Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 471
Filtrar
1.
J Colloid Interface Sci ; 675: 505-514, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38986324

RESUMO

Hybrid supercapacitors (HSCs) with facile integration and high process compatibility are considered ideal power sources for portable consumer electronics. However, as a crucial component for storing energy, traditional thin-film electrodes exhibit low energy density. Although increasing the thickness of thin films can enhance the energy density of the electrodes, it gives rise to issues such as poor mechanical stability and long electron/ion transport pathways. Constructing a stable three-dimensional (3D) ordered thick electrode is considered the key to addressing the aforementioned contradictions. In this work, a manufacturing process combining lithography and chemical deposition techniques is developed to produce large-area and high-aspect-ratio 3D nickel ordered cylindrical array (NiOCA) current collectors. Positive electrodes loaded with nickel-cobalt bimetallic hydroxide (NiOCA/NiCo-LDH) are constructed by electrodeposition, and HSCs are assembled with NiOCA/nitrogen-doped porous carbon (NiOCA/NPC) as negative electrodes. The HSCs exhibits 55% capacity retention with the current density ranging from 2 to 50 mA cm-2. Moreover, it maintains 98.2% of the initial capacity after long-term cycling of 15,000 cycles at a current density of 10 mA cm-2. The manufacturing process demonstrates customizability and favorable repeatability. It is anticipated to provide innovative concepts for the large-scale production of 3D microarray thick electrodes for high-performance energy storage system.

2.
Materials (Basel) ; 17(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38930271

RESUMO

Thin rectangular plates are considered basic structures in various sectors like aerospace, civil, and mechanical engineering. Moreover, isotropic and laminated composite plates subjected to transverse normal loading and undergoing small and large deflections have been extensively studied and published in the literature. Yet, it seems that the particular case of long thin plates having a high aspect ratio appears to be almost ignored by various scholars despite its engineering importance. The present study tries to fill this gap, yielding novel findings regarding the structural behavior of long thin plates in the small- and large-deflection regimes. In contrast to what is normally assumed in the literature, namely that a long plate with a high aspect ratio can be considered an infinitely long plate, the present results clearly show that the structural effects of the ends continue to exist near the remote ends of the long plate. An innovative finding is that long plates would (only on movable boundary conditions for the large-deflection regime) exhibit a larger mid-width displacement in comparison with deflections of infinitely long plates. This innovative higher deflection appears for both small and large-deflection regimes for both all-around simply supported and all-around clamped boundary conditions. This new finding was shown to be valid for both isotropic and orthotropic materials and presents a novel engineering approach for the old assumption well quoted in the literature that a relatively long plate on any boundary condition can be considered an infinite plate. Based on the present research, it is recommended that this assumption should be used carefully as the largest plate mid-deflection might occur at finite aspect ratios.

3.
Micromachines (Basel) ; 15(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38930723

RESUMO

High-aspect-ratio micro- and mesoscale metallic components (HAR-MMMCs) can play some unique roles in quite a few application fields, but their cost-efficient fabrication is significantly difficult to accomplish. To address this issue, this study proposes a necked-entrance through-mask (NTM) periodically lifting electroforming technology with an impinging jet electrolyte supply. The effects of the size of the necked entrance of the through-mask and the jet speed of the electrolyte on electrodeposition behaviors, including the thickness distribution of the growing top surface, deposition defect formation, geometrical accuracy, and electrodeposition rate, are investigated numerically and experimentally. Ensuring an appropriate size of the necked entrance can effectively improve the uniformity of deposition thickness, while higher electrolyte flow velocities help enhance the density of the components under higher current densities, reducing the formation of deposition defects. It was shown that several precision HAR-MMMCs with an AR of 3.65 and a surface roughness (Ra) of down to 36 nm can be achieved simultaneously with a relatively high deposition rate of 3.6 µm/min and thickness variation as low as 1.4%. Due to the high current density and excellent mass transfer effects in the electroforming conditions, the successful electroforming of components with a Vickers microhardness of up to 520.5 HV was achieved. Mesoscale precision columns with circular and Y-shaped cross-sections were fabricated by using this modified through-mask movable electroforming process. The proposed NTM periodic lifting electroforming method is promisingly advantageous in fabricating precision HAR-MMMCs cost-efficiently.

4.
Micromachines (Basel) ; 15(6)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38930772

RESUMO

Future industrial applications of microparticle fractionation with deterministic lateral displacement (DLD) devices are hindered by exceedingly low throughput rates. To enable the necessary high-volume flows, high flow velocities as well as high aspect ratios in DLD devices have to be investigated. However, no experimental studies have yet been conducted on the fractionation of bi-disperse suspensions containing particles below 10 µm with DLD at a Reynolds number (Re) above 60. Furthermore, devices with an aspect ratio of more than 4:1, which require advanced microfabrication, are not known in the DLD literature. Therefore, we developed a suitable process with deep reactive ion etching of silicon and anodic bonding of a glass lid to create pressure-resistant arrays. With a depth of 120 µm and a gap of 23 µm between posts, a high aspect ratio of 6:1 was realized, and devices were investigated using simulations and fractionation experiments. With the two-segmented array of 3° and 7° row shifts, critical diameters of 8 µm and 12 µm were calculated for low Re conditions, but it was already known that vortices behind the posts can shift these values to lower critical diameters. Suspensions with polystyrene particles in different combinations were injected with an overall flow rate of up to 15 mL/min, corresponding to Re values of up to 90. Suspensions containing particle combinations of 2 µm with 10 µm as well as 5 µm with 10 µm were successfully fractionated, even at the highest flow rate. Under these conditions, a slight widening of the displacement position was observed, but there was no further reduction in the critical size as it was for Re = 60. With an unprecedented fractionation throughput of nearly 1 L per hour, entirely new applications are being developed for chemical, pharmaceutical, and recycling technologies.

5.
Biomimetics (Basel) ; 9(6)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38921204

RESUMO

The propulsion system is the core component of unmanned underwater vehicles. The flapping propulsion method of marine animals' flippers, which allows for flexibility, low noise, and high energy utilization at low speeds, can provide a new perspective for the development of new propulsion technology. In this study, a new experimental flapping propulsion apparatus that can be installed in both directions has been constructed. The guide rail slider mechanism can achieve the retention of force in the direction of movement, thereby decoupling thrust, lift, and torque. Subsequently, the motion parameters of frequency-amplitude related to the thrust and lift of a bionic flapping-foil are scrutinized. A response surface connecting propulsion efficiency and these motion parameters is formulated. The highest efficiency of the flapping-foil propulsion is achieved at a frequency of 2 Hz and an amplitude of 40°. Furthermore, the impact of the installation mode and the aspect ratio of the flapping-foil is examined. The reverse installation of the swing yields a higher thrust than the forward swing. As the chord length remains constant and the span length increases, the propulsive efficiency gradually improves. When the chord length is extended to a certain degree, the propulsion efficiency exhibits a parabolic pattern, increasing initially and then diminishing. This investigation offers a novel perspective for the bionic design within the domain of underwater propulsion. This research provides valuable theoretical guidance for bionic design in the underwater propulsion field.

6.
Materials (Basel) ; 17(10)2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38793343

RESUMO

Metasurface holograms, with the capability to manipulate spatial light amplitudes and phases, are considered next-generation solutions for holographic imaging. However, conventional fabrication approaches for meta-atoms are heavily dependent on electron-beam lithography (EBL), a technique known for its expensive and time-consuming nature. In this paper, a polarization-insensitive metasurface hologram is proposed using a cost-effective and rapid nanoimprinting method with titanium dioxide (TiO2) nanoparticle loaded polymer (NLP). Based on a simulation, it has been found that, despite a reduction in the aspect ratio of meta-atoms of nearly 20%, which is beneficial to silicon master etching, NLP filling, and the mold release processes, imaging efficiency can go up to 54% at wavelength of 532 nm. In addition, it demonstrates acceptable imaging quality at wavelengths of 473 and 671 nm. Moreover, the influence of fabrication errors and nanoimprinting material degradation in terms of residual layer thickness, meta-atom loss or fracture, thermal-induced dimensional variation, non-uniform distribution of TiO2 particles, etc., on the performance is investigated. The simulation results indicate that the proposed device exhibits a high tolerance to these defects, proving its applicability and robustness in practice.

7.
Acta Biomater ; 180: 197-205, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38599439

RESUMO

During physiological and pathological processes, cells experience significant morphological alterations with the re-arrangement of cytoskeletal filaments, resulting in anisotropic viscoelasticity. Here, a structure-based cell model is proposed to study the anisotropic viscoelastic mechanical behaviors of living cells. We investigate how cell shape affects its creep responses in longitudinal and perpendicular directions. It is shown that cells exhibit power-law rheological behavior in both longitudinal and perpendicular directions under step stress, with a more solid-like behavior along the longitudinal direction. We reveal that the cell volume and cytoskeletal filament orientation, which have been neglected in most existing models, play a critical role in regulating cellular anisotropic viscoelasticity. The stiffness of the cell in both directions increases linearly with increasing its aspect ratio, due to the decrease of cell volume. Moreover, the increase in the cell's aspect ratio produces the aggregation of cytoskeletal filaments along the longitudinal direction, resulting in higher stiffness in this direction. It is also shown that the increase in cell's aspect ratio corresponds to a process of cellular ordering, which can be quantitatively characterized by the orientational entropy of cytoskeletal filaments. In addition, we present a simple yet robust method to establish the relationship between cell's aspect ratio and cell volume, thus providing a theoretical framework to capture the anisotropic viscoelastic behavior of cells. This study suggests that the structure-based cell models may be further developed to investigate cellular rheological responses to external mechanical stimuli and may be extended to the tissue scale. STATEMENT OF SIGNIFICANCE: The viscoelastic behaviors of cells hold significant importance in comprehending the roles of mechanical forces in embryo development, invasion, and metastasis of cancer cells. Here, a structure-based cell model is proposed to study the anisotropic viscoelastic mechanical behaviors of living cells. Our study highlights the crucial role of previously neglected factors, such as cell volume and cytoskeletal filament orientation, in regulating cellular anisotropic viscoelasticity. We further propose an orientational entropy of cytoskeletal filaments to quantitatively characterize the ordering process of cells with increasing aspect ratios. Moreover, we derived the analytical interrelationships between cell aspect ratio, cell stiffness, cell volume, and cytoskeletal fiber orientation. This study provides a theoretical framework to describe the anisotropic viscoelastic mechanical behavior of cells.


Assuntos
Citoesqueleto , Elasticidade , Modelos Biológicos , Anisotropia , Citoesqueleto/metabolismo , Viscosidade , Reologia , Humanos , Tamanho Celular , Estresse Mecânico
8.
Front Bioeng Biotechnol ; 12: 1368383, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38600944

RESUMO

Material properties of soft-tissue samples are often derived through uniaxial tensile testing. For engineering materials, testing parameters (e.g., sample geometries and clamping conditions) are described by international standards; for biological tissues, such standards do not exist. To investigate what testing parameters have been reported for tensile testing of human soft-tissue samples, a systematic review of the literature was performed using PRISMA guidelines. Soft tissues are described as anisotropic and/or hyperelastic. Thus, we explored how the retrieved parameters compared against standards for engineering materials of similar characteristics. All research articles published in English, with an Abstract, and before 1 January 2023 were retrieved from databases of PubMed, Web of Science, and BASE. After screening of articles based on search terms and exclusion criteria, a total 1,096 articles were assessed for eligibility, from which 361 studies were retrieved and included in this review. We found that a non-tapered shape is most common (209 of 361), followed by a tapered sample shape (92 of 361). However, clamping conditions varied and were underreported (156 of 361). As a preliminary attempt to explore how the retrieved parameters might influence the stress distribution under tensile loading, a pilot study was performed using finite element analysis (FEA) and constitutive modeling for a clamped sample of little or no fiber dispersion. The preliminary FE simulation results might suggest the hypothesis that different sample geometries could have a profound influence on the stress-distribution under tensile loading. However, no conclusions can be drawn from these simulations, and future studies should involve exploring different sample geometries under different computational models and sample parameters (such as fiber dispersion and clamping effects). Taken together, reporting and choice of testing parameters remain as challenges, and as such, recommendations towards standard reporting of uniaxial tensile testing parameters for human soft tissues are proposed.

9.
Vision Res ; 220: 108400, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38603923

RESUMO

It is well known that objects become grouped in perceptual organization when they share some visual feature, like a common direction of motion. Less well known is that grouping can change how people perceive a set of objects. For example, when a pair of shapes consistently share a common region of space, their aspect ratios tend to be perceived as more similar (are attracted toward each other). Conversely, when shapes are assigned to different regions in space their aspect ratios repel from each other. Here we examine whether the visual system produce both attractive and repulsive distortions when the state of grouping between a pair of shapes changes on a moment-to-moment basis. Observers viewed a pair of ellipses that differed in terms of how flat or tall they were and reported the aspect ratio of one ellipse from the pair. Each ellipse was defined by a cloud of coherently-moving dots, and the dots within the two ellipses had either the same or different directions of motion, varying from trial-to-trial. We found that the cued ellipse's aspect ratio was reported to be repelled from the aspect ratio of the uncued ellipse when the shapes had different directions of motion compared to when they had the same direction of motion. These results suggest that the visual system can adaptively alter visual experience based on grouping, in particular, repelling the appearance of objects when they do not appear to go together, and it can do so quickly and flexibly.


Assuntos
Julgamento , Percepção de Movimento , Estimulação Luminosa , Humanos , Percepção de Movimento/fisiologia , Estimulação Luminosa/métodos , Julgamento/fisiologia , Percepção de Forma/fisiologia , Adulto , Sinais (Psicologia) , Masculino , Feminino , Psicofísica , Adulto Jovem , Análise de Variância , Reconhecimento Visual de Modelos/fisiologia
10.
J Vasc Surg Venous Lymphat Disord ; : 101900, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38677552

RESUMO

OBJECTIVE: Venous stenting has become the first line of treatment for patients with symptomatic chronic iliofemoral venous obstruction (CIVO) in whom conservative therapy has failed. Intravascular ultrasound (IVUS) interrogation with the use of normal minimal luminal diameters or areas has become the standard to confirm the diagnosis and determine the adequacy of stenting. However, the aspect ratio (ratio between the maximal and minimal luminal diameters) has also been put forth as a possible metric for determining stent adequacy. This study explores the utility of the native iliac vein and stent aspect ratios in determining the initial presentation and outcomes after stenting. METHODS: A retrospective analysis of contemporaneously entered data from patients who underwent stenting for quality of life (QoL)-impairing clinical manifestations of CIVO for whom conservative therapy had failed formed the study cohort. The limbs were grouped into three at the time of intervention using the IVUS-determined native vein aspect ratio: group I, those with a ratio of ≤1.4; group II, those with a ratio of 1.41 to 1.99; and group III, those with a ratio of ≥2. The characteristics appraised initially and after stenting included the venous clinical severity score, grade of swelling (GOS), visual analog scale (VAS) for pain score, and the CIVIQ-20 QoL score. Analysis of variance and paired and unpaired t tests were used for comparison of clinical and QoL variables, and Kaplan-Meier analysis was used to evaluate stent patency, with the log-rank test used to discriminate between different curves. RESULTS: There were a total of 236 limbs (236 patients). The median age for the entire cohort was 62 years (range, 16-92 years). There were 161 women in the study, and left laterality was more common (137 limbs). Post-thrombotic obstruction was noted in 201 limbs (86%). The median body mass index was 36 kg/m2. There were 54 (23%), 64 (27%), and 118 (50%) limbs in groups I, II, and III, respectively. The median follow-up was 65 months. For the entire cohort, after stenting, the venous clinical severity score improved from 6 to 4 (P < .0001) at 3 months and remained at 4 at 6 months (P < .0001), 12 months (P < .0001), and 24 months (P < .0001). The GOS for the entire cohort improved from 3 to 1 (P < .0001) at 3 months and remained at 1 at 6 months (P < .0001), 12 months (P < .0001), and 24 months (P < .0001). The VAS for pain score for the entire cohort improved from 7 to 0 (P < .0001) at 3 months, increased to 2 (P < .0001) at 6 months, and remained at 2 (P < .0001) at 12 months. At 24 months, the VAS for pain score worsened to 3 (P < .0001). For the entire cohort, the CIVIQ-20 score improved from 62 to 40 (P < .0001). There was no difference in the GOS, VAS for pain score, or CIVIQ-20 score between the groups at baseline or at 6, 12, and 24 months after intervention. At 60 months, the primary stent patency was 89% for group I, 80% for group II, and 75% for group III (P = .85). The primary assisted stent patency was 100% for group I, 98% for group II, and 98% for group III (P = .5). Secondary patency was 100% for groups II and III (P > .5). Reintervention was pursued for QoL-impairing clinical manifestations in 53 limbs (22%) without a significant difference between the three groups (P = .13). CONCLUSIONS: The native vein aspect ratio does not appear to determine the initial clinical presentation or QoL or impact the clinical or QoL outcomes after stenting for CIVO. Following stenting, no patient had an aspect ratio >2, with 97% of patients having an aspect ratio ≤1.4 and the remaining 3% having an aspect ratio of 1.41 to 1.99. IVUS-determined minimal cross-sectional luminal area and not the aspect ratios should be used for confirmation of the diagnosis of CIVO and to assess the adequacy of stenting.

11.
J Colloid Interface Sci ; 665: 286-298, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38531274

RESUMO

Tailoring porous host materials, as an effective strategy for storing sulfur and restraining the shuttling of soluble polysulfides in electrolyte, is crucial in the design of high-performance lithium-sulfur (Li-S) batteries. However, for the widely studied conductive hosts such as mesoporous carbon, how the aspect ratio affects the confining ability to polysulfides, ion diffusion as well as the performances of Li-S batteries has been rarely studied. Herein, ordered mesoporous carbon (OMC) is chosen as a proof-of-concept prototype of sulfur host, and its aspect ratio is tuned from over âˆ¼ 2 down to below âˆ¼ 1.2 by using ordered mesoporous silica hard templates with variable length/width scales. The correlation between the aspect ratio of OMCs and the electrochemical performances of the corresponding sulfur-carbon cathodes are systematically studied with combined electrochemical measurements and microscopic characterizations. Moreover, the evolution of sulfur species in OMCs at different discharge states is scrutinized by small-angle X-ray scattering. This study gives insight into the aspect ratio effects of mesoporous host on battery performances of sulfur cathodes, providing guidelines for designing porous host materials for high-energy sulfur cathodes.

12.
Polymers (Basel) ; 16(6)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38543382

RESUMO

The cell structure and compressive properties of extruded polyethylene terephthalate (PET) foam with different densities were studied. The die of the PET foaming extruder is a special multi-hole breaker plate, which results in a honeycomb-shaped foam block. The SEM analysis showed that the aspect ratio and cell wall thickness of the strand border is greater than that of the strand body. The cells are elongated and stronger in the extruding direction, and the foam anisotropy of the structure and compressive properties decrease with increasing density. The compression results show typical stress-strain curves even though the extruded PET foam is composed of multiple foamed strands. The compression properties of PET foam vary in each of the three directions, with the best performing direction (i.e., extrusion direction) showing stretch-dominated structures, while the other two directions show bending-dominated structures. Foam mechanics models based on both rectangular and elongated Kelvin cell geometries were considered to predict the compressive properties of PET foams in terms of relative density, structure anisotropy, and the properties of the raw polymer. The results show that the modulus and strength anisotropy of PET foam can be reasonably predicted by the rectangular cell model, but more accurate predictions were obtained with an appropriately assumed elongated Kelvin model.

13.
J Chromatogr A ; 1720: 464825, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38507870

RESUMO

We report on a steady-state based, and hence highly accurate numerical modelling study of the effect of the top and bottom wall in the current generation of micro-pillar array columns. These have a mesoporous retention layer that not only covers the pillar walls but also the bottom wall. Our results show that the performance of these columns can in general not be improved by also covering the top wall with the same layer, despite the increased column symmetry this approach would offer. The reason for this is that the local species retardation caused by a retentive layer is much stronger than the pure flow arresting effect of an uncovered wall. At least, this has a crucial impact in high aspect-ratio systems such as micro-pillar array columns because these require a small inter-pillar distance to promote mass transfer together with a large channel depth to enable a sufficiently high flow rate. On the other hand, a notable improvement could be made if micro-pillar array would be produced without having a retentive layer at the bottom. At Péclet number Pe = 50 and aspect ratio AR = 5 for flow-channels, this gain amounts up to about 4.5 h-units at a zone retention factor k'' = 2 and 1.75 h-units at k'' = 16 (gain scales almost linearly with Pe). To verify these results, we also considered another high aspect-ratio system with a simplified geometry: the open-tubular channel with a flat-rectangular cross-section. This led to very similar observations, thus confirming the findings for the micro-pillar array. The results produced in the present study also allow us to conclude that the classic modelling paradigm adopted in chromatography, which is based on the independency and hence additivity of the hCm- and hCs-contributions, can lead to large modelling errors in chromatographic systems with a high aspect-ratio, even when their geometry is so simple as that of a straight open-tubular channel with constant cross-section. Indeed, when both zones are treated independently, the analysis misses how the vertical diffusion through the retentive layer helps suppressing the vertical gradients in the mobile zone. The diffusion through this layer occurs in a ratio of k''Ds/Dm (Dm being the diffusion coefficient in mobile phase zone and Ds being the diffusion coefficient in stationary phase zone), such that at high retention factors this diffusion contribution even becomes the dominant one.


Assuntos
Cromatografia , Difusão
14.
Insects ; 15(3)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38535336

RESUMO

Flight dispersal is ecologically relevant for the survival of supratidal rockpool insects. Dispersal has important consequences for colonisation, gene flow, and evolutionary divergence. Here, we compared the flight dispersal capacity of two congeneric beetle species (Ochthebius quadricollis and Ochthebius lejolisii) that exclusively inhabit these temporary, fragmented, and extreme habitats. We estimated flight capacity and inferred dispersal in both species using different approaches: experimental flying assays, examination of wing morphology, and comparison of microsatellite markers between species. Our findings revealed that both species exhibited similar flight behaviour, with 60 to 80% of the individuals flying under water heating conditions. Notably, females of both species had larger body sizes and wing areas, along with lower wing loading, than males in O. quadricollis. These morphological traits are related to higher dispersal capacity and more energetically efficient flight, which could indicate a female-biassed dispersal pattern. The wing shapes of both species are characterised by relatively larger and narrower wings in relation to other species of the genus, suggesting high flight capacity at short distances. Molecular data revealed in both species low genetic divergences between neighbouring populations, non-significant differences between species, and no isolation by distance effect at the study scale (<100 km). These results point to passive dispersal assisted by wind.

15.
ACS Appl Mater Interfaces ; 16(12): 14995-15003, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38487867

RESUMO

Amorphous oxide semiconductors have been widely studied for various applications, including thin-film transistors (TFTs) for display backplanes and semiconductor memories. However, the inherent instability, limited mobility, and complexity of multicomponent oxide semiconductors for achieving high aspect ratios and conformality of cation distribution remain challenging. Indium-zinc oxide (IZO), known for its high mobility, also faces obstacles in instability resulting from high carrier doping density and low ionization energy. To address these issues and attain a balance between mobility and stability, adopting a highly aligned structure such as a c-axis aligned crystalline IGZO could be advantageous. However, limited studies have reported enhanced electrical performance using crystalline IZO, likely attributed to the high thermal stability of the individual components (In2O3 and ZnO). Here, we first propose a c-axis aligned composite (CAAC) IZO with superior TFT properties, including a remarkable performance of field-effect mobility (µFE) of 55.8 cm2/(V s) and positive-bias-temperature-stress stability of +0.16 V (2 MV/cm, 60 °C, 1 h), as well as a low subthreshold swing of 0.18 V/decade and hysteresis as 0.01 V, which could be obtained through optimization of growth temperature and composition using thermal atomic layer deposition. These results surpass those of TFTs based on nanocrystalline/polycrystalline/amorphous-IZO. We conducted a thorough investigation of CAAC-IZO and revealed that the growth temperature and cation distribution profoundly influence the crystal structure and device properties. Finally, we observed excellent compositional conformality and 97% step coverage of IZO on a high-aspect-ratio (HAR) structure with an aspect ratio reaching 40:1, which is highly promising for future applications. Our results include a detailed investigation of the influence of the crystal structure of IZO on the film and TFT performance and suggest an approach for future applications.

16.
Adv Sci (Weinh) ; 11(17): e2308687, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38342615

RESUMO

Metasurfaces, 2D arrays of nanostructures, have gained significant attention in recent years due to their ability to manipulate light at the subwavelength scale. Their diverse applications range from advanced optical devices to sensing and imaging technologies. However, the mass production of dielectric metasurfaces with tailored properties for visible light has remained a challenge. Therefore, the demand for efficient and cost-effective fabrication methods for metasurfaces has driven the continuing development of various techniques. In this research article, a high-throughput production method is presented for multifunctional dielectric metasurfaces in the visible light range using one-step high-index TiO2-polymer composite (TPC) printing, which is a variant of nanoprinting lithography (NIL) for the direct replication of patterned multifunctional dielectric metasurfaces using a TPC material as the printing ink. The batch fabrication of dielectric metasurfaces is demonstrated with controlled geometry and excellent optical response, enabling high-performance light-matter interactions for potential applications of visible meta-displays.

17.
Data Brief ; 52: 109944, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38293579

RESUMO

This article describes data related to the research paper "Simplification of gel point characterization of cellulose nano and microfiber suspensions" [1]. The characterization of fibrillated celluloses that include cellulose nano and microfibrils (CMNFs) is a challenge for their production on an industrial scale, requiring easy techniques that control their quality and reproducibility. Gel point is a convenient parameter commonly used to estimate the aspect ratio (AR) of CMNFs. However, this estimation requires many sedimentation experiments, which are tedious and time consuming. The dataset includes all information related to the traditional experiments and to the simplified experiments for estimating gel point and AR based on only one sedimentation experiment. The full data set is useful to select the initial concentration to carry out the experimentation. This dataset also includes the information for the validation of the proposed simplified methodology and shows that the errors are lower than 7% for the gel point calculation and of 3% for the AR estimation. A larger databased of nanocellulose suspensions can be built with the reuse of this data to allow the estimation of nanocellulose properties in a future.

18.
Adv Mater ; 36(21): e2312220, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38288877

RESUMO

Cellulose nanofibrils (CNFs) are supramolecular assemblies of cellulose chains that provide outstanding mechanical support and structural functions for cellulosic organisms. However, traditional chemical pretreatments and mechanical defibrillation of natural cellulose produce irreversible surface functionalization and adverse effects of morphology of the CNFs, respectively, which limit the utilization of CNFs in nanoassembly and surface functionalization. Herein, this work presents a facile and energetically efficient surface engineering strategy to completely exfoliate cellulose elementary fibrils from various bioresources, which provides CNFs with ultrahigh aspect ratios (≈1400) and reversible surface. During the mild process of swelling and esterification, the crystallinity and the morphology of the elementary fibrils are retained, resulting in high yields (98%) with low energy consumption (12.4 kJ g-1). In particular, on the CNF surface, the surface hydroxyl groups are restored by removal of the carboxyl moieties via saponification, which offers a significant opportunity for reconstitution of stronger hydrogen bonding interfaces. Therefore, the resultant CNFs can be used as sustainable building blocks for construction of multidimensional advanced cellulosic materials, e.g., 1D filaments, 2D films, and 3D aerogels. The proposed surface engineering strategy provides a new platform for fully utilizing the characteristics of the cellulose elementary fibrils in the development of high-performance cellulosic materials.

19.
Nanomaterials (Basel) ; 14(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38251172

RESUMO

This study investigated the effect of temperature on the aspect-ratio etching of SiO2 in CF4/H2/Ar plasma using patterned samples of a 200 nm trench in a low-temperature reactive-ion etching system. Lower temperatures resulted in higher etch rates and aspect ratios for SiO2. However, the plasma property was constant with the chuck temperature, indicated by the line intensity ratio from optical emission spectroscopy monitoring of the plasma. The variables obtained from the characterization of the etched profile for the 200 nm trench after etching were analyzed as a function of temperature. A reduction in the necking ratio affected the etch rate and aspect ratio of SiO2. The etching mechanism of the aspect ratio etching of SiO2 was discussed based on the results of the surface composition at necking via energy-dispersive X-ray spectroscopy with temperature. The results suggested that the neutral species reaching the etch front of SiO2 had a low sticking coefficient. The bowing ratio decreased with lowering temperature, indicating the presence of directional ions during etching. Therefore, a lower temperature for the aspect ratio etching of SiO2 could achieve a faster etch rate and a higher aspect ratio of SiO2 via the reduction of necking than higher temperatures.

20.
Int J Pharm ; 649: 123665, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38048889

RESUMO

Recently, cylindrical granules have been applied in pharmaceutical fields and their aspect ratio (AR) is considered an important factor in the manufacturing process. However, the relationships between AR and the tableting process were seldom reported. This study aims to clarify the role of AR in the tableting process of cylindrical granules. First, mesalazine cylindrical granules with different AR were extruded, and their physical attributes were then comprehensively characterized. Subsequently, their compression behaviors and tableting performances were systematically assessed. Notably, it was found that the cylindrical granules with high AR possessed good anti-deformation capacity and favorable tabletability. Finally, the dissolution test suggested that tablets compressed from cylindrical granules with higher AR showed lower dissolution rates. Collectively, findings in this study identified that the AR of cylindrical granules was a critical factor in the tableting process and provided valuable guidance for the application of these granules in oral solid formulations.


Assuntos
Mesalamina , Composição de Medicamentos/métodos , Comprimidos , Tamanho da Partícula , Resistência à Tração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...