RESUMO
Reciprocal inhibition and coactivation are strategies of the central nervous system used to perform various daily tasks. In automatic postural responses (APR), coactivation is widely investigated in the ankle joint muscles, however reciprocal inhibition, although clear in manipulative motor actions, has not been investigated in the context of APRs. The aim was to identify whether reciprocal inhibition can be observed as a strategy in the recruitment of gastrocnemius Medialis (GM), Soleus (So) and Tibialis Anterior (TA) muscles in low- and high-velocity forward and backward perturbations. We applied two balance perturbations with a low and a high velocity of displacement of the movable platform in forward and backward conditions and we evaluated the magnitude and latency time of TA, GM and So activation latency, measured by electromyography (EMG). In forward perturbations, coactivation of the three muscles was observed, with greater activation amplitude of the GM and lesser amplitude of the So and TA muscles. For backward, the pattern of response observed was activation of the TA muscle, a decrease in the EMG signal, which characterizes reciprocal inhibition of the GM muscle and maintenance of the basal state of the So muscle. This result indicates that backward perturbations are more challenging.
Assuntos
Tornozelo , Eletromiografia , Músculo Esquelético , Equilíbrio Postural , Humanos , Músculo Esquelético/fisiologia , Masculino , Adulto , Tornozelo/fisiologia , Equilíbrio Postural/fisiologia , Adulto Jovem , Feminino , Articulação do Tornozelo/fisiologiaRESUMO
Perturbation-based balance training (PBT) exposes individuals to a series of sudden upright balance perturbations to improve their reactive postural responses. In this study, we aimed to evaluate the effect of a short PBT program on body balance recovery following a perturbation in individuals with freezing of gait due to Parkinson's disease. Volunteers (mean age = 64 years, SD = 10.6) were pseudorandomly assigned either to a PBT (n = 9) or to a resistance training (RT, n = 10) group. PBT was implemented through balance perturbations varying in the kind, direction, side and magnitude of support base displacements. Both groups exercised with progressive difficulty/load activities twice a week for 4 weeks. Specific gains and generalization to dual-tasking and faster-than-trained support base displacements were evaluated 24 h after the end of the training, and retention was evaluated after 30 days of no training. Results showed that, compared with RT, PBT led to more stable postural responses in the 30-day retention evaluation, as indicated by decreased CoP displacement, velocity and time to direction reversal and reduced numbers of near-falls. We found no transfer either to a dual task or to a higher perturbation velocity. In conclusion, a training program based on diverse unpredictable balance perturbations improved the stability of reactive postural responses to those perturbations suffered during the training, without generalization to more challenging tasks.
Assuntos
Transtornos Neurológicos da Marcha , Doença de Parkinson , Humanos , Pessoa de Meia-Idade , Doença de Parkinson/complicações , Doença de Parkinson/terapia , Transtornos Neurológicos da Marcha/etiologia , Transtornos Neurológicos da Marcha/terapia , Equilíbrio Postural/fisiologia , Acidentes por Quedas , Marcha/fisiologiaRESUMO
Rheumatoid arthritis (RA) is a systemic autoimmune disease that impairs mobility. How does sensory information influence postural responses in people with RA? The aim of this study was to evaluate the postural control of people with RA during a sensory organization test, comparing how sensory information influences postural responses in people with rheumatoid arthritis compared with healthy people. Participants were 28 women with rheumatoid arthritis (RA group) and 16 women without any rheumatoid disease (Control group CG). The Sensory Organization Test (SOT) was performed on a Smart Balance Master® (NeuroCom International, Inc., Clackamas, OR, USA) and center of pressure (COP) was measured. SOT conditions: SOT1 (eyes open, fixed support surface and surround; SOT2) eyes closed, fixed support surface and surround; and SOT5) eyes closed, sway-referenced support surface, and fixed surround. To compare the demographic and clinical aspects between groups, independent t-test or Mann-Whitney's U-test were used. Differences were found between groups. Between SOT conditions, for CG and RA, COP was faster for SOT-5 than SOT-1, while SOT-1 and SOT-2 presented similar COP velocity. For SOT-2 and SOT-5, COP was larger for the RA group. For both groups, SOT-1 presented the smallest COP, and SOT-5 showed the largest COP.
Assuntos
Manipulações Musculoesqueléticas , Equilíbrio Postural , Humanos , Feminino , Equilíbrio Postural/fisiologia , Modalidades de Fisioterapia , Grupos ControleRESUMO
Falls represent a public health issue around the world and prevention is an important part of the politics of many countries. The standard method of evaluating balance is posturography using a force platform, which has high financial costs. Other instruments, such as portable devices and smartphones, have been evaluated as low-cost alternatives to the screening of balance control. Although smartphones and wearables have different sizes, shapes, and weights, they have been systematically validated for static balance control tasks. Different studies have applied different experimental configurations to validate the inertial measurements obtained by these devices. We aim to evaluate the concurrent validity of a smartphone and a portable device for the evaluation of static balance control in the same group of participants. Twenty-six healthy and young subjects comprised the sample. The validity for static balance control evaluation of built-in accelerometers inside portable smartphone and wearable devices was tested considering force platform recordings as a gold standard for comparisons. A linear correlation (r) between the quantitative variables obtained from the inertial sensors and the force platform was used as an indicator of the concurrent validity. Reliability of the measures was calculated using Intraclass correlation in a subsample (n = 14). Smartphones had 11 out of 12 variables with significant moderate to very high correlation (r > 0.5, p < 0.05) with force platform variables in open eyes, closed eyes, and unipedal conditions, while wearable devices had 8 out of 12 variables with moderate to very high correlation (r > 0.5, p < 0.05) with force platform variables under the same task conditions. Significant reliabilities were found in closed eye conditions for smartphones and wearables. The smartphone and wearable devices had concurrent validity for the static balance evaluation and the smartphone had better validity results than the wearables for the static balance evaluation.
RESUMO
Single leg balance training promotes significant increments in balance control, but previous reviews on balance control have not analyzed this form of balance training. Accordingly, we aimed to review the single leg balance training literature to better understand the effects of applying this training to healthy individuals. We searched five databases-PubMed, EMBASE, Scopus, Lilacs, and Scielo-with the following inclusion criteria: (a) peer-reviewed articles published in English; (b) analysis of adult participants who had no musculoskeletal injuries or diseases that might impair balance control; and (c) use of methods containing at least a pre-test, exclusive single leg balance training, and a post-test assessment. We included 13 articles meeting these criteria and found that single leg balance training protocols were effective in inducing balance control gains in either single- or multiple-session training and with or without progression of difficulty. Balance control gains were achieved with different amounts of training, ranging from a single short session of 10 minutes to multiple sessions totaling as much as 390 min of unipedal balance time. Generalization of balance gains to untrained tasks and cross-education between legs from single leg balance training were consistent across studies. We concluded that single leg balance training can be used in various contexts to improve balance performance in healthy individuals. These results extend knowledge of expected outcomes from this form of training and aid single leg balance exercise prescription regarding volume, frequency, and potential progressions.
Assuntos
Perna (Membro) , Equilíbrio Postural , Adulto , Terapia por Exercício , HumanosRESUMO
BACKGROUND: How people with Parkinson's disease habituate their postural response to unpredictable translation perturbation is not totally understood. We compared the capacity to change the postural responses after unexpected external perturbation and investigated the habituation plateaus of postural responses to non-sequential perturbation trials in people with Parkinson's disease and healthy older adults. METHODS: In people with Parkinson's disease (n = 37) and older adults (n = 20), sudden posterior support-surface translational were applied in 7 out of 17 randomized trials to ensure perturbation unpredictability. Electromyography and center of pressure parameters of postural response were analyzed by ANOVAs (Group vs. Trials). Two simple planned contrasts were performed to determine at which trial the responses first significantly habituate, and by which trials the habituation plateaus. FINDINGS: Older adults demonstrated a first response change in trial 5 and habituation plateaus after trial 4, while for people with Parkinson's disease, the first change occurred in trial 2 and habituation plateau after trial 5 observed by center of pressure range. People with Parkinson's disease demonstrated a greater center of pressure range in trial 1 compared to older adults. Independent of trial, people with Parkinson's disease vs. older adults demonstrated a greater ankle muscle co-activation and recovery time. INTERPRETATION: Despite the greater center of pressure range in the first trial, people with Parkinson's disease can habituate to unpredictable perturbations. This is reflected by little, to no difference in the time-course of adaptation for all but 2 parameters that showed only marginal differences between people with Parkinson's disease and older adults.
Assuntos
Doença de Parkinson , Equilíbrio Postural , Adaptação Fisiológica , Idoso , Eletromiografia , Habituação Psicofisiológica , Humanos , Doença de Parkinson/tratamento farmacológicoRESUMO
Loss of vision is well known to affect postural control in blind subjects. This effect has classically been framed in terms of deficit or compensation depending on whether body sway increases or decreases in comparison with that of sighted subjects with the eyes open. However, studies have shown that postural responses can be modulated by the context and that changes in postural sway may not necessarily mean a worsened or improved postural control. The goal of our study was to test whether balance is affected by the context in blind subjects. Additional to the quantification of center of pressure (COP) displacement, measurements of body motion (COG) and the correspondent net neuromuscular response (COP-COG) were evaluated in anterior-posterior and medial-lateral directions. Thirty-eight completely blind and thirty-two sighted subjects participated of this study. The volunteers were asked to stand barefoot on a force platform for 60 s in two different conditions: feet apart and feet together. Sighted participants performed the tests with both the eyes open and eyes closed. Results showed that the COP-COG displacements in the blind group were greater than those of the sighted group with eyes open in almost all conditions tested, but not in eyes closed condition. However, the COP and COG results confirmed that the postural responses were context dependent. Together these results suggest that total visual loss does not just lead to a balance deficit or compensation, but to a specific postural signature that might imply in enhancing COP, COG and/or COP-COG in specific postural conditions.
Assuntos
Cegueira/complicações , Equilíbrio Postural/fisiologia , Postura/fisiologia , Transtornos de Sensação/etiologia , Adolescente , Adulto , Feminino , Humanos , Masculino , Movimento (Física) , Orientação/fisiologia , Pressão , Estatísticas não Paramétricas , Adulto JovemRESUMO
This study compared the effect of stability constraints imposed by a manual task on the adaptation of postural responses between 16 healthy elderly (mean age = 71.56 years, SD = 7.38) and 16 healthy young (mean age = 22.94 years, SD = 4.82) individuals. Postural stability was perturbed through unexpected release of a load attached to the participant's trunk while performing two versions of a voluntary task: holding a tray with a cylinder placed with its flat side down (low constraint) or with its rolling round side down (high constraint). Low and high constraint tasks were performed in alternate blocks of trials. Results showed that young participants adapted muscular activation and kinematics of postural responses in association with previous experience with the first block of manual task constraint, whereas the elderly modulated postural responses based on the current manual constraint. This study provides evidence for flexibility of postural strategies in the elderly to deal with constraints imposed by a manual task.
RESUMO
The aim of this study was to evaluate the effects of muscle fatigue of triceps surae and quadriceps muscles in stepping down in ongoing gait. We expected that the subjects would compensate for muscle fatigue to prevent potential loss of balance in stepping down. A total of 10 young participants walked over a walkway at a self-selected velocity to step down a height difference of 10-cm halfway. Five trials were performed before and after a muscle fatigue protocol. Participants performed two fatigue protocols: one for ankle muscle fatigue and another for knee muscle fatigue. Kinematics of and ground reaction forces on the leading leg were recorded. Fatigue did not cause a change in the frequency of heel or toe landing. Our results indicate that in stepping down fatigue effects are compensated by redistributing work to unfatigued muscle groups and by gait changes aimed at enhancing balance control, which was however only partially successful.