RESUMO
In this paper, the ballistic performance of a multilayered composite inspired by the structural characteristics of nacre is numerically investigated using finite element (FE) simulations. Nacre is a natural composite material found in the shells of some marine mollusks, which has remarkable toughness due to its hierarchical layered structure. The bioinspired nacre-like composites investigated here were made of five wavy aluminum alloy 7075-T651 (AA7075) layers composed of ~1.1-mm thick square tablets bonded together with toughened epoxy resin. Two composite configurations with continuous layers (either wavy or flat) were also studied. The ballistic performance of the composite plates was compared to that of a bulk monolithic AA7075 plate. The ballistic impact was simulated in the 300-600 m/s range using two types of spherical projectiles, i.e., rigid and elastoplastic. The results showed that the nacre plate exhibited improved ballistic performance compared to the bulk plate and the plates with continuous layers. The structural design of the nacre plate improved the ballistic performance by producing a more ductile failure and enabling localized energy absorption via the plastic deformation of the tablets and the globalized energy dissipation due to interface debonding and friction. All the plate configurations exhibited a better ballistic performance when impacted by an elastoplastic projectile compared to a rigid one, which is explained by the projectile plastic deformation absorbing some of the impact energy and the enlarged contact area between the projectile and the plates producing more energy absorption by the plates.
RESUMO
As destructive power of firearms raises over the years, ballistic armors are in continuous need of enhancement. For soft armors, this improvement is invariably related to the increase of stacked layers of high-strength fiber fabrics, which potentially restrains wearer mobility. A different solution was created in the early 2000s, when a research work proposed a new treatment of the ballistic panels with non-Newtonian colloidal shear thickening fluid (STF), in view of weight decreasing with strength reinforcement and cost-effective production. Since then, databases reveal a surge in publications generally pointing to acceptable features under ballistic impact by exploring different conditions of the materials adopted. As a result, several works have not been covered in recent reviews for a wider discussion of their methodologies and results, which could be a barrier to a deeper understanding of the behavior of STF-impregnated fabrics. Therefore, the present work aims to overview the unexplored state-of-art on the effectiveness of STF addition to high-strength fabrics for ballistic applications to compile achievements regarding the ballistic strength of this novel material through different parameters. From the screened papers, SiO2, Polyethylene glycol (PEG) 200 and 400, and Aramid are extensively being incorporated into the STF/Fabric composites. Besides, parameters such as initial and residual velocity, energy absorbed, ballistic limit, and back face signature are common metrics for a comprehensive analysis of the ballistic performance of the material. The overview also points to a promising application of natural fiber fabrics and auxetic fabrics with STF fluids, as well as the demand for the adoption of new materials and more homogeneous ballistic test parameters. Finally, the work emphasizes that the ballistic application for STF-impregnated fabric based on NIJ standards is feasible for several conditions.
RESUMO
Replacing synthetic fibers with natural ones as reinforcement in polymeric composites is an alternative to contribute to sustainability. Pineapple leaf fibers (PALF) have specific mechanical properties that allow their use as reinforcement. Further, graphene oxide (GO) has aroused interest due to its distinctive properties that allow the improvement of fiber/matrix interfacial adhesion. Thus, this work aimed to evaluate the ballistic performance and energy absorption properties of PALF-reinforced composites, presenting different conditions (i.e., GO-functionalization, and variation of fibers volume fraction and arrangement) through residual velocity and Izod impact tests. ANOVA was used to verify the variability and reliability of the results. SEM was employed to visualize the failure mechanisms. The Izod impact results revealed a significant increase in the absorbed energy with the increment of fiber volume fraction for the unidirectional configuration. The ballistic results indicated that the bidirectional arrangement was responsible for better physical integrity after the projectile impact. Furthermore, bidirectional samples containing 30 vol.% of GO non-functionalized fibers in a GO-reinforced matrix showed the best results, indicating its possible application as a second layer in multilayered armor systems.
RESUMO
Multilayered armor systems (MAS) with a front ceramic layer backed by a relatively unknown Amazonian guaruman fiber-reinforced (Ischnosiphon koem) epoxy composites, as second layer, were for the first time ballistic tested against the threat of 7.62 mm rifle ammunition. The amount of 30 vol% guaruman fibers was investigated in three distinct configurations: (i) continuous aligned, (ii) 0-90° cross-laid, and (iii) short-cut randomly dispersed. Additionally, single-target ballistic tests were also carried out in the best MAS-performed composite with cross-laid guaruman fibers against .22 caliber ammunition. The results disclosed that all composites as MAS second layer attended the US NIJ standard with corresponding penetration depth of (i) 32.9, (ii) 27.5, and (iii) 29.6 mm smaller than the lethal limit of 44 mm in a clay witness simulating a personal body. However, the continuous aligned guaruman fiber composite lost structural integrity by delamination after the 7.62 projectile impact. By contrast, the composite with cross-laid guaruman fibers kept its integrity for subsequent shootings as recommended by the standard. The single-target tests indicated a relatively higher limit velocity for .22 caliber projectile perforation, 255 m/s, and absorbed energy of 106 J for the cross-laid guaruman fibers, which are superior to corresponding results for other less known natural fiber epoxy composites.
RESUMO
Composites with sustainable natural fibers are currently experiencing remarkably diversified applications, including in engineering industries, owing to their lower cost and density as well as ease in processing. Among the natural fibers, the fiber extracted from the leaves of the Amazonian curaua plant (Ananas erectifolius) is a promising strong candidate to replace synthetic fibers, such as aramid (Kevlar™), in multilayered armor system (MAS) intended for ballistic protection against level III high velocity ammunition. Another remarkable material, the graphene oxide is attracting considerable attention for its properties, especially as coating to improve the interfacial adhesion in polymer composites. Thus, the present work investigates the performance of graphene oxide coated curaua fiber (GOCF) reinforced epoxy composite, as a front ceramic MAS second layer in ballistic test against level III 7.62 mm ammunition. Not only GOCF composite with 30 vol% fibers attended the standard ballistic requirement with 27.4 ± 0.3 mm of indentation comparable performance to Kevlar™ 24 ± 7 mm with same thickness, but also remained intact, which was not the case of non-coated curaua fiber similar composite. Mechanisms of ceramic fragments capture, curaua fibrils separation, curaua fiber pullout, composite delamination, curaua fiber braking, and epoxy matrix rupture were for the first time discussed as a favorable combination in a MAS second layer to effectively dissipate the projectile impact energy.
RESUMO
The ballistic performance of plain woven jute fabric-reinforced polyester matrix composites was investigated as the second layer in a multilayered armor system (MAS). Volume fractions of jute fabric, up to 30 vol %, were mixed with orthophthalic polyester to fabricate laminate composites. Ballistic tests were conducted using high velocity 7.62 mm ammunition. The depth of penetration caused by the bullet in a block of clay witness, simulating a human body, was used to evaluate the MAS ballistic performance according to the international standard. The fractured materials after tests were analyzed by scanning electron microscopy (SEM). The results indicated that jute fabric composites present a performance similar to that of the much stronger Kevlar™, which is an aramid fabric laminate, as MAS second layer with the same thickness. The mechanism of this similar ballistic behavior as well as the comparative advantages of the jute fabric composites over the Kevlar™ are discussed.
RESUMO
A relatively unknown natural fiber extracted from the leaves of the fique plant, native of the South American Andes, has recently shown potential as reinforcement of polymer composites for engineering applications. Preliminary investigations indicated a promising substitute for synthetic fibers, competing with other well-known natural fibers. The fabric made from fique fibers have not yet been investigated as possible composite reinforcement. Therefore, in the present work a more thorough characterization of fique fabric as a reinforcement of composites with a polyester matrix was performed. Thermal mechanical properties of fique fabric composites were determined by dynamic mechanical analysis (DMA). The ballistic performance of plain woven fique fabric-reinforced polyester matrix composites was investigated as a second layer in a multilayered armor system (MAS). The results revealed a sensible improvement in thermal dynamic mechanical behavior. Both viscoelastic stiffness and glass transition temperature were increased with the amount of incorporated fique fabric. In terms of ballistic results, the fique fabric composites present a performance similar to that of the much stronger KevlarTM as an MAS second layer with the same thickness. A cost analysis indicated that armor vests with fique fabric composites as an MAS second layer would be 13 times less expensive than a similar creation made with Kevlar™.