RESUMO
The mode of reproduction most often seen in snakes is sexual, but studies have noted facultative parthenogenesis in at least six families. Here, we provide evidence for the first observed case of facultative parthenogenesis in a captive Jamaican boa (Chilabothrus subflavus). A 7-year-old female Jamaican boa, isolated since birth, was found to have produced a litter of 15 offspring. To provide molecular DNA evidence of parthenogenesis, 13 new microsatellite loci were isolated in the species. All offspring were found to be homozygous at each locus and only possess alleles found in the dam, implicating that they were born from asexual reproduction. Several developmental abnormalities, including stillbirths and spinal deformities, were noted in the litter which may be explained by their increased level of homozygosity. To preserve genetic diversity in the captive population, research should be conducted to understand the prevalence of this mode of reproduction and to guide future management decisions of this IUCN listed Vulnerable species.
Assuntos
Animais de Zoológico , Boidae , Repetições de Microssatélites , Partenogênese , Animais , Partenogênese/genética , Feminino , Animais de Zoológico/genética , Boidae/genética , Boidae/fisiologiaRESUMO
We examined four suspected cases of facultative parthenogenesis in three species of a neotropical lineage of pitvipers of the Bothrops atrox group. Reproduction without mating was observed in captive females of B. atrox, B. moojeni and B. leucurus housed alone for seven years (the two former species) and nine years (the latter one). In addition to the observation of captivity data, we investigated molecularly this phenomenon using heterologous microsatellites. DNA was extracted from the mothers' scales or liver, from embryo and newborn fragments, and yolked ova. Four of the microsatellites showed good amplification using Polymerase Chain Reaction and informative band segregation patterns among each mother and respective offspring. Captivity information, litter characteristics (comparison of the number of newborns, embryos and yolked ova) and molecular data altogether agreed with facultative parthenogenesis predictions in at least three out of the four mothers studied: B. atrox (ID#933) was heterozygous for three out of the four markers, and the sons S1 and S2 were homozygous; B. moojeni (BUT86) was heterozygous for two out of four markers, offspring S1, S3, E2, and E4, and O1 to O6 were homozygous; and B. leucurus (MJJS503) was heterozygous for three out of four markers, and son E1 and O1 were homozygous. B. moojeni (BUT44) was homozygous for all loci analyzed in the mother and offspring, which although not informative is also consistent with parthenogenesis. This study represents the first molecular confirmation of different pitviper species undergoing facultative parthenogenesis among Neotropical endemic snakes.
RESUMO
We examined four suspected cases of facultative parthenogenesis in three species of a neotropical lineage of pitvipers of the Bothrops atrox group. Reproduction without mating was observed in captive females of B. atrox, B. moojeni and B. leucurus housed alone for seven years (the two former species) and nine years (the latter one). In addition to the observation of captivity data, we investigated molecularly this phenomenon using heterologous microsatellites. DNA was extracted from the mothers’ scales or liver, from embryo and newborn fragments, and yolked ova. Four of the microsatellites showed good amplification using Polymerase Chain Reaction and informative band segregation patterns among each mother and respective offspring. Captivity information, litter characteristics (comparison of the number of newborns, embryos and yolked ova) and molecular data altogether agreed with facultative parthenogenesis predictions in at least three out of the four mothers studied: B. atrox (ID#933) was heterozygous for three out of the four markers, and the sons S1 and S2 were homozygous; B. moojeni (BUT86) was heterozygous for two out of four markers, offspring S1, S3, E2, and E4, and O1 to O6 were homozygous; and B. leucurus (MJJS503) was heterozygous for three out of four markers, and son E1 and O1 were homozygous. B. moojeni (BUT44) was homozygous for all loci analyzed in the mother and offspring, which although not informative is also consistent with parthenogenesis. This study represents the first molecular confirmation of different pitviper species undergoing facultative parthenogenesis among Neotropical endemic snakes.