics such as fluorescence parameters, photosynthetic parameters, photosynthetic pigment content and ultrastructure, as well as the content of mitochondrial electron transport chain(ETC) synthase and nutrients were measured.The results showed that the photosynthetic pigment content, chlorophyll fluorescence parameters and net photosynthesis rate(P_n) decreased with the decrease of shading.Under 20%-40% shading treatment, the plants had damaged ultrastructure, expanded and disintegrated chloroplast, disordered stroma lamella and grana lamella, and increased osmiophi-lic granules and starch granules.The activities of nicotinamide adenine dinucleotide dehydrogenase(NADH), succinate dehydrogenase(SDH), cytochrome C oxidoreductase(CCO) and adenosine triphosphate(ATP) synthasewere positively related to light intensity.With the reduction of shading, the content of total sugar and protein in nutrients increased first and then decreased, and the content was the highest under 60% shade.In conclusion, under 60%-80% shading treatment, the chloroplast and mitochondria had more complete structure, faster energy metabolism, higher light energy-conversion efficiency, better absorption and utilization of light energy and more nutrient synthesis, which was more suitable for the growth and development of A.forbesii.


Assuntos
Asarum , Clorofila/metabolismo , Cloroplastos , Metabolismo Energético , Fotossíntese/fisiologia , Folhas de Planta/metabolismo
20.
Front Microbiol ; 13: 917117, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35935204

RESUMO

Asari Radix et Rhizoma is commonly used in classic prescriptions of herbal medicine in several Asian countries for resuscitation, pain relief, and sore treatment, and Asarum heterotropoides (A. heterotropoides) is an important source material of Asari Radix et Rhizoma. However, the plants of the Asari Radix et Rhizoma and some plants in Asarum spp. contain aristolochic acid I (AAI), which is considered as a carcinogen. The objective of the current study is to detoxify Asarum spp. through microbial degradation of AAI in order to ensure drug safety. Based on the observation of the close correlation between endophytic fungi of A. heterotropoides and AAI, we identified an AAI-degrading fungus and screened for candidate genes involved in AAI degradation. Full-length O-demethylase genes (ODMs) were cloned including A.h-ODM-5, Fs-ODM-4, and Fs-ODM-1, and their ability to degrade AAI was tested in vitro. The results showed that the AAI-degrading fungus was identified as Neocosmospora solani (A.h-Fs-1, endophytic fungi of A. heterotropoides), and verified the capability of specific O-demethylation to modify the structure of AAI. We further identified the functional ODMs in A.h-Fs-1 capable of degrading AAI and uncovered the AAI degradation mechanism of A.h-Fs-1. The microbial degradation of AAI demonstrated in the present study offers a new method to detoxify plant materials used for herbal medicine, and would enhance the regulation of toxic ingredients content in herbal medicine source materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...