RESUMO
This study investigates the effectiveness of various chemical methods, both ultrasound-assisted and non-assisted, for extracting cellulose from banana pseudostem (BPS) waste, comparing the results with commercial pine and eucalyptus cellulose fibers. Delignification treatments with NaOH (25% and 30%) and H2O2 (8%) were evaluated, applied with both conventional and focused sonication. Ultrasound-assisted methods, particularly with NaOH, achieved cellulose percentages as high as 99.5%. X-ray diffraction (XRD) analysis revealed that NaOH treatments significantly increased the cellulose crystallinity index, reaching up to 67.9%, surpassing commercial fibers. Scanning electron microscopy (SEM) results showed that NaOH treatments, especially at 30%, improved fiber morphology and exposure. Thermogravimetric analysis (TGA) indicated that methods using NaOH and focused sonication enhanced the thermal stability of the cellulose. Compared to commercial fibers, some samples obtained with the proposed methods demonstrated higher purity, yield, and thermal stability, highlighting the effectiveness of ultrasound-assisted and NaOH methods.
RESUMO
Post-harvest diseases like fruit crown rot (CR) on bananas (Musa spp.) worldwide are mainly attributed to Colletotrichum gloeosporioides (Berk. & Curt.) von Arx and Lasiodiplodia theobromae (Pat.) Griff. & Maubl (Sangeetha et al., 2012; Riera et al., 2019). In April 2019, at a banana farm (cultivar Williams) located in El Oro province (location at 79° 54' 05" W; 03° 17' 16" S), thirty hands were randomly collected from the postharvest process and further placed in a humid chamber at 20 ºC until signs of the disease progressed and became more evident (from 3 days to 20 days). Ten hands presented initial symptoms related to CR during the postharvest process, which included crown or peduncle rot with mycelial development on the crown's surface, leading to the blackening of tissues at the site of the wound left when the cluster was cut. Crown fruit fragments (~0.5 cm) from the edge of healthy tissue and diseased tissue underwent a series of disinfection steps, initially in ethanol (70%) for 1 min, followed by sodium hypochlorite (1%) for 1 min, rinsed three times with sterile distilled water, and dried on sterile filter paper for 10 min. The fragments were placed onto Potato dextrose agar (PDA) + chloramphenicol (100 mg L-1) and incubated at 25°C in darkness for five days. Five isolates with different colony morphologies were obtained. An initial screen of the pathogenicity of all isolates showed that only one isolate showed disease activity in banana crowns. This isolate, C1, showed grayish-white aerial mycelium in culture as described above and, after ten days, became black. We did a full pathogenicity test with C1 using ten individual banana fruits (cv. Williams Cavendish). Briefly, one disc (Ø of 5 mm) of the fungus with agar was placed on the acropetal part of the banana fruit (on the peel) and another piece in the crown without wounding. Inoculated fruit were in a humid chamber at 20 °C for 20 days. Uninoculated fruits constituted the control. Isolate C1 caused 100% of the fruit and crowns to rot, with symptoms similar to those initially observed from fruit collected at the postharvest process (Fig. S1d). The fungus was re-isolated from symptomatic tissue, and its identity was confirmed through morphological characteristics consistent with Lasiodiplodia sp. Matured conidia of all mono hyphal strains (Fig. S1b) appeared dark brown with a single septum, having an ovate shape, and displayed longitudinal striations along their thickened walls (Fig. S1c). The dimensions of the mature conidia ranged from 16.02 - 26.85 x 11.09 - 16.74 µm (n = 60). Morphological characteristics showed similarity to Lasiodiplodia sp. (Alves et al., 2008). Microscopic observations were further confirmed by sequencing three loci: the internal transcribed spacer (ITS), ß-tubulin, and partial translation elongation factor-1α (TEF-1α). Fungal genomic DNA from the C1 isolate was PCR amplified using ITS5/ITS4, EF1-728F/986R, and Bt2A/Bt2B primers, respectively, according to Glass & Donaldson (1995) and Bautista-Cruz et al. (2019). The resulting amplicons were sequenced, and those sequences were deposited in GenBank with the accession numbers ITS: PP532861, TEF-1α: PP551938, and ß-tubulin: PP537587. Sequence alignment was conducted using ClustalW under the MEGA 11.0 software package (Tamura et al., 2021). Subsequently, phylogenetic analysis was performed using Bayesian inference using the BEAST v1.8.4 program (Drummond & Rambaut, 2007). The concatenated sequence of the isolate revealed clustering to the Lasiodiplodia theobromae clade, confirming its identity. To our knowledge, this is the first report of this pathogen causing CR on banana fruit in Ecuador. Based on the report of CR in the country, banana exporters and the Ecuadorian government should consider developing disease management methods that include the cultivation, shipping, ripening, and storage processes of the fruit.
RESUMO
BACKGROUND/PURPOSE: Anteriorly convex sternum in pectus excavatum, also known as banana sternum (BS), influences decision-making during repair and, especially, the need to cross bars. However, the definition of BS remains subjective. Thus, we aim to propose the retrosternal angle (RSA) as a diagnostic measure for the discrimination of BS. MATERIAL AND METHODS: Retrospective analysis of a cohort of patients who underwent a minimally invasive repair of pectus excavatum (MIRPE) between October 2016 and October 2023 at our Pectus Clinic. Five expert thoracic surgeons individually reviewed their medical photographs and chest CT scans assigning patients to BS or non-BS groups based on consensus (≥4 surgeons). RSA measurements were obtained by an independent thoracic surgeon. RESULTS: Among 283 cases analyzed, 50 (18%) were classified as BS and 233 (82%) as non-BS. No significant differences were found between groups in age (p = 0.62), Haller index (p = 0.11), or Correction index (p = 0.58). However, RSA was significantly lower in the BS group (141.2 ± 8.4° vs. 154.5 ± 10.3°, p < 0.0001). Receiver operating characteristic curve analysis revealed RSA as a reliable predictor of BS (AUC 0.85, p < 0.0001), with a threshold of 148.5° demonstrating 80% sensitivity and 77% specificity. Regarding potential clinical implications, 26/50 (52%) of patients defined as BS underwent bar crossing, compared with 45/232 (19%) of those not considered a BS (p < 0.0001). CONCLUSION: This study proposes an objective metric, the Retrosternal Angle, to assess BS in chest CT scans, with a threshold of 148.5° showing high sensitivity and specificity. External validation of this angle and threshold is warranted in future investigations. TYPE OF STUDY: Retrospective comparative study. LEVEL OF EVIDENCE: III.
RESUMO
Fusarium wilt of banana (FWB), caused by the soil-borne fungus Fusarium oxysporum f. sp. cubense (Foc), poses an undeniable threat to global banana production. This disease has intensified in recent years, with the tropical race 4 (TR4) strain spreading rapidly. Since 2018, the number of affected countries has increased from 16 to 23, presenting a significant challenge to researchers, producers, and National Plant Protection Organizations (NPPOs) worldwide. The potential impact of TR4 in Latin America and the Caribbean (LAC) is particularly concerning. This region boasts seven of the top ten banana-exporting countries, and bananas and plantains are crucial for food security and income generation. In Colombia, where TR4 was detected in 2019, the disease has already spread from La Guajira to Magdalena, and it is currently affecting 20 large commercial export farms. In Peru, the disease was detected in 2021 and although still restricted to the northern region, flood irrigation and heavy rains associated with the Yaku cyclone, boosted pathogen spread, and more than 400 small organic banana farmers are currently affected. In Venezuela, TR4 detection occurred in 2023, with plantations across three states and five municipalities now affected. Worryingly, TR4 has also been confirmed in plantains, a staple food in the region. Current national responses in LAC primarily rely on preventive and reactive measures: preventing initial incursions and containing outbreaks to avoid further spread. However, the disease's relentless progression suggests that its eventual presence in all banana-producing areas is likely. Therefore, exploring alternative management approaches beyond pathogen exclusion becomes crucial, both in affected and disease-free regions. This paper examines the current spread of TR4, focusing on epidemiological aspects and recent research-based management options. Key epidemiological features were highlighted, drawing practical examples from various scales (plots to landscapes) and utilizing experiences from LAC's fight against TR4. The paper also reviews field-tested approaches in biosecurity, biological control, resistant varieties, soil health, and integrated disease management, acknowledging the specific challenges faced by smallholder settings. In each section research initiatives were analyzed, identifying gaps, and proposing directions to minimize TR4 impact and accelerate the development of sustainable solutions for managing this devastating disease.
RESUMO
Green banana Musa paradisiaca (GB) has been traditionally used to aid in the treatment of diarrhea. This systematic review and meta-analysis aimed to evaluate current evidence of the effect of GB consumption as a complement to standard treatment in the population with acute or persistent diarrhea. We searched PubMed, Scopus, Web of Science, and LILACS from inception to January 2024; there was no language restriction. Only randomized controlled trials using GB as an intervention were included, and studies using antidiarrheal medication were excluded. A meta-analysis was performed to compare the effect of GB on the resolution of acute and persistent diarrhea. To measure the certainty of evidence, the GRADE assessment was used. Nine randomized controlled trials (seven open and two blinded) were included. Studies were conducted in the pediatric population comprising a total of 3996 patients aged 8 to 34 months, eight studies were written in English and one in Spanish. GB-based food consumption significantly increased the hazard of resolution of diarrhea compared to standard treatment (HR 1.96, 95% CI [1.62; 2.37], p < 0.01; I2 = 52%). The subgroup analysis showed a higher hazard of resolution of diarrhea for children with persistent diarrhea (HR 2.34, 95% CI [1.78; 3.08] compared to acute diarrhea (HR 1.74, 95% CI [1.45; 2.09]).Conclusions: The use of green banana-based foods as a complement to standard treatment in children is probably associated with a faster resolution in acute diarrhea and may aid in the treatment of persistent diarrhea. More clinical trials are necessary to assess if a synergistic effect between GB and other foods exists and proves to be better than GB alone. These findings need to be confirmed in diverse socioeconomic contexts, within the adult population, and under varying health conditionsTrial registration: CRD42024499992.
Assuntos
Diarreia , Musa , Ensaios Clínicos Controlados Aleatórios como Assunto , Humanos , Diarreia/tratamento farmacológico , Diarreia/terapia , Doença Aguda , Pré-Escolar , Lactente , CriançaRESUMO
Interest in bacterial nanocellulose (BNC) has grown due to its purity, mechanical properties, and biological compatibility. To address the need for alternative carbon sources in the industrial production of BNC, this study focuses on banana leaves, discarded during harvesting, as a valuable source. Banana midrib juice, rich in nutrients and reducing sugars, is identified as a potential carbon source. An optimal culture medium was designed using a simplex-centroid mixing design and evaluated in a 10 L bioreactor. Techniques such as Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA) were used to characterize the structural, thermal, and morphological properties of BNC. Banana midrib juice exhibited specific properties, such as pH (5.64), reducing sugars (15.97 g/L), Trolox (45.07 µM), °Brix (4.00), and antioxidant activity (71% DPPH). The model achieved a 99.97% R-adjusted yield of 6.82 g BNC/L. Physicochemical analyses revealed distinctive attributes associated with BNC. This approach optimizes BNC production and emphasizes the banana midrib as a circular solution for BNC production, promoting sustainability in banana farming and contributing to the sustainable development goals.
RESUMO
We report the first record of the occurrence of the banana weevil, Cosmopolites sordidus (Germar, 1823) (Coleoptera: Curculionidae), an economically important pest of bananas (Musa spp.), from Fifa Mountains in Saudi Arabia. Moreover, we recorded the first observation of damage caused to bananas by C. sordidus in a banana farm in Jazan Province, southwestern Saudi Arabia, in March 2022. Molecular characterization using DNA sequences of the mitochondrial COI gene confirmed the morphological identification of C. sordidus. This discovery is considered a warning notice to prevent the potential establishment and spread of this dangerous pest in the banana cultivation regions in Saudi Arabia. Therefore, it is recommended that detection and monitoring of banana weevil should be undertaken in Saudi banana farms in order to restrict the dissemination of this weevil to other banana cultivation areas.
Assuntos
Musa , Gorgulhos , Animais , Gorgulhos/classificação , Arábia Saudita , Musa/parasitologia , Feminino , MasculinoRESUMO
Fusarium wilt or Panama disease of banana caused by the hemibiotroph fungus, Fusarium odoratissimum, also known as F. oxysporum f.sp. cubense Tropical Race 4 is a serious threat to banana production worldwide. Being the world's largest grower and the origins of bananas in its northeast region, India is particularly vulnerable to this deadly fungus. In the present study, a total of 163 Fusarium isolates from infected banana were characterized for their pathogenic traits. Considering the variability in the Fusarium, the contaminated banana plants were collected from five districts of Uttar Pradesh and Bihar, two major primary infection states of India. All the isolates were screened using universal and specific primers to identify the F. odoratissimum strains. The identified F. odoratissimum strains were subjected to in vivo pathogenicity assessment using the susceptible banana cultivar 'Grand Naine'. The identified six most virulent strains were further characterized for their pathogenicity via in vivo bipartite interaction in terms of biochemical assays. Assessment of in vivo pathogenicity through qRT-PCR for three pathogenesis responsive genes, Six 1a (Secreted in xylem), Snf (Sucrose non-fermenting) and ChsV (Chitinase V), ascertained that the identified F. odoratissimum strains exhibit both intra- and inter-specific variability. The variability of F. odoratissimum strains signifies its importance for the assessment of spread of infection at specific sites to enable efficient management strategy of Fusarium wilt in banana.
Assuntos
Fusarium , Musa , Doenças das Plantas , Musa/microbiologia , Fusarium/genética , Fusarium/patogenicidade , Fusarium/isolamento & purificação , Fusarium/classificação , Doenças das Plantas/microbiologia , Índia , Virulência/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , FilogeniaRESUMO
This study synthesizes magnetic iron oxide nanoparticles from agro-waste sweet pepper extract, exploring their potential as antioxidant additives and in food preservation. Iron (III) chloride hexahydrate is the precursor, with sweet pepper extract as both a reducing and capping agent at pH 7.5. Characterization techniques, including microscopy and spectroscopy, analyze the sweet pepper extract-magnetic iron oxide nanoparticles. Antioxidant capacities against 2,2-diphenyl-1-picrylhydrazyl are assessed, incorporating nanoparticles into banana-based bioplastic for grape preservation. Microscopy reveals cubic and quasi-spherical structures, and spectroscopy confirms functional groups, including Fe-O bonds. X-ray diffraction identifies cubic and monoclinic magnetite with a monoclinic hematite presence. Sweet pepper extract exhibits 100% inhibitory activity in 20 min, while sweet pepper extract-magnetic iron oxide nanoparticles show an IC50 of 128.1 µg/mL. Furthermore, these nanoparticles, stabilized with banana-based bioplastic, effectively preserve grapes, resulting in a 27.4% lower weight loss rate after 144 h compared to the control group (34.6%). This pioneering study encourages institutional research into the natural antioxidant properties of agro-waste sweet pepper combined with magnetic iron and other metal oxide nanoparticles, offering sustainable solutions for nanopackaging and food preservation. Current research focuses on refining experimental parameters and investigating diverse applications for sweet pepper extract-magnetic iron oxide nanoparticles in varied contexts.
RESUMO
Banana starch has a highly resistant starch (RS) and slow-digested starch (SDS) content, making it attractive as a functional ingredient. Unfortunately, banana starch requires modification processes due to the loss of RS and SDS during gelatinization because of its thermolabile characteristics. This study explores the effect of banana starch modification by enzymatic, heat moisture treatment (HMT) and dual modification (HMT+ enzymatic) on its nutritional (RS, SDS) and functional properties (hydration, structural, gelation, rheological). HMT and dual modifications decrease RS (from 44.62 g/100 g to 16.62 and 26.66 g/100 g, respectively) and increase SDS (from 21.72 g/100 g to 33.91 and 26.95 g/100 g, respectively) in raw starch but induce structural changes that enhance RS (from 3.10 g/100 g to 3.94 and 4.4 g/100 g, respectively) and SDS (from 2.58 g/100 g to 9.58 and 11.48 g/100 g) thermo-resistance in gelled starch. Also, changes in the functional properties of starches were evidenced, such as weaker gels (hardness < 41 g), lower water absorption (<12.35 g/g), high starch solubility (>1.77 g/100 g) and increased gelatinization temperature. Improved gelatinization temperature and RS thermostability resulted from modifications that could expand banana starch applications as a beverage and compote thickener agent.
Assuntos
Musa , Amido , Amido/química , Musa/química , Fenômenos Químicos , Solubilidade , Temperatura , Amido Resistente , Temperatura AltaRESUMO
The banana is one of Colombia's main export products. However, production is seriously affected by Fusarium wilt of banana, which is the most destructive disease caused by the fungus Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4). Currently, management strategies focus on containment and biosecurity protocols to prevent its spread to territories that are free of this disease. This study aimed to evaluate nine quaternary ammonium-based disinfectants (i.e., quaternary ammonium compounds [QACs]) in vitro in Colombia on reproductive (microconidia and macroconidia) and resistance structures (chlamydospores) of Foc race 1 (R1) and tropical race 4 (TR4), with and without soil, to determine the influence of organic matter and soil texture on the action of QACs. A method for inhibiting the action of QACs was standardized and evaluated at 1,200 ppm with a contact time of ≤30 s while evaluating the soil-inoculum and soil-disinfectant interactions. In the soil-inoculum interaction, the efficacy of QACs was 100% in the reproductive and resistance structures of Foc R1 and TR4 without soil. However, in the soil-disinfectant interaction, only QAC4 controlled the pathogen at 100%. The presence of organic matter influenced the biocidal action of the QACs, and fine textures had a greater reducing effect on the concentration. The soil decreased the efficacy of the QACs and, therefore, must be removed from contaminated boots before treatments are applied.
RESUMO
Bananas are major agricultural commodities in Cuba. One of the main constraints of banana production worldwide is Fusarium wilt of banana. Recent outbreaks in Colombia, Perú, and Venezuela have raised widespread concern in Latin America due to the potential devastating impact on the sustainability of banana production, food security, and livelihoods of millions of people in the region. Here, we phenotyped 18 important Cuban banana and plantain varieties with two Fusarium strains-Tropical Race 4 (TR4) and Race 1-under greenhouse conditions. These varieties represent 72.8% of the national banana acreage in Cuba and are also widely distributed in Latin America and the Caribbean region. A broad range of disease responses from resistant to very susceptible was observed against Race 1. On the contrary, not a single banana variety was resistant to TR4. These results underscore that TR4 potentially threatens nearly 56% of the contemporary Cuban banana production area, which is planted with susceptible and very susceptible varieties, and call for a preemptive evaluation of new varieties obtained in the national breeding program and the strengthening of quarantine measures to prevent the introduction of TR4 into the country.
Assuntos
Fusarium , Musa , Humanos , Fusarium/fisiologia , Doenças das Plantas/prevenção & controle , Melhoramento Vegetal , FenótipoRESUMO
Bananas (Musa spp.) are among the world's most economically important staple food crops. The most important fungal leaf diseases of Musa spp. worldwide are caused by the Sigatoka disease complex, which comprise black Sigatoka (Pseudocercospora fijiensis), yellow Sigatoka (P. musae), and Eumusae leaf spot (P. eumusae). Considering the rapid spreading rate of black Sigatoka in Puerto Rico after its first observation in 2004, a disease survey was conducted from 2018 to 2020 to evaluate the Sigatoka disease complex on the island. Sixty-one leaf samples showing Sigatoka-like symptoms were collected throughout the island for diagnosis by molecular approaches and fungal isolation. Molecular analysis using species-specific primers for P. fijiensis, P. musae and P. eumusae detected the presence of P. fijiensis in fifty leaf samples. Thirty-eight fungal isolates were collected and identified by morphology and genomic sequencing from various nuclear genes. The analysis identified 24 isolates as P. fijiensis, while the rest of the isolates belonged to the genus Cladosporium spp. and Cladosporium-like spp. (n=5), Neocordana musae (n=2), Zasmidium spp. (n=6), and Z. musigenum (n=1). The high frequency of P. fijiensis found in leaf samples and collected isolates suggest that black Sigatoka has displaced the yellow Sigatoka (P. musae) in Puerto Rico. Accurate identification of fungal species causing foliar diseases in Musa spp. will allow the establishment of quarantine regulations and specific management approaches in Puerto Rico.
RESUMO
Cellulose nanofibrils from the banana rachis are a good alternative as packaging materials, food packaging, stabilizing agents, and functional food ingredients. To address the potential effects of ingested banana rachis cellulose nanofibrils (BR-CNFs), their toxicity in vitro and in vivo was evaluated using Caco-2 intestinal cells and mice, respectively. The results showed that BR-CNFs did not cause cytotoxic effects at the concentrations evaluated on Caco-2 cells. In addition to cytotoxicity tests, genotoxicity assays using comet assay indicated that Caco-2 cells showed no DNA damage at the concentrations of CNFs tested. Finally, acute in vivo cytotoxicity assays indicated that mice showed no sign of pathogenesis or lesions in the liver, kidney, or small intestine when treated with a single dose of BR-CNFs. Moreover, when the mice were treated daily for a month with BR-CNFs no hyperplasia or hypertrophy was observed in any of the organs evaluated. Additionally, biochemical parameters such as blood chemistry, creatinine, liver enzymes, and renal function showed that the BR-CNFs do not cause organ damage. Overall, this study shows that BR-CNFs are neither cytotoxic nor genotoxic. In conclusion, these studies are essential to guarantee the safety of this high value-added product in the food industry.
RESUMO
Bacterial cellulose (BC) is an exopolysaccharide produced by bacteria that has unusual structural features and is more refined than plant cellulose. BC has recently gained more attention in a variety of fields including biological and biomedical applications due to its excellent physiochemical properties including easy biodegradability, better water holding capacity, high tensile strength, high thermal stability, and high degree of polymerization. However, application of BC at industrial scale is still limited due to its high production cost and lesser yielding strains. The present study is an attempt to isolate and characterize a novel BC-producing bacterial strain. The bacterial strain S5 has resulted into maximum cellulose production of 4.76 ± 0.49 gL-1 (30°C, pH 7.0). The strain has been further identified as Stenotrophomonas sp. Derivation of nutritional and cultural conditions has resulted into 2.34-fold enhanced BC production (banana peel powder, peptone, tartaric acid, pH 7, 30°C). FTIR spectrum of BC revealed characteristic absorption bands which could be attributed to the O-H band, C-H stretching, C-O-C stretching band, O-H bending, and >CH2 bending, indicative of the ß-1,4 glycosidic linkages of cellulose. Thermogravimetric analysis has also revealed stability of polysaccharide backbones and characteristic weight loss points. Employment of banana peel powder has appeared as a proficient low-cost source for large-scale economic production of BC for industrial applications.
Assuntos
Musa , Celulose , Análise Custo-Benefício , Pós , Bactérias/genéticaRESUMO
The banana is a tropical fruit characterized by its composition of healthy and nutritional compounds. This fruit is part of traditional Ecuadorian gastronomy, being consumed in a wide variety of ways. In this context, unripe Red Dacca banana samples and those submitted to different traditional Ecuadorian heating treatments (boiling, roasting, and baking) were evaluated to profile their phenolic content by ultra-high-performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS) and the antioxidant activity by ORAC, ABTS, and DPPH assays. A total of sixty-eight phenolic compounds were identified or tentatively identified in raw banana and treated samples, highlighting the content in flavonoids (flavan-3-ols with 88.33% and flavonols with 3.24%) followed by the hydroxybenzoic acid family (5.44%) in raw banana samples. The total phenolic compound content significantly decreased for all the elaborations evaluated, specifically from 442.12 mg/100 g DW in fresh bananas to 338.60 mg/100 g DW in boiled (23.41%), 243.63 mg/100 g DW in roasted (44.90%), and 109.85 mg/100 g DW in baked samples (75.15%). Flavan-3-ols and flavonols were the phenolic groups most affected by the heating treatments, while flavanones and hydroxybenzoic acids showed higher stability against the heating treatments, especially the boiled and roasted samples. In general, the decrease in phenolic compounds corresponded with a decline in antioxidant activity, evaluated by different methods, especially in baked samples. The results obtained from PCA studies confirmed that the impact of heating on the composition of some phenolic compounds was different depending on the technique used. In general, the heating processes applied to the banana samples induced phytochemical modifications. Even so, they remain an important source of bioactive compounds for consumers.
RESUMO
Electrochemotherapy (ECT) and Irreversible electroporation (IRE) are cancer treatments based on electric field distribution in tissues. Solanum tuberosum (potato tissue) phantom is known to mimic changes in the electrical conductivity that occur in animal tissues during electroporation (EP). Electric field distribution is assessed through enzymatic staining. However, the 24-h wait for this assessment could slow agile response scenarios. We developed and validated the Musa acuminata (cavendish banana) conductivity model, which quickly evaluates EP by tissue staining. We investigated the frequency response of the tissue using impedance spectroscopy analysis, conductivity changes, and enzymatic staining. We optimized three usual EP models: adapted Gompertz, smoothed Heaviside, and the sigmoid or logistic function. We found dielectric parameters in banana tissue similar to those in potato (electrical conductivity of 0.035 S/m and relative permittivity of 4.1×104). The coefficients of determination R2 were 99.94% (Gompertz), 99.85% (Heaviside), and 99.58% (sigmoid). The sigmoid and Heaviside functions described the calibration and validation electric currents with 95% confidence. We observed the electroporated areas in bananas 3h30m after EP. Staining was significant after 450 V/cm. The conductivity model of Musa acuminata suits treatment planning, hardware development, and training scenarios. Banana phantom supports the 3Rs practice and is a reliable alternative for potato in EP studies.
Assuntos
Eletroquimioterapia , Musa , Animais , Terapia com Eletroporação , Eletroporação , Condutividade ElétricaRESUMO
Research background: The extensive cultivation of bananas (Musa sp.) is related to producing tons of residues, such as leaves, pseudostems and bracts (inflorescences). The banana bract is a commercially interesting residue due to its dietary fibre content and high antioxidant potential. With this in mind, this study evaluates the effects of administering banana bract flour in animal models fed a cafeteria diet. Experimental approach: Thirty-two male rats were divided into 4 groups: (i) control diet, (ii) control diet with 10 % banana bract flour, (iii) hypercaloric diet, and (iv) hypercaloric diet with 10 % bract banana flour. The study was conducted for 12 weeks and included analysis of phenolic compounds, assessment of the antioxidant effect of banana bract flour, determination of serum biochemical parameters (glucose, total cholesterol, triglycerides, aspartate aminotransferase (AST), alanine transaminase (ALT), amylase, albumin, uric acid, creatine, total protein, and oral glucose), determination of faecal fat content, and histomorphological analysis of the liver, pancreas and adipose tissue. In addition, molecular parameters such as IL6, total and phosphorylated JNK, total and phosphorylated IKKß, TNFα, TLR4 and HSP70 were determined. Results and conclusions: The banana bract flour showed a high content of phenolic compounds and an antioxidant effect. The in vivo results suggest that the supplementation of a hypercaloric diet with banana bract flour prevented pathological damage by reducing total cholesterol and glucose amounts, which may imply a hepatoprotective effect of this supplement. Thus, using banana bract flour as a supplement can increase the consumption of fibre, antioxidants and bioactive compounds. Novelty and scientific contribution: The development of flour from banana waste and its inclusion in the diet can prevent and/or help treat obesity. In addition, the use of banana bracts can help protect the environment, as they are considered a source of waste by the food industry.
RESUMO
The objective of this work was to modify banana starch with pineapple leaf fibers (PALF) and its production of biodegradable films. The reaction conditions of the starch modification were a Starch/PALF mass ratio of 50, a time of 1 h and a temperature of 140 °C, to obtain a yield of 41.18 %. Characterization by FTIR and NMR confirmed that the chemical reaction was carried out. XRD and TGA analysis showed that the crystalline zones of the starch were affected during the modification and the product obtained is thermally less stable compared to unmodified starch. The modified starch showed a lower pasting profile compared to the native starch; however, the modified starch showed the ability to form a film. The starch-PALF films were obtained by the casting method and partially characterized. These films presented better mechanical properties compared to the unmodified films. Also, these films could compete with conventional non-biodegradable plastics.
Assuntos
Ananas , Amido , Amido/química , Solubilidade , PermeabilidadeRESUMO
Fusarium wilt of banana (Musa spp.), caused by the soil-borne fungus Fusarium oxysporum f. sp. cubense (Foc), is a major constraint to banana production worldwide (Dita et al., 2018). A strain of Foc that affects Cavendish (AAA) bananas in the tropics, called Foc tropical race 4 (TR4; VCG 01213), is of particular concern. Foc TR4 was first detected in Malaysia and Indonesia around 1990 but was restricted to Southeast Asia and northern Australia until 2012. The fungus has since been reported from Africa, the Indian subcontinent, and the Middle East (Viljoen et al., 2020). Foc TR4 was detected in Colombia in 2019 and in Perú in 2021 (Reyes-Herrera et al., 2020). The incursions into Latin America and the Caribbean (LAC) triggered global concerns, as 75% of international export bananas are produced in the region. Banana production in Venezuela, however, is primarily intended for domestic consumption (Aular and Casares, 2011). In 2021 the country produced 533,190 metric tons of banana on an area of 35,896 ha, with an approximate yield of 14,853 kg/ha (FAOSTAT, 2023). In July 2022, severe leaf-yellowing, and wilting, along with internal vascular discoloration of the pseudostem, were noted in Cavendish banana plants cultivar 'Valery' in the states of Aragua (10°11'8â³N; 67°34'51â³W), Carabobo (10º14'24â³N; 67º48'51â³W), and Cojedes (9°37'44â³N; 68°55'4â³W). Necrotic strands from the pseudostems of diseased plants were collected for identification of the causal agent using DNA-based techniques, vegetative compatibility group (VCG) analysis and pathogenicity testing. The samples were first surface disinfected and plated onto potato dextrose agar medium. Single-spored isolates were identified as F. oxysporum based on cultural and morphological characteristics, including white colonies with purple centres, infrequent macroconidia, abundant microconidia on short monophialides, and terminal or intercalary chlamydospores (Leslie and Summerell, 2006). Foc TR4 was identified from five isolates by endpoint and quantitative-PCR using four different primer sets (Li et al. 2013; Dita et al. 2010; Aguayo et al. 2017; Matthews et al. 2020). The same isolates were identified as VCG 01213 by successfully pairing nitrate non-utilizing (nit-1) mutants of the unknown strains with Nit-M testers of Foc TR4 available at Stellenbosch University (Leslie and Summerell, 2006). For pathogenicity testing, 3-month-old Cavendish banana plants cultivar 'Williams' were inoculated with isolates from Venezuela grown on sterile millet seed (Viljoen et al., 2017). Plants developed typical Fusarium wilt symptoms 60 days after inoculation, including yellowing of leaves that progressed from the older to the younger leaves, wilting, and internal discoloration of the pseudostem. Koch's postulates were fulfilled by reisolating and identifying Foc TR4 from the plants by qPCR (Matthews et al., 2020). These results provide scientific proof of the presence of Foc TR4 in Venezuela. The Venezuelan Plant Protection Organization (INSAI) has declared Foc TR4 as a newly introduced pest (January 19, 2023), and infested banana fields were placed under quarantine. Comprehensive surveys are now conducted in all production areas in Venezuela to assess the presence and impact of Foc TR4, and information campaigns were started to make farmers aware of biosecurity protocols. Collaborative initiatives and coordinated actions among all stakeholders are needed to prevent the spread of Foc TR4 to other countries in Latin America, and to develop Foc TR4-resistant bananas (Figueiredo et al. 2023).