Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Biol Res ; 56(1): 28, 2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37237400

RESUMO

BACKGROUND: Skeletal muscle generates force and movements and maintains posture. Under pathological conditions, muscle fibers suffer an imbalance in protein synthesis/degradation. This event causes muscle mass loss and decreased strength and muscle function, a syndrome known as sarcopenia. Recently, our laboratory described secondary sarcopenia in a chronic cholestatic liver disease (CCLD) mouse model. Interestingly, the administration of ursodeoxycholic acid (UDCA), a hydrophilic bile acid, is an effective therapy for cholestatic hepatic alterations. However, the effect of UDCA on skeletal muscle mass and functionality has never been evaluated, nor the possible involved mechanisms. METHODS: We assessed the ability of UDCA to generate sarcopenia in C57BL6 mice and develop a sarcopenic-like phenotype in C2C12 myotubes and isolated muscle fibers. In mice, we measured muscle strength by a grip strength test, muscle mass by bioimpedance and mass for specific muscles, and physical function by a treadmill test. We also detected the fiber's diameter and content of sarcomeric proteins. In C2C12 myotubes and/or isolated muscle fibers, we determined the diameter and troponin I level to validate the cellular effect. Moreover, to evaluate possible mechanisms, we detected puromycin incorporation, p70S6K, and 4EBP1 to evaluate protein synthesis and ULK1, LC3 I, and II protein levels to determine autophagic flux. The mitophagosome-like structures were detected by transmission electron microscopy. RESULTS: UDCA induced sarcopenia in healthy mice, evidenced by decreased strength, muscle mass, and physical function, with a decline in the fiber's diameter and the troponin I protein levels. In the C2C12 myotubes, we observed that UDCA caused a reduction in the diameter and content of MHC, troponin I, puromycin incorporation, and phosphorylated forms of p70S6K and 4EBP1. Further, we detected increased levels of phosphorylated ULK1, the LC3II/LC3I ratio, and the number of mitophagosome-like structures. These data suggest that UDCA induces a sarcopenic-like phenotype with decreased protein synthesis and autophagic flux. CONCLUSIONS: Our results indicate that UDCA induces sarcopenia in mice and sarcopenic-like features in C2C12 myotubes and/or isolated muscle fibers concomitantly with decreased protein synthesis and alterations in autophagic flux.


Assuntos
Sarcopenia , Camundongos , Animais , Sarcopenia/induzido quimicamente , Sarcopenia/patologia , Ácido Ursodesoxicólico/farmacologia , Ácido Ursodesoxicólico/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Troponina I/metabolismo , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo
2.
Biol. Res ; 56: 28-28, 2023. ilus, graf, tab
Artigo em Inglês | LILACS | ID: biblio-1513740

RESUMO

BACKGROUND: Skeletal muscle generates force and movements and maintains posture. Under pathological conditions, muscle fibers suffer an imbalance in protein synthesis/degradation. This event causes muscle mass loss and decreased strength and muscle function, a syndrome known as sarcopenia. Recently, our laboratory described secondary sarcopenia in a chronic cholestatic liver disease (CCLD) mouse model. Interestingly, the administration of ursodeoxycholic acid (UDCA), a hydrophilic bile acid, is an effective therapy for cholestatic hepatic alterations. However, the effect of UDCA on skeletal muscle mass and functionality has never been evaluated, nor the possible involved mechanisms. METHODS: We assessed the ability of UDCA to generate sarcopenia in C57BL6 mice and develop a sarcopenic-like phenotype in C2C12 myotubes and isolated muscle fibers. In mice, we measured muscle strength by a grip strength test, muscle mass by bioimpedance and mass for specific muscles, and physical function by a treadmill test. We also detected the fiber's diameter and content of sarcomeric proteins. In C2C12 myotubes and/or isolated muscle fibers, we determined the diameter and troponin I level to validate the cellular effect. Moreover, to evaluate possible mechanisms, we detected puromycin incorporation, p70S6K, and 4EBP1 to evaluate protein synthesis and ULK1, LC3 I, and II protein levels to determine autophagic flux. The mitophagosome-like structures were detected by transmission electron microscopy. RESULTS: UDCA induced sarcopenia in healthy mice, evidenced by decreased strength, muscle mass, and physical function, with a decline in the fiber's diameter and the troponin I protein levels. In the C2C12 myotubes, we observed that UDCA caused a reduction in the diameter and content of MHC, troponin I, puromycin incorporation, and phosphorylated forms of p70S6K and 4EBP1. Further, we detected increased levels of phosphorylated ULK1, the LC3II/LC3I ratio, and the number of mitophagosome-like structures. These data suggest that UDCA induces a sarcopenic-like phenotype with decreased protein synthesis and autophagic flux. CONCLUSIONS: Our results indicate that UDCA induces sarcopenia in mice and sarcopenic-like features in C2C12 myotubes and/or isolated muscle fibers concomitantly with decreased protein synthesis and alterations in autophagic flux.


Assuntos
Animais , Camundongos , Sarcopenia/induzido quimicamente , Sarcopenia/patologia , Ácido Ursodesoxicólico/metabolismo , Ácido Ursodesoxicólico/farmacologia , Músculo Esquelético/metabolismo , Troponina I/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Camundongos Endogâmicos C57BL
3.
Front Immunol ; 13: 953272, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36311768

RESUMO

Interleukin 6 (IL-6) acts as a pro and anti-inflammatory cytokine, has an intense correlation with exercise intensity, and activates various pathways such as autophagy and mitochondrial unfolded protein response. Also, IL-6 is interconnected to circadian clock-related inflammation and can be suppressed by the nuclear receptor subfamily 1, group D, member 1 (Nr1d1, protein product REV-ERBα). Since IL-6 is linked to physical exercise-modulated metabolic pathways such as autophagy and mitochondrial metabolism, we investigated the relationship of IL-6 with REV-ERBα in the adaptations of these molecular pathways in response to acute intense physical exercise in skeletal muscle. The present study was divided into three experiments. In the first one, wild-type (WT) and IL-6 knockout (IL-6 KO) mice were divided into three groups: Basal time (Basal; sacrificed before the acute exercise), 1 hour (1hr post-Ex; sacrificed 1 hour after the acute exercise), and 3 hours (3hr post-Ex; sacrificed 3 hours after the acute exercise). In the second experiment, C2C12 cells received IL-6 physiological concentrations or REV-ERBα agonist, SR9009. In the last experiment, WT mice received SR9009 injections. After the protocols, the gastrocnemius muscle or the cells were collected for reverse transcription-quantitative polymerase chain reaction (RTq-PCR) and immunoblotting techniques. In summary, the downregulation of REV-ERBα, autophagic flux, and most mitochondrial genes was verified in the IL-6 KO mice independent of exercise. The WT and IL-6 KO treated with SR9009 showed an upregulation of autophagic genes. C2C12 cells receiving IL-6 did not modulate the Nr1d1 mRNA levels but upregulated the expression of some mitochondrial genes. However, when treated with SR9009, IL-6 and mitochondrial gene expression were upregulated in C2C12 cells. The autophagic flux in C2C12 suggest the participation of REV-ERBα protein in the IL-6-induced autophagy. In conclusion, the present study verified that the adaptations required through physical exercise (increases in mitochondrial content and improvement of autophagy machinery) might be intermediated by an interaction between IL-6 and REVERBα.


Assuntos
Interleucina-6 , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares , Animais , Camundongos , Autofagia/genética , Biomarcadores , Produtos do Gene rev , Interleucina-6/genética , Interleucina-6/metabolismo , Músculo Esquelético/metabolismo , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo
4.
Curr Issues Mol Biol ; 45(1): 327-336, 2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36661509

RESUMO

The COVID-19 (Coronavirus Disease 2019), caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), severely affects mainly individuals with pre-existing comorbidities. Here our aim was to correlate the mTOR (mammalian/mechanistic Target of Rapamycin) and autophagy pathways with the disease severity. Through western blotting and RNA analysis, we found increased mTOR signaling and suppression of genes related to autophagy, lysosome, and vesicle fusion in Vero E6 cells infected with SARS-CoV-2 as well as in transcriptomic data mining of bronchoalveolar epithelial cells from severe COVID-19 patients. Immunofluorescence co-localization assays also indicated that SARS-CoV-2 colocalizes within autophagosomes but not with a lysosomal marker. Our findings indicate that SARS-CoV-2 can benefit from compromised autophagic flux and inhibited exocytosis in individuals with chronic hyperactivation of mTOR signaling.

5.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;55: e12252, 2022. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1403899

RESUMO

Nanosized copper particles (nano Cu) have been incorporated into products in multiple industries, although studies have demonstrated that these particles are nephrotoxic. We investigated the cytotoxicity of nanosized copper particles on rat mesangial cells and measured rates of apoptosis, the expression of caspase-3, and generation of reactive oxygen species. We also measured autophagy through the acridine orange (AO) staining and expression of Beclin-1, microtubule-associated protein 1 light chain 3, and p62 to screen the underlying mechanism of toxicity. Nanosized copper particles inhibited mesangial cell viability, up-regulated the activity of caspase-3, and increased the rates of apoptosis and the generation of reactive oxygen species in a concentration-dependent manner. Exposure to nano Cu increased the formation of acidic vesicular organelles and the expression of Beclin-1, microtubule-associated protein 1 light chain 3, and p62, and treatment with an autophagy inhibitor reduced nephrotoxicity. This indicated that the autophagy pathway is involved in the toxicity induced by nanosized copper particles to mesangial cells. This finding can contribute to the development of safety guidelines for the evaluation of nanomaterials in the future.

6.
Biol Res ; 54(1): 27, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34488902

RESUMO

BACKGROUND: Demethylzeylasteral (T-96) is a pharmacologically active triterpenoid monomer extracted from Tripterygium wilfordii Hook F (TWHF) that has been reported to exhibit anti-neoplastic effects against several types of cancer cells. However, the potential anti-tumour effects of T-96 against human Prostate cancer (CaP) cells and the possible underlying mechanisms have not been well studied. RESULTS: In the current study, T-96 exerted significant cytotoxicity to CaP cells in vitro and induced cell cycle arrest at S-phase in a dose-dependent manner. Mechanistically, T-96 promoted the initiation of autophagy but inhibited autophagic flux by inducing ROS-mediated endoplasmic reticulum (ER) stress which subsequently activated the extrinsic apoptosis pathway in CaP cells. These findings implied that T-96-induced ER stress activated the caspase-dependent apoptosis pathway to inhibit proliferation of CaP cells. Moreover, we observed that T-96 enhances the sensitivity of CaP cells to the chemotherapeutic drug, cisplatin. CONCLUSIONS: Taken together, our data demonstrated that T-96 is a novel modulator of ER stress and autophagy, and has potential therapeutic applications against CaP in the clinic.


Assuntos
Autofagia , Neoplasias da Próstata , Apoptose , Linhagem Celular Tumoral , Humanos , Masculino , Neoplasias da Próstata/tratamento farmacológico , Espécies Reativas de Oxigênio , Triterpenos
7.
Int J Mol Sci ; 22(5)2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33807902

RESUMO

Although physical exercise-induced autophagy activation has been considered a therapeutic target to enhance tissue health and extend lifespan, the effects of different exercise models on autophagy in specific metabolic tissues are not completely understood. This descriptive investigation compared the acute effects of endurance (END), exhaustive (ET), strength (ST), and concurrent (CC) physical exercise protocols on markers of autophagy, genes, and proteins in the gastrocnemius muscle, heart, and liver of mice. The animals were euthanized immediately (0 h) and six hours (6 h) after the acute exercise for the measurement of glycogen levels, mRNA expression of Prkaa1, Ppargc1a, Mtor, Ulk1, Becn1, Atg5, Map1lc3b, Sqstm1, and protein levels of Beclin 1 and ATG5. The markers of autophagy were measured by quantifying the protein levels of LC3II and Sqstm1/p62 in response to three consecutive days of intraperitoneal injections of colchicine. In summary, for gastrocnemius muscle samples, the main alterations in mRNA expressions were observed after 6 h and for the ST group, and the markers of autophagy for the CC group were increased (i.e., LC3II and Sqstm1/p62). In the heart, the Beclin 1 and ATG5 levels were downregulated for the ET group. Regarding the markers of autophagy, the Sqstm1/p62 in the heart tissue was upregulated for the END and ST groups, highlighting the beneficial effects of these exercise models. The liver protein levels of ATG5 were downregulated for the ET group. After the colchicine treatment, the liver protein levels of Sqstm1/p62 were decreased for the END and ET groups compared to the CT, ST, and CC groups. These results could be related to diabetes and obesity development or liver dysfunction improvement, demanding further investigations.


Assuntos
Autofagia , Regulação da Expressão Gênica , Proteínas Musculares/biossíntese , Músculo Esquelético/metabolismo , Condicionamento Físico Animal , Animais , Biomarcadores/metabolismo , Masculino , Camundongos
8.
Biol. Res ; 54: 27-27, 2021. ilus, graf
Artigo em Inglês | LILACS | ID: biblio-1505815

RESUMO

BACKGROUND: Demethylzeylasteral (T-96) is a pharmacologically active triterpenoid monomer extracted from Tripterygium wilfordii Hook F (TWHF) that has been reported to exhibit anti-neoplastic effects against several types of cancer cells. However, the potential anti-tumour effects of T-96 against human Prostate cancer (CaP) cells and the possible underlying mechanisms have not been well studied. RESULTS: In the current study, T-96 exerted significant cytotoxicity to CaP cells in vitro and induced cell cycle arrest at S-phase in a dose-dependent manner. Mechanistically, T-96 promoted the initiation of autophagy but inhibited autophagic flux by inducing ROS-mediated endoplasmic reticulum (ER) stress which subsequently activated the extrinsic apoptosis pathway in CaP cells. These findings implied that T-96-induced ER stress activated the caspase-dependent apoptosis pathway to inhibit proliferation of CaP cells. Moreover, we observed that T-96 enhances the sensitivity of CaP cells to the chemotherapeutic drug, cisplatin. CONCLUSIONS: Taken together, our data demonstrated that T-96 is a novel modulator of ER stress and autophagy, and has potential therapeutic applications against CaP in the clinic.


Assuntos
Humanos , Masculino , Neoplasias da Próstata/tratamento farmacológico , Autofagia , Triterpenos , Espécies Reativas de Oxigênio , Apoptose , Linhagem Celular Tumoral
9.
Cells ; 9(2)2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-32093151

RESUMO

Autophagy is a cell-survival pathway with dual role in tumorigenesis, promoting either tumor survival or tumor death. WNK2 gene, a member of the WNK (with no lysine (K)) subfamily, acts as a tumor suppressor gene in gliomas, regulating cell migration and invasion; however, its role in autophagy process is poorly explored. The WNK2-methylated human glioblastoma cell line A172 WT (wild type) was compared to transfected clones A172 EV (empty vector), and A172 WNK2 (WNK2 overexpression) for the evaluation of autophagy using an inhibitor (bafilomycin A1-baf A1) and an inducer (everolimus) of autophagic flux. Western blot and immunofluorescence approaches were used to monitor autophagic markers, LC3A/B and SQSTM1/p62. A172 WNK2 cells presented a significant decrease in LC3B and p62 protein levels, and in LC3A/B ratio when compared with control cells, after treatment with baf A1 + everolimus, suggesting that WNK2 overexpression inhibits the autophagic flux in gliomas. The mTOR pathway was also evaluated under the same conditions, and the observed results suggest that the inhibition of autophagy mediated by WNK2 occurs through a mTOR-independent pathway. In conclusion, the evaluation of the autophagic process demonstrated that WNK2 inhibits the autophagic flux in glioblastoma cell line.


Assuntos
Autofagia/efeitos dos fármacos , Autofagia/genética , Everolimo/farmacologia , Glioblastoma/metabolismo , Macrolídeos/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Glioblastoma/patologia , Humanos , Plasmídeos/genética , Proteínas Serina-Treonina Quinases/genética , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Transfecção
10.
Curr Pharm Des ; 26(12): 1377-1387, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31957603

RESUMO

BACKGROUND: The ketone bodies (KB), ß-hydroxybutyrate (BHB) and acetoacetate, have been proposed for the treatment of acute and chronic neurological disorders, however, the molecular mechanisms involved in KB protection are not well understood. KB can substitute for glucose and support mitochondrial metabolism increasing cell survival. We have reported that the D-isomer of BHB (D-BHB) stimulates autophagic degradation during glucose deprivation in cultured neurons increasing cell viability. Autophagy is a lysosomal degradation process of damaged proteins and organelles activated during nutrient deprivation to obtain building blocks and energy. However, impaired or excessive autophagy can contribute to neuronal death. OBJECTIVE: The aim of the present study was to test whether D-BHB can preserve autophagic function in an in vivo model of excitotoxic damage induced by the administration of the glutamate receptor agonist, N-methyl-Daspartate (NMDA), in the rat striatum. METHODS: D-BHB was administered through an intravenous injection followed by either an intraperitoneal injection (i.v+i.p) or a continuous epidural infusion (i.v+pump), or through a continuous infusion of D-BHB alone. Changes in the autophagy proteins ATG7, ATG5, BECLIN 1 (BECN1), LC3, Sequestrosome1/p62 (SQSTM1/ p62) and the lysosomal membrane protein LAMP2, were evaluated by immunoblot. The lesion volume was measured in cresyl violet-stained brain sections. RESULTS: Autophagy is activated early after NMDA injection but autophagic degradation is impaired due to the cleavage of LAMP2. Twenty-four h after NMDA intrastriatal injection, the autophagic flux is re-established, but LAMP2 cleavage is still observed. The administration of D-BHB through the i.v+pump protocol reduced the content of autophagic proteins and the cleavage of LAMP2, suggesting decreased autophagosome formation and lysosomal membrane preservation, improving autophagic degradation. D-BHB also reduced brain injury. The i.v+i.p administration protocol and the infusion of D-BHB alone showed no effect on autophagy activation or degradation.


Assuntos
Autofagia , N-Metilaspartato , Ácido 3-Hidroxibutírico , Animais , Corpos Cetônicos/química , Neurônios/química , Neurônios/fisiologia , Ratos
11.
J Mol Med (Berl) ; 97(10): 1491-1506, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31401659

RESUMO

Mesenchymal stromal cells (MSCs) are frequently recruited to tumor sites to play a part in the tumor microenvironment (TME). However, their real impact on cancer cell behavior remains obscure. Here we investigated the effects of human adipose-derived stromal cell (hADSC) secretome in autophagy of glioblastoma (GBM), as a way to better comprehend how hADSCs influence the TME. GBM U-87 MG cells were treated with conditioned medium (CM) from hADSCs and autophagic flux was evaluated. hADSC CM treatment blocked the autophagic flux in tumor cells, as indicated by the accumulation of autophagosomes in the cytosol, the high LC3-II and p62/SQSTM1 protein levels, and the lack of increase in the amount of acidic vesicular organelles. These effects were further detected in other GBM cell lines tested and also in co-cultures of hADSCs and U-87 MG. hADSC CM did not compromise lysosomal acidification; however, it was able to activate mTORC1 signaling and, as a consequence, led to a decrease in the nuclear translocation of TFEB, a master transcriptional regulator of lysosomal biogenesis and autophagy, thereby contributing to a defective autophagic process. hADSCs secrete transforming growth factor beta 1 (TGFß1) and this cytokine is an important mediator of CM effects on autophagy. A comprehensive knowledge of MSC roles in tumor biology is of great importance to shed light on the complex dialog between these cells and to explore such interactions therapeutically. The present results help to elucidate the paracrine effects of MSCs in tumors and bring attention to the potential to be explored in MSC secretome. KEY MESSAGES: hADSC secretome specifically affects the biology of GBM cells. hADSCs block the late steps of autophagic flux in GBM cells. hADSC secretome activates mTORC1 signaling and reduces TFEB nuclear translocation in GBM cells.


Assuntos
Autofagia/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Células Estromais/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Tecido Adiposo/citologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteína Sequestossoma-1/metabolismo , Transdução de Sinais/efeitos dos fármacos
12.
Exp Cell Res ; 382(1): 111456, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31194978

RESUMO

Autophagy is a cellular bulk degradation process used as an alternative source of energy and metabolites and implicated in various diseases. Inefficient autophagy in nutrient-deprived cancer cells would be beneficial for cancer therapy making its modulation valuable as a therapeutic strategy for cancer treatment, especially in combination with chemotherapy. Dipyridamole (DIP) is a vasodilator and antithrombotic drug. Its major effects involve the block of nucleoside uptake and phosphodiestesase inhibition, leading to increased levels of intracellular cAMP. Here we report that DIP increases autophagic markers due to autophagic flux blockage, resembling autophagosome maturation and/or closure impairment. Treatment with DIP results in an increased number of autophagosomes and autolysosomes and impairs degradation of SQSTM1/p62. As blockage of autophagic flux decreases the recycling of cellular components, DIP reduced the intracellular ATP levels in cancer cells. Autophagic flux blockage was neither through inhibition of lysosome function nor blockage of nucleoside uptake, but could be prevented by treatment with a PKA inhibitor, suggesting that autophagic flux failure mediated by DIP results from increased intracellular levels of cAMP. Treatment with DIP presented antiproliferative effects in vitro alone and in combination with chemotherapy drugs. Collectively, these data demonstrate that DIP can impair autophagic degradation, by preventing the normal autophagosome maturation, and might be useful in combination anticancer therapy.


Assuntos
Adenocarcinoma/patologia , Autofagia/efeitos dos fármacos , Dipiridamol/farmacologia , Neoplasias da Próstata/patologia , Trifosfato de Adenosina/metabolismo , Antineoplásicos/farmacologia , Autofagossomos/efeitos dos fármacos , Autofagossomos/ultraestrutura , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Lisossomos/efeitos dos fármacos , Lisossomos/enzimologia , Masculino , Proteínas Associadas aos Microtúbulos/biossíntese , Proteínas Associadas aos Microtúbulos/genética , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Proteína Sequestossoma-1/biossíntese , Proteína Sequestossoma-1/genética , Ensaio Tumoral de Célula-Tronco
13.
Clin Transl Oncol ; 21(9): 1280-1285, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30680609

RESUMO

PURPOSE: Autophagy has lately emerged as an important biological process with implications in several hematological pathologies. Recently, a growing body of evidence supports a putative role of autophagy in chronic lymphocytic leukemia; however, no definitive clue has been established so far. To elucidate this issue, we have developed a pilot study to measure autophagic flux in peripheral blood mononuclear cells from chronic lymphocytic leukemia patients, and explored its correlation with classical clinical/analytical parameters. METHODS/PATIENTS: Thirty-three chronic lymphocytic leukemia patients participated in the study. Autophagic flux in peripheral blood mononuclear cells was determined by western blot measuring the levels of the proteins p62 and lipidated LC3. Moreover, p62 mRNA levels were analyzed by RT-qPCR. RESULTS: Lymphocytosis and the percentage of tumoral lymphocytes in chronic lymphocytic leukemia patients statistically correlate with a blocked autophagic flux. CONCLUSION: Alterations in autophagic flux could play an important role in the physiopathology of chronic lymphocytic leukemia.


Assuntos
Autofagia , Biomarcadores Tumorais/metabolismo , Leucemia Linfocítica Crônica de Células B/patologia , Leucócitos Mononucleares/patologia , Linfocitose/patologia , Idoso , Idoso de 80 Anos ou mais , Feminino , Seguimentos , Humanos , Leucemia Linfocítica Crônica de Células B/metabolismo , Leucócitos Mononucleares/metabolismo , Linfocitose/metabolismo , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA