Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 701
Filtrar
1.
J Adv Res ; 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39002719

RESUMO

INTRODUCTION: Motor neurons differ from sensory neurons in aspects including origins and surrounding environment. Understanding the similarities and differences in molecular response to peripheral nerve injury (PNI) and regeneration between sensory and motor neurons is crucial for developing effective drug targets for CNS regeneration. However, genome-wide comparisons of molecular changes between sensory and motor neurons following PNI remains limited. OBJECTIVES: This study aims to investigate genome-wide convergence and divergence of injury response between sensory and motor neurons to identify novel drug targets for neural repair. METHODS: We analyzed two large-scale RNA-seq datasets of in situ captured sensory neurons (SNs) and motoneurons (MNs) upon PNI, retinal ganglion cells and spinal cord upon CNS injury. Additionally, we integrated these with other related single-cell level datasets. Bootstrap DESeq2 and WGCNA were used to detect and explore co-expression modules of differentially expressed genes (DEGs). RESULTS: We found that SNs and MNs exhibited similar injury states, but with a delayed response in MNs. We identified a conserved regeneration-associated module (cRAM) with 274 shared DEGs. Of which, 47% of DEGs could be changed in injured neurons supported by single-cell resolution datasets. We also identified some less-studied candidates in cRAM, including genes associated with transcription, ubiquitination (Rnf122), and neuron-immune cells cross-talk. Further in vitro experiments confirmed a novel role of Rnf122 in axon growth. Analysis of the top 10% of DEGs with a large divergence suggested that both extrinsic (e.g., immune microenvironment) and intrinsic factors (e.g., development) contributed to expression divergence between SNs and MNs following injury. CONCLUSIONS: This comprehensive analysis revealed convergent and divergent injury response genes in SNs and MNs, providing new insights into transcriptional reprogramming of sensory and motor neurons responding to axonal injury and subsequent regeneration. It also identified some novel regeneration-associated candidates that may facilitate the development of strategies for axon regeneration.

2.
Cureus ; 16(6): e62242, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39006616

RESUMO

Traumatic brain injury (TBI) consists of an external physical force that causes brain function impairment or pathology and globally affects 50 million people each year, with a cost of 400 billion US dollars. Clinical presentation of TBI can occur in many forms, and patients usually require prolonged hospital care and lifelong rehabilitation, which leads to an impact on the quality of life. For this narrative review, no particular method was used to extract data. With the aid of health descriptors and Medical Subject Heading (MeSH) terms, a search was thoroughly conducted in databases such as PubMed and Google Scholar. After the application of exclusion and inclusion criteria, a total of 146 articles were effectively used for this review. Results indicate that rehabilitation after TBI happens through neuroplasticity, which combines neural regeneration and functional reorganization. The role of technology, including artificial intelligence, virtual reality, robotics, computer interface, and neuromodulation, is to impact rehabilitation and life quality improvement significantly. Pharmacological intervention, however, did not result in any benefit when compared to standard care and still needs further research. It is possible to conclude that, given the high and diverse degree of disability associated with TBI, rehabilitation interventions should be precocious and tailored according to the individual's needs in order to achieve the best possible results. An interdisciplinary patient-centered care health team and well-oriented family members should be involved in every stage. Lastly, strategies must be adequate, well-planned, and communicated to patients and caregivers to attain higher functional outcomes.

3.
Hand Clin ; 40(3): 389-397, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38972683

RESUMO

Axons successfully repaired with polyethylene glycol (PEG) fusion tecnology restored axonal continuity thereby preventing their Wallerian degeneration and minimizing muscle atrophy. PEG fusion studies in animal models and preliminary clinical trials involving patients with digital nerve repair have shown promise for this therapeutic approach. PEG fusion is safe to perform, and given the enormous potential benefits, there is no reason not to explore its therapeutic potential.


Assuntos
Traumatismos dos Nervos Periféricos , Polietilenoglicóis , Humanos , Polietilenoglicóis/uso terapêutico , Polietilenoglicóis/administração & dosagem , Traumatismos dos Nervos Periféricos/cirurgia , Animais , Regeneração Nervosa
4.
Leg Med (Tokyo) ; 70: 102465, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38838409

RESUMO

Identification of Traumatic axonal injury (TAI) is critical in clinical practice, particularly in terms of long-term prognosis, but also for medico-legal issues, to verify whether the death or the after-effects were attributable to trauma. Multidisciplinary approaches are an undeniable asset when it comes to solving these problems. The aim of this work is therefore to list the different techniques needed to identify axonal lesions and to understand the lesion mechanisms involved in their formation. Imaging can be used to assess the consequences of trauma, to identify indirect signs of TAI, to explain the patient's initial symptoms and even to assess the patient's prognosis. Three-dimensional reconstructions of the skull can highlight fractures suggestive of trauma. Microscopic and immunohistochemical techniques are currently considered as the most reliable tools for the early identification of TAI following trauma. Finite element models use mechanical equations to predict biomechanical parameters, such as tissue stresses and strains in the brain, when subjected to external forces, such as violent impacts to the head. These parameters, which are difficult to measure experimentally, are then used to predict the risk of injury. The integration of imaging data with finite element models allows researchers to create realistic and personalized computational models by incorporating actual geometry and properties obtained from imaging techniques. The personalization of these models makes their forensic approach particularly interesting.

5.
J Cereb Blood Flow Metab ; : 271678X241258809, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38833565

RESUMO

Ubiquitin C-terminal hydrolase L1 (UCHL1) is a neuronal protein important in maintaining axonal integrity and motor function and may be important in the pathogenesis of many neurological disorders. UCHL1 may ameliorate acute injury and improve recovery after cerebral ischemia. In the current study, the hypothesis that UCHL1's hydrolase activity underlies its effect in maintaining axonal integrity and function is tested after ischemic injury. Hydrolase activity was inhibited by treatment with a UCHL1 hydrolase inhibitor or by employing knockin mice bearing a mutation in the hydrolase active site (C90A). Ischemic injury was induced by oxygen-glucose deprivation (OGD) in brain slice preparations and by transient middle cerebral artery occlusion (tMCAO) surgery in mice. Hydrolase activity inhibition increased restoration time and decreased the amplitude of evoked axonal responses in the corpus callosum after OGD. Mutation of the hydrolase active site exacerbated white matter injury as detected by SMI32 immunohistochemistry, and motor deficits as detected by beam balance and cylinder testing after tMCAO. These results demonstrate that UCHL1 hydrolase activity ameliorates white matter injury and functional deficits after acute ischemic injury and support the hypothesis that UCHL1 activity plays a significant role in preserving white matter integrity and recovery of function after cerebral ischemia.

6.
Neuroradiol J ; : 19714009241260796, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856642

RESUMO

In traumatic brain injury, white matter diffusion restriction can be an imaging manifestation of non-hemorrhagic axonal injury. In this article, a different pattern of widespread white matter diffusion restriction associated with ipsilateral cortical damage, all noted in pediatric and young adult TBI patients, is presented. Its atypical pattern of distribution and extensive scope on imaging suggest excitotoxicity and intramyelinic edema as possible underlying mechanisms.

7.
Eur Radiol ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38896232

RESUMO

OBJECTIVES: We analysed magnetic resonance imaging (MRI) findings after traumatic brain injury (TBI) aiming to improve the grading of traumatic axonal injury (TAI) to better reflect the outcome. METHODS: Four-hundred sixty-three patients (8-70 years) with mild (n = 158), moderate (n = 129), or severe (n = 176) TBI and early MRI were prospectively included. TAI presence, numbers, and volumes at predefined locations were registered on fluid-attenuated inversion recovery (FLAIR) and diffusion-weighted imaging, and presence and numbers on T2*GRE/SWI. Presence and volumes of contusions were registered on FLAIR. We assessed the outcome with the Glasgow Outcome Scale Extended. Multivariable logistic and elastic-net regression analyses were performed. RESULTS: The presence of TAI differed between mild (6%), moderate (70%), and severe TBI (95%). In severe TBI, bilateral TAI in mesencephalon or thalami and bilateral TAI in pons predicted worse outcomes and were defined as the worst grades (4 and 5, respectively) in the Trondheim TAI-MRI grading. The Trondheim TAI-MRI grading performed better than the standard TAI grading in severe TBI (pseudo-R2 0.19 vs. 0.16). In moderate-severe TBI, quantitative models including both FLAIR volume of TAI and contusions performed best (pseudo-R2 0.19-0.21). In patients with mild TBI or Glasgow Coma Scale (GCS) score 13, models with the volume of contusions performed best (pseudo-R2 0.25-0.26). CONCLUSIONS: We propose the Trondheim TAI-MRI grading (grades 1-5) with bilateral TAI in mesencephalon or thalami, and bilateral TAI in pons as the worst grades. The predictive value was highest for the quantitative models including FLAIR volume of TAI and contusions (GCS score <13) or FLAIR volume of contusions (GCS score ≥ 13), which emphasise artificial intelligence as a potentially important future tool. CLINICAL RELEVANCE STATEMENT: The Trondheim TAI-MRI grading reflects patient outcomes better in severe TBI than today's standard TAI grading and can be implemented after external validation. The prognostic importance of volumetric models is promising for future use of artificial intelligence technologies. KEY POINTS: Traumatic axonal injury (TAI) is an important injury type in all TBI severities. Studies demonstrating which MRI findings that can serve as future biomarkers are highly warranted. This study proposes the most optimal MRI models for predicting patient outcome at 6 months after TBI; one updated pragmatic model and a volumetric model. The Trondheim TAI-MRI grading, in severe TBI, reflects patient outcome better than today's standard grading of TAI and the prognostic importance of volumetric models in all severities of TBI is promising for future use of AI.

8.
J Multidiscip Healthc ; 17: 2921-2934, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38911614

RESUMO

Head trauma (HT) in pediatric patients is the number one cause of mortality and morbidity in children. Although computer tomography (CT) imaging provides ample information in assessing acute traumatic brain injuries (TBIs), there are instances when magnetic resonance imaging (MRI) is needed. Due to its high sensitivity in diagnosing small bleeds, MRI offers a well-documented evaluation of primary acute TBIs. Our pictorial essay aims to present some of the latest imaging protocols employed in head trauma and review some practical considerations. Injury mechanisms in accidental HT, lesions' topography, and hematoma signal variability over time are also discussed. Acute primary intra- and extra-axial lesions and their MRI aspect are showcased using images from patients in our hospital. This pictorial essay has an educational purpose. It is intended to guide young emergency and intensive care unit doctors, neurologists, and neurosurgeons in diagnosing acute primary TBIs on MRI while waiting for the official radiologist's report. The presentation focuses on the most frequent traumatic lesions encountered in acute pediatric head trauma.

9.
Acta Neuropathol ; 147(1): 79, 2024 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-38705966

RESUMO

Although human females appear be at a higher risk of concussion and suffer worse outcomes than males, underlying mechanisms remain unclear. With increasing recognition that damage to white matter axons is a key pathologic substrate of concussion, we used a clinically relevant swine model of concussion to explore potential sex differences in the extent of axonal pathologies. At 24 h post-injury, female swine displayed a greater number of swollen axonal profiles and more widespread loss of axonal sodium channels than males. Axon degeneration for both sexes appeared to be related to individual axon architecture, reflected by a selective loss of small caliber axons after concussion. However, female brains had a higher percentage of small caliber axons, leading to more extensive axon loss after injury compared to males. Accordingly, sexual dimorphism in axonal size is associated with more extensive axonal pathology in females after concussion, which may contribute to worse outcomes.


Assuntos
Axônios , Concussão Encefálica , Modelos Animais de Doenças , Caracteres Sexuais , Animais , Feminino , Axônios/patologia , Concussão Encefálica/patologia , Masculino , Suínos , Encéfalo/patologia
10.
J Neurol Sci ; 461: 123055, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38761669

RESUMO

BACKGROUND: Atrophied lesion volume (aLV), a proposed biomarker of disability progression in multiple sclerosis (MS) and transition into progressive MS (PMS), depicts chronic periventricular white matter (WM) pathology. Meningeal infiltrates, imaged as leptomeningeal contrast enhancement (LMCE), are linked with greater cortical pathology. OBJECTIVES: To determine the relationship between serum-derived proteomic data with the development of aLV and LMCE in a heterogeneous group of people with MS (pwMS). METHODS: Proteomic and MRI data for 202 pwMS (148 clinically isolated syndrome /relapsing-remitting MS and 54 progressive MS (PMS)) were acquired at baseline and at 5.4-year follow-up. The concentrations of 21 proteins related to multiple MS pathophysiology pathways were derived using a custom-developed Proximity Extension Assay on the Olink™ platform. The accrual of aLV was determined as the volume of baseline T2-weighted lesions that were replaced by cerebrospinal fluid over the follow-up. Regression models and age-adjusted analysis of covariance (ANCOVA) were used. RESULTS: Older age (standardized beta = 0.176, p = 0.022), higher glial fibrillary acidic protein (standardized beta = 0.312, p = 0.001), and lower myelin oligodendrocyte glycoprotein levels (standardized beta = -0.271, p = 0.002) were associated with accrual of aLV over follow-up. This relationship was driven by the pwPMS population. The presence of LMCE at the follow-up visit was not predicted by any baseline proteomic biomarker nor cross-sectionally associated with any protein concentration. CONCLUSION: Proteomic markers of glial activation are associated with chronic lesional WM pathology (measured as aLV) and may be specific to the progressive MS phenotype. LMCE presence in MS does not appear to relate to proteomic measures.


Assuntos
Atrofia , Imageamento por Ressonância Magnética , Neuroglia , Proteômica , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Neuroglia/patologia , Neuroglia/metabolismo , Atrofia/patologia , Esclerose Múltipla Crônica Progressiva/diagnóstico por imagem , Esclerose Múltipla Crônica Progressiva/patologia , Esclerose Múltipla Crônica Progressiva/líquido cefalorraquidiano , Esclerose Múltipla/patologia , Esclerose Múltipla/diagnóstico por imagem , Progressão da Doença , Inflamação/patologia , Inflamação/diagnóstico por imagem , Proteína Glial Fibrilar Ácida/metabolismo , Biomarcadores , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/patologia , Esclerose Múltipla Recidivante-Remitente/líquido cefalorraquidiano , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
11.
Orthopadie (Heidelb) ; 53(6): 415-419, 2024 Jun.
Artigo em Alemão | MEDLINE | ID: mdl-38740669

RESUMO

A concussion is the mildest form of a mild traumatic brain injury (tbi) and resembles the most prevalent type of sports associated tbi. Diffuse axonal injuries, the main pathophysiological mechanism of concussion, leads to disruption of communication between different brain areas. The resulting clinical symptoms may relate to several clinical domains (cognition, fatigue, anxiety disorders, headaches/migraines or vestibulo-ocular problems), all of which need to be assessed in a clinical screening during an evaluation for possible concussion. Appropriate and consensus-based protocols to conduct clinical exams are provided by the Concussion in Sport Group (Sport Concussion Assessment Tool (SCAT), Sport Concussion Office Assessment Tool (SCOAT)) and should be used in the most up-to-date version. Therapeutically, slowly and incrementally increasing sub symptomatic activation consisting of daily routine activities, aerobic and cognitive exercises should be introduced early after the trauma. Education about concussion should be geared towards target audiences and will then greatly contribute to adherence and acceptance of medical management.


Assuntos
Concussão Encefálica , Humanos , Traumatismos em Atletas/terapia , Traumatismos em Atletas/diagnóstico , Traumatismos em Atletas/fisiopatologia , Concussão Encefálica/diagnóstico , Concussão Encefálica/terapia , Concussão Encefálica/fisiopatologia , Equipe de Assistência ao Paciente
12.
Cureus ; 16(4): e59085, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38803734

RESUMO

Reduced ocular perfusion likely contributes to glaucomatous damage at the optic nerve head (ONH). In recent decades, investigators have focused heavily on ocular perfusion pressure and other factors affecting blood flow to the eye. Comparatively, far less attention has been focused on the blood vessels themselves. Here, we asked whether glaucomatous individuals exhibit anatomical deficiencies (i.e., fewer blood vessels) in their ONH blood supply. To answer this question, we performed a systematic literature review to (1) determine how many studies have reported measuring blood vessels in the ONH and (2) whether these studies reported differences in blood vessel quantity. Additionally, we report a method for quantifying blood vessels in ex vivo human ONH preparations, including an ONH from an individual with glaucoma. Our results show that only two studies in the past 50 years have published data concerning blood vessel density in glaucomatous ONHs. Interestingly, both studies reported decreased blood vessel density in glaucoma. Consistent with this finding, we also report reduced blood vessel numbers in the superolateral quadrant of a glaucomatous individual's ONH. Vascularity in the three remaining quadrants was similar to control. Together, our findings raise the interesting possibility that individuals with a relatively sparse ONH blood supply are more likely to develop glaucoma. Future studies with larger sample sizes and more thorough quantification are necessary to determine the link more accurately between glaucoma and the blood supply to the ONH.

13.
Biochem Pharmacol ; 226: 116330, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38815627

RESUMO

Given the extensive application of dexamethasone in both clinical settings and the livestock industry, human exposure to this drug can occur through various sources and pathways. Prior research has indicated that prenatal exposure to dexamethasone (PDE) heightens the risk of cognitive and emotional disorders in offspring. Axonal development impairment is a frequent pathological underpinning for neuronal dysfunction in these disorders, yet it remains unclear if it plays a role in the neural damage induced by PDE in the offspring. Through RNA-seq and bioinformatics analysis, we found that various signaling pathways related to nervous system development, including axonal development, were altered in the hippocampus of PDE offspring. Among them, the Sonic Hedgehog (SHH) signaling pathway was the most significantly altered and crucial for axonal development. By using miRNA-seq and targeting miRNAs and glucocorticoid receptor (GR) expression, we identified miR-210-3p and miR-362-5p, which can target and suppress SHH expression. Their abnormal high expression was associated with GR activation in PDE fetal rats. Further testing of PDE offspring rats and infant peripheral blood samples exposed to dexamethasone in utero showed that SHH expression was significantly decreased in peripheral blood mononuclear cells (PBMCs) and was positively correlated with SHH expression in the hippocampus and the expression of the axonal development marker growth-associated protein-43. In summary, PDE-induced hippocampal GR-miR-210-3p/miR-362-5p-SHH signaling axis changes lead to axonal developmental damage. SHH expression in PBMCs may reflect axonal developmental damage in PDE offspring and could serve as a warning marker for fetal axonal developmental damage.

14.
J Neurotrauma ; 41(13-14): 1609-1627, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38588256

RESUMO

Neurofilament-light chain (NF-L) and phosphorylated neurofilament-heavy chain (pNF-H) are axonal proteins that have been reported as potential diagnostic and prognostic biomarkers in traumatic brain injury (TBI). However, detailed temporal profiles for these proteins in blood, and interrelationships in the acute and chronic time periods post-TBI have not been established. Our objectives were: 1) to characterize acute-to-chronic serum NF-L and pNF-H profiles after moderate-severe TBI, as well as acute cerebrospinal fluid (CSF) levels; 2) to evaluate CSF and serum NF-L and pNF-H associations with each other; and 3) to assess biomarker associations with global patient outcome using both the Glasgow Outcome Scale-Extended (GOS-E) and Disability Rating Scale (DRS). In this multi-cohort study, we measured serum and CSF NF-L and pNF-H levels in samples collected from two clinical cohorts (University of Pittsburgh [UPITT] and Baylor College of Medicine [BCM]) of individuals with moderate-severe TBI. The UPITT cohort includes 279 subjects from an observational cohort study; we obtained serum (n = 277 unique subjects) and CSF (n = 95 unique subjects) daily for 1 week, and serum every 2 weeks for 6 months. The BCM cohort included 103 subjects from a previous randomized clinical trial of erythropoietin and blood transfusion threshold after severe TBI, which showed no effect on neurological outcome between treatment arms; serum (n = 99 unique subjects) and CSF (n = 54 unique subjects) NF-L and pNF-H levels were measured at least daily during Days (D) 0-10 post-injury. GOS-E and DRS were assessed at 6 months (both cohorts) and 12 months (UPITT cohort only). Results show serum NF-L and pNF-H gradually rise during the first 10 days and peak at D20-30 post-injury. In the UPITT cohort, acute (D0-6) NF-L and pNF-H levels correlate within CSF and serum (Spearman r = 0.44-0.48; p < 0.05). In the UPITT cohort, acute NF-L CSF and serum levels, as well as chronic (Months [M]2-6) serum NF-L levels, were higher among individuals with unfavorable GOS-E and worse DRS at 12 months (p < 0.05, all comparisons). In the BCM cohort, higher acute serum NF-L levels were also associated with unfavorable GOS-E. Higher pNF-H serum concentrations (D0-6 and M2-6), but not CSF pNF-H, were associated with unfavorable GOS-E and worse DRS (p < 0.05, all comparisons) in the UPITT cohort. Relationships between biomarker levels and favorable outcome persisted after controlling for age, sex, and Glasgow Coma Scale. This study shows for the first time that serum levels of NF-L and pNF-H peak at D20-30 post-TBI. Serum NF-L levels, and to a lesser extent pNF-H levels, are robustly associated with global patient outcomes and disability after moderate-severe TBI. Further studies on clinical utility as prognosis and treatment-response indicators are needed.


Assuntos
Biomarcadores , Lesões Encefálicas Traumáticas , Proteínas de Neurofilamentos , Humanos , Proteínas de Neurofilamentos/líquido cefalorraquidiano , Proteínas de Neurofilamentos/sangue , Masculino , Feminino , Adulto , Lesões Encefálicas Traumáticas/líquido cefalorraquidiano , Lesões Encefálicas Traumáticas/sangue , Lesões Encefálicas Traumáticas/diagnóstico , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Pessoa de Meia-Idade , Estudos de Coortes , Fosforilação , Adulto Jovem , Escala de Resultado de Glasgow , Idoso , Lesão Axonal Difusa/líquido cefalorraquidiano , Lesão Axonal Difusa/sangue
15.
Int J Mol Sci ; 25(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38673871

RESUMO

Mild traumatic brain injury (mTBI) affects millions of people in the U.S. Approximately 20-30% of those individuals develop adverse symptoms lasting at least 3 months. In a rat mTBI study, the closed-head impact model of engineered rotational acceleration (CHIMERA) produced significant axonal injury in the optic tract (OT), indicating white-matter damage. Because retinal ganglion cells project to the lateral geniculate nucleus (LGN) in the thalamus through the OT, we hypothesized that synaptic density may be reduced in the LGN of rats following CHIMERA injury. A modified SEQUIN (synaptic evaluation and quantification by imaging nanostructure) method, combined with immunofluorescent double-labeling of pre-synaptic (synapsin) and post-synaptic (PSD-95) markers, was used to quantify synaptic density in the LGN. Microglial activation at the CHIMERA injury site was determined using Iba-1 immunohistochemistry. Additionally, the effects of ketamine, a potential neuroprotective drug, were evaluated in CHIMERA-induced mTBI. A single-session repetitive (ssr-) CHIMERA (3 impacts, 1.5 joule/impact) produced mild effects on microglial activation at the injury site, which was significantly enhanced by post-injury intravenous ketamine (10 mg/kg) infusion. However, ssr-CHIMERA did not alter synaptic density in the LGN, although ketamine produced a trend of reduction in synaptic density at post-injury day 4. Further research is necessary to characterize the effects of ssr-CHIMERA and subanesthetic doses of intravenous ketamine on different brain regions and multiple time points post-injury. The current study demonstrates the utility of the ssr-CHIMERA as a rodent model of mTBI, which researchers can use to identify biological mechanisms of mTBI and to develop improved treatment strategies for individuals suffering from head trauma.


Assuntos
Ketamina , Microglia , Ratos Sprague-Dawley , Sinapses , Animais , Ketamina/administração & dosagem , Ketamina/farmacologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Ratos , Masculino , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Sinapses/patologia , Traumatismos Cranianos Fechados/patologia , Axônios/efeitos dos fármacos , Axônios/metabolismo , Axônios/patologia , Modelos Animais de Doenças , Corpos Geniculados/patologia , Corpos Geniculados/efeitos dos fármacos , Concussão Encefálica/patologia , Concussão Encefálica/metabolismo , Proteína 4 Homóloga a Disks-Large/metabolismo , Sinapsinas/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/administração & dosagem
16.
J Neurotrauma ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38588255

RESUMO

Traumatic axonal injury (TAI) is a common finding on magnetic resonance imaging (MRI) in patients with moderate-severe traumatic brain injury (TBI), and the burden of TAI is associated with outcome in this patient group. Lesion mapping offers a way to combine imaging findings from numerous individual patients into common lesion maps where the findings from a whole patient cohort can be assessed. The aim of this study was to evaluate the spatial distribution of TAI lesions on different MRI sequences and its associations to outcome with use of lesion mapping. Included prospectively were 269 patients (8-70 years) with moderate or severe TBI and MRI within six weeks after injury. The TAI lesions were evaluated and manually segmented on fluid-attenuated inversed recovery (FLAIR), diffusion weighted imaging (DWI), and either T2* gradient echo (T2*GRE) or susceptibility weighted imaging (SWI). The segmentations were registered to the Montreal Neurological Institute space and combined to lesion frequency distribution maps. Outcome was assessed with Glasgow Outcome Scale Extended (GOSE) score at 12 months. The frequency and distribution of TAI was assessed qualitatively by visual reading. Univariable associations to outcome were assessed qualitatively by visual reading and also quantitatively with use of voxel-based lesion-symptom mapping (VLSM). The highest frequency of TAI was found in the posterior half of corpus callosum. The frequency of TAI was higher in the frontal and temporal lobes than in the parietal and occipital lobes, and in the upper parts of the brainstem than in the lower. At the group level, all voxels in mesencephalon had TAI on FLAIR. The patients with poorest outcome (GOSE scores ≤4) had higher frequencies of TAI. On VLSM, poor outcome was associated with TAI lesions bilaterally in the splenium, the right side of tectum, tegmental mesencephalon, and pons. In conclusion, we found higher frequency of TAI in posterior corpus callosum, and TAI in splenium, mesencephalon, and pons were associated with poor outcome. If lesion frequency distribution maps containing outcome information based on imaging findings from numerous patients in the future can be compared with the imaging findings from individual patients, it would offer a new tool in the clinical workup and outcome prediction of the patient with TBI.

17.
Cureus ; 16(3): e55309, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38559532

RESUMO

OBJECTIVE: To investigate the effect and mechanism of dexamethasone (DX) on axonal injury after traumatic brain injury (TBI) combined with seawater drowning (SWD) in rats. METHODS: To gain an in-depth understanding of TBI + SWD in rats, we established the compound injury model of rats by the Marmarou method and intratracheal pumping of seawater to simulate the pathological conditions. Rats in the DX group received intraperitoneal injections of DX (1 mg/kg) immediately after injury, and rats in the sham group and TBI + SWD group received intraperitoneal injections of the same amount of normal saline. RESULTS: Hematoxylin-eosin (HE) showed that DX improved matrix looseness, cell swelling, and nuclear condensation 168 hours after injury. Immunohistochemistry (IHC) staining showed that the protein expression of AQP4 was decreased in the DX group compared with the TBI + SWD group from 12 hours to 168 hours after injury. DX decreased the modified neurological severity score (mNSS) significantly at 24 hours and 168 hours after injury (P < 0.05). At 72 h and 168 h after injury, DX significantly lowered the expressions of IL-8 and TNF-α (P < 0.05). CONCLUSION: DX may play a neuroprotective role by reducing cerebral edema and inflammatory response after TBI + SWD injury in rats.

18.
Brain Neurorehabil ; 17(1): e8, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38585027

RESUMO

Traumatic brain injury (TBI) is a complex condition characterized by a multifaceted pathophysiology. It presents significant diagnostic and prognostic challenges in clinical settings. This narrative review explores the evolving role of biofluid biomarkers as essential tools in the diagnosis, prognosis, and treatment of TBI. In recent times, preclinical and clinical trials utilizing these biofluid biomarkers have been actively pursued internationally. Among the biomarkers for nerve tissue proteins are neuronal biomarkers like neuronal specific enolase and ubiquitin C-terminal hydrolase L1; astroglia injury biomarkers such as S100B and glial fibrillary acidic protein; axonal injury and demyelination biomarkers, including neurofilaments and myelin basic protein; new axonal injury and neurodegeneration biomarkers like total tau and phosphorylated tau; and others such as spectrin breakdown products and microtubule-associated protein 2. The interpretation of these biomarkers can be influenced by various factors, including secretion from organs other than the injury site and systemic conditions. This review highlights the potential of these biomarkers to transform TBI management and emphasizes the need for continued research to validate their efficacy, refine testing platforms, and ultimately improve patient care and outcomes.

19.
Clin Neurol Neurosurg ; 240: 108244, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38520767

RESUMO

OBJECTIVE: Previous studies have reported various predictive indicators of diffuse axonal injury (DAI), but no consensus has not been reached. Although the efficiency of automated pupillometry in patients with consciousness disorder has been widely reported, there are few reports of its use in patients with DAI. This study aimed to investigate the significance of pupillary findings in predicting the prognosis of DAI. PATIENTS AND METHODS: We included patients admitted to our center with a diagnosis of DAI from June 1, 2021 to June 30, 2022. Pupillary findings in both eyes were quantitatively measured by automated pupillometry every 2 hours after admission. We statistically examined the correlations between automated pupillometry parameters, the patients' characteristics, and outcomes such as the Glasgow Outcome Scale Extended (GOSE) after 6 months from injury, the time to follow command, and so on. RESULTS: Among 22 patients included in this study, five had oculomotor nerve palsy. Oculomotor nerve palsy was correlated with all outcomes, whereas Marshall computed tomography (CT) classification, Injury severity score (ISS) and DAI grade were correlated with few outcomes. Some of the automated pupillometry parameters were significantly correlated with GOSE at 6 months after injury, and many during the first 24 hours of measurement were correlated with the time to follow command. Most of these results were not affected by adjustment using sedation period, ISS or Marshall CT classification. A subgroup analysis of patients without oculomotor nerve palsy revealed that many of the automated pupillometry parameters during the first 24 hours of measurement were significantly correlated with most of the outcomes. The cutoff values that differentiated a good prognosis (GOSE 5-8) from a poor prognosis (GOSE 1-4) were constriction velocity (CV) 1.43 (AUC = 0.81(0.62-1), p = 0.037) and maximum constriction velocity (MCV) 2.345 (AUC = 0.78 (0.58-0.98), p = 0.04). The cutoff values that differentiated the time to follow command into within 7 days and over 8 days were percentage of constriction 8 (AUC = 0.89 (0.68-1), p = 0.011), CV 0.63 (AUC = 0.92 (0.78-1), p = 0.013), MCV 0.855 (AUC = 0.9 (0.74-1), p = 0.017) and average dilation velocity 0.175 (AUC = 0.95 (0.86-1), p = 0.018). CONCLUSIONS: The present results indicate that pupillary findings in DAI are a strong predictive indicator of the prognosis, and that quantitative measurement of them using automated pupillometry could facilitate enhanced prediction for the prognosis of DAI.


Assuntos
Lesão Axonal Difusa , Pupila , Humanos , Masculino , Feminino , Prognóstico , Adulto , Lesão Axonal Difusa/diagnóstico por imagem , Lesão Axonal Difusa/fisiopatologia , Pessoa de Meia-Idade , Pupila/fisiologia , Idoso , Adulto Jovem , Valor Preditivo dos Testes , Reflexo Pupilar/fisiologia , Escala de Resultado de Glasgow
20.
Cureus ; 16(3): e56275, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38495962

RESUMO

Cerebral infarction due to post-traumatic cerebral vasospasm is rare. Although some modalities are recommended to detect post-traumatic cerebral vasospasm, its diagnosis remains controversial and challenging. Therefore, in this report, we will use a case report to highlight challenges and to delineate the characteristics of post-traumatic cerebral vasospasm in pediatric patients, including the diagnostic and treatment options. A 12-year-old female was admitted to our hospital following a motor vehicle collision. Her consciousness was severely impaired. Initial computed tomography (CT) revealed an acute subdural hematoma along the tentorium, and a focal subarachnoid hemorrhage was observed in the Sylvian fissure. The patient underwent the insertion of an intracranial pressure sensor and received therapy for increased intracranial pressure (ICP) control under sedation. On the second day, CT angiography (CTA) revealed no signs of arterial abnormality. A patient who is comatose or under sedation has masked neurological symptoms. Thus, new neurological events could only be detected via an intracranial pressure sensor. Her ICP increased on the seventh day, and a CT scan showed a new cerebral infarction in the right middle cerebral artery (MCA) region. We performed decompressive craniectomy to reduce ICP. Postoperative CTA confirmed severe vasospasm in the right MCA. The severe cerebral vasospasm induced the cerebral infarction. Our review suggests that physicians in trauma departments should frequently perform vascular evaluations by CTA, magnetic resonance angiography (MRA), transcranial Doppler ultrasound, or digital subtraction angiography (DSA), especially within two weeks from onset, to detect post-traumatic cerebral vasospasm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...