Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Eur J Neurosci ; 59(10): 2646-2664, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38379517

RESUMO

Delirium is a severe postoperative complication associated with poor overall and especially neurocognitive prognosis. Altered brain mineralization is found in neurodegenerative disorders but has not been studied in postoperative delirium and postoperative cognitive decline. We hypothesized that mineralization-related hypointensity in susceptibility-weighted magnetic resonance imaging (SWI) is associated with postoperative delirium and cognitive decline. In an exploratory, hypothesis-generating study, we analysed a subsample of cognitively healthy patients ≥65 years who underwent SWI before (N = 65) and 3 months after surgery (N = 33). We measured relative SWI intensities in the basal ganglia, hippocampus and posterior basal forebrain cholinergic system (pBFCS). A post hoc analysis of two pBFCS subregions (Ch4, Ch4p) was conducted. Patients were screened for delirium until the seventh postoperative day. Cognitive testing was performed before and 3 months after surgery. Fourteen patients developed delirium. After adjustment for age, sex, preoperative cognition and region volume, only pBFCS hypointensity was associated with delirium (regression coefficient [90% CI]: B = -15.3 [-31.6; -0.8]). After adjustments for surgery duration, age, sex and region volume, perioperative change in relative SWI intensities of the pBFCS was associated with cognitive decline 3 months after surgery at a trend level (B = 6.8 [-0.9; 14.1]), which was probably driven by a stronger association in subregion Ch4p (B = 9.3 [2.3; 16.2]). Brain mineralization, particularly in the cerebral cholinergic system, could be a pathomechanism in postoperative delirium and cognitive decline. Evidence from our studies is limited because of the small sample and a SWI dataset unfit for iron quantification, and the analyses presented here should be considered exploratory.


Assuntos
Disfunção Cognitiva , Delírio , Imageamento por Ressonância Magnética , Complicações Pós-Operatórias , Humanos , Feminino , Masculino , Idoso , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/fisiopatologia , Delírio/etiologia , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Idoso de 80 Anos ou mais , Complicações Cognitivas Pós-Operatórias
2.
Neurosci Biobehav Rev ; 157: 105534, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38220033

RESUMO

BACKGROUND: Subjective cognitive decline (SCD) is a risk factor for future cognitive impairment and dementia. It is uncertain whether the neurodegeneration of the cholinergic system is already present in SCD individuals. We aimed to review the current evidence about the association between SCD and biomarkers of degeneration in the cholinergic system. METHOD: Original articles were extracted from three databases: Pubmed, Web of Sciences, and Scopus, in January 2023. Two researchers screened the studies independently. RESULTS: A total of 11 research articles were selected. SCD was mostly based on amnestic cognitive complaints. Cholinergic system biomarkers included neuroimaging markers of basal forebrain volume, functional connectivity, transcranial magnetic stimulation, or biofluid. The evidence showed associations between basal forebrain atrophy, poorer connectivity of the cholinergic system, and SCD CONCLUSIONS: Degenerative changes in the cholinergic system can be present in SCD. Subjective complaints may help when identifying individuals with brain changes that are associated with cognitive impairment. These findings may have important implications in targeting individuals that may benefit from cholinergic-target treatments at very early stages of neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Prosencéfalo Basal , Disfunção Cognitiva , Humanos , Neuroimagem/métodos , Disfunção Cognitiva/diagnóstico por imagem , Biomarcadores , Colinérgicos , Imageamento por Ressonância Magnética
3.
Int J Neuropsychopharmacol ; 26(12): 879-889, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37924270

RESUMO

BACKGROUND: The basal nucleus of Meynert (BNM), a primary source of cholinergic projections to the cortex, plays key roles in regulating the sleep-wake cycle and attention. Sleep deficit is associated with impairment in cognitive and emotional functions. However, whether or how cholinergic circuit, sleep, and cognitive/emotional dysfunction are inter-related remains unclear. METHODS: We curated the Human Connectome Project data and explored BNM resting state functional connectivities (rsFC) in relation to sleep deficit, based on the Pittsburgh Sleep Quality Index (PSQI), cognitive performance, and subjective reports of emotional states in 687 young adults (342 women). Imaging data were processed with published routines and evaluated at a corrected threshold. We assessed the correlation between BNM rsFC, PSQI, and clinical measurements with Pearson regressions and their inter-relationships with mediation analyses. RESULTS: In whole-brain regressions with age and alcohol use severity as covariates, men showed lower BNM rsFC with the posterior cingulate cortex (PCC) in correlation with PSQI score. No clusters were identified in women at the same threshold. Both BNM-PCC rsFC and PSQI score were significantly correlated with anxiety, perceived stress, and neuroticism scores in men. Moreover, mediation analyses showed that PSQI score mediated the relationship between BNM-PCC rsFC and these measures of negative emotions bidirectionally in men. CONCLUSIONS: Sleep deficit is associated with negative emotions and lower BNM rsFC with the PCC. Negative emotional states and BNM-PCC rsFC are bidirectionally related through poor sleep quality. These findings are specific to men, suggesting potential sex differences in the neural circuits regulating sleep and emotional states.


Assuntos
Prosencéfalo Basal , Conectoma , Adulto Jovem , Humanos , Masculino , Feminino , Giro do Cíngulo/diagnóstico por imagem , Sono , Ansiedade/diagnóstico por imagem , Colinérgicos , Estresse Psicológico/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos
4.
Front Aging Neurosci ; 14: 868500, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36204547

RESUMO

We examined the construct of mental planning by quantifying digital clock drawing digit placement accuracy in command and copy conditions, and by investigating its underlying neuropsychological correlates and functional connectivity. We hypothesized greater digit misplacement would associate with attention, abstract reasoning, and visuospatial function, as well as functional connectivity from a major source of acetylcholine throughout the brain: the basal nucleus of Meynert (BNM). Participants (n = 201) included non-demented older adults who completed all metrics within 24 h of one another. A participant subset met research criteria for mild cognitive impairment (MCI; n = 28) and was compared to non-MCI participants on digit misplacement accuracy and expected functional connectivity differences. Digit misplacement and a comparison dissociate variable of total completion time were acquired for command and copy conditions. a priori fMRI seeds were the bilateral BNM. Command digit misplacement is negatively associated with semantics, visuospatial, visuoconstructional, and reasoning (p's < 0.01) and negatively associated with connectivity from the BNM to the anterior cingulate cortex (ACC; p = 0.001). Individuals with MCI had more misplacement and less BNM-ACC connectivity (p = 0.007). Total completion time involved posterior and cerebellar associations only. Findings suggest clock drawing digit placement accuracy may be a unique metric of mental planning and provide insight into neurodegenerative disease.

5.
Neuroimage ; 260: 119455, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35809888

RESUMO

Complex cognitive abilities are thought to arise from the ability of the brain to adaptively reconfigure its internal network structure as a function of task demands. Recent work has suggested that this inherent flexibility may in part be conferred by the widespread projections of the ascending arousal systems. While the different components of the ascending arousal system are often studied in isolation, there are anatomical connections between neuromodulatory hubs that we hypothesise are crucial for mediating key features of adaptive network dynamics, such as the balance between integration and segregation. To test this hypothesis, we estimated the strength of structural connectivity between key hubs of the noradrenergic and cholinergic arousal systems (the locus coeruleus [LC] and nucleus basalis of Meynert [nbM], respectively). We then asked whether the strength of structural LC and nbM inter-connectivity was related to individual differences in the emergent, dynamical signatures of functional integration measured from resting state fMRI data, such as network and attractor topography. We observed a significant positive relationship between the strength of white-matter connections between the LC and nbM and the extent of network-level integration following BOLD signal peaks in LC relative to nbM activity. In addition, individuals with denser white-matter streamlines interconnecting neuromodulatory hubs also demonstrated a heightened ability to shift to novel brain states. These results suggest that individuals with stronger structural connectivity between the noradrenergic and cholinergic systems have a greater capacity to mediate the flexible network dynamics required to support complex, adaptive behaviour. Furthermore, our results highlight the underlying static features of the neuromodulatory hubs can impose some constraints on the dynamic features of the brain.


Assuntos
Núcleo Basal de Meynert , Encéfalo , Colinérgicos , Humanos , Locus Cerúleo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos
6.
Front Aging Neurosci ; 13: 671351, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34248603

RESUMO

Background: The spectrum of early Alzheimer's disease (AD) is thought to include subjective cognitive impairment, early mild cognitive impairment (eMCI), and late mild cognitive impairment (lMCI). Choline dysfunction affects the early progression of AD, in which the basal nucleus of Meynert (BNM) is primarily responsible for cortical cholinergic innervation. The aims of this study were to determine the abnormal patterns of BNM-functional connectivity (BNM-FC) in the preclinical AD spectrum (SCD, eMCI, and lMCI) and further explore the relationships between these alterations and neuropsychological measures. Methods: Resting-state functional magnetic resonance imaging (rs-fMRI) was used to investigate FC based on a seed mask (BNM mask) in 28 healthy controls (HC), 30 SCD, 24 eMCI, and 25 lMCI patients. Furthermore, the relationship between altered FC and neurocognitive performance was examined by a correlation analysis. The receiver operating characteristic (ROC) curve of abnormal BNM-FC was used to specifically determine the classification ability to differentiate the early AD disease spectrum relative to HC (SCD and HC, eMCI and HC, lMCI and HC) and pairs of groups in the AD disease spectrum (eMCI and SCD, lMCI and SCD, eMCI and lMCI). Results: Compared with HC, SCD patients showed increased FC in the bilateral SMA and decreased FC in the bilateral cerebellum and middle frontal gyrus (MFG), eMCI patients showed significantly decreased FC in the bilateral precuneus, and lMCI individuals showed decreased FC in the right lingual gyrus. Compared with the SCD group, the eMCI group showed decreased FC in the right superior frontal gyrus (SFG), while the lMCI group showed decreased FC in the left middle temporal gyrus (MTG). Compared with the eMCI group, the lMCI group showed decreased FC in the right hippocampus. Interestingly, abnormal FC was associated with certain cognitive domains and functions including episodic memory, executive function, information processing speed, and visuospatial function in the disease groups. BNM-FC of SFG in distinguishing eMCI from SCD; BNM-FC of MTG in distinguishing lMCI from SCD; BNM-FC of the MTG, hippocampus, and cerebellum in distinguishing SCD from HC; and BNM-FC of the hippocampus and MFG in distinguishing eMCI from lMCI have high sensitivity and specificity. Conclusions: The abnormal BNM-FC patterns can characterize the early disease spectrum of AD (SCD, eMCI, and lMCI) and are closely related to the cognitive domains. These new and reliable findings will provide a new perspective in identifying the early disease spectrum of AD and further strengthen the role of cholinergic theory in AD.

7.
J Alzheimers Dis ; 74(3): 999-1009, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32116256

RESUMO

BACKGROUND: Benzodiazepines and anticholinergic drugs have been implicated in causing cognitive decline and potentially increasing dementia risk. However, evidence for an association with neuropathology is limited. OBJECTIVE: To estimate the correlation between neuropathology at death and prior use of benzodiazepines and anticholinergic drugs. METHODS: We categorized 298 brain donors from the population-based Medical Research Council Cognitive Function and Ageing Study, according to their history of benzodiazepine (including Z-drugs) or anticholinergic medication (drugs scoring 3 on the Anticholinergic Cognitive Burden scale) use. We used logistic regression to compare dichotomized neuropathological features for those with and without history of benzodiazepine and anticholinergic drug use before dementia, adjusted for confounders. RESULTS: Forty-nine (16%) and 51 (17%) participants reported benzodiazepine and anticholinergic drug use. Alzheimer's disease neuropathologic change was similar whether or not exposed to either drug, for example 46% and 57% had intermediate/high levels among those with and without anticholinergic drug use. Although not significant after multiple testing adjustments, we estimated an odds ratio (OR) of 0.40 (95% confidence interval [95% CI] 0.18-0.87) for anticholinergic use and cortical atrophy. For benzodiazepine use, we estimated ORs of 4.63 (1.11-19.24) and 3.30 (1.02-10.68) for neuronal loss in the nucleus basalis and substantial nigra. There was evidence of neuronal loss in the nucleus basalis with anticholinergic drug use, but the association reduced when adjusted for confounders. CONCLUSIONS: We found no evidence that benzodiazepine or anticholinergic drug use is associated with typical pathological features of Alzheimer's disease; however, we cannot rule out effects owing to small numbers.


Assuntos
Benzodiazepinas/efeitos adversos , Antagonistas Colinérgicos/efeitos adversos , Idoso , Idoso de 80 Anos ou mais , Envelhecimento , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/patologia , Atrofia , Núcleo Basal de Meynert/patologia , Córtex Cerebral/patologia , Cognição/efeitos dos fármacos , Efeitos Psicossociais da Doença , Demência/induzido quimicamente , Demência/patologia , Feminino , Humanos , Masculino , Emaranhados Neurofibrilares/patologia , Substância Negra/patologia
8.
Acta Neuropathol Commun ; 7(1): 49, 2019 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-30922392

RESUMO

A previous study reported that a massive cerebral infarct in the territory of the middle cerebral artery (MCA) may be associated with development of neurofibrillary tangles (NFTs) in the ipsilateral basal nucleus of Meynert (BNM). We analyzed 19 cases of an MCA territory infarct and 12 with a putaminal hemorrhage (mean age 82.5 years; female/male ratio 8/23; mean time from stroke onset to autopsy 4182 days). In both groups, 74-100% had a significantly higher rate of phosphorylated tau immunoreactive or Gallyas Braak silver stain-positive neurons on the BNM-affected side than on the BNM-unaffected side. These NFTs were immunoreactive for anti-RD3 and anti-RD4 antibodies, and a triple-band pattern was observed by immunoblot analysis with anti-tau antibody. Most NFTs might be formed within the 5-10 years after stroke onset. There were significantly more TAR DNA-binding protein 43 (TDP43) immunoreactive structures on the BNM-affected side than on the BNM-unaffected side. We showed that many NFTs with TDP43-immunoreactive structures were observed in the ipsilateral BNM associated with a massive cerebral infarct in the MCA territory or a putaminal hemorrhage.


Assuntos
Núcleo Basal de Meynert/metabolismo , Hemorragia Cerebral/metabolismo , Infarto Cerebral/metabolismo , Proteínas de Ligação a DNA/metabolismo , Emaranhados Neurofibrilares/metabolismo , Proteínas tau/metabolismo , Idoso , Idoso de 80 Anos ou mais , Núcleo Basal de Meynert/química , Núcleo Basal de Meynert/patologia , Hemorragia Cerebral/patologia , Infarto Cerebral/patologia , Proteínas de Ligação a DNA/análise , Feminino , Humanos , Masculino , Emaranhados Neurofibrilares/química , Emaranhados Neurofibrilares/patologia , Proteínas tau/análise
9.
Hum Brain Mapp ; 40(2): 566-577, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30251753

RESUMO

Alpha rhythm (8 to 12 Hz) observed in EEG over human posterior cortex is prominent during eyes-closed (EC) resting and attenuates during eyes-open (EO) resting. Research shows that the degree of EC-to-EO alpha blocking or alpha desynchronization, termed alpha reactivity here, is a neural marker of cognitive health. We tested the role of acetylcholine in EC-to-EO alpha reactivity by applying a multimodal neuroimaging approach to a cohort of young adults and a cohort of older adults. In the young cohort, simultaneous EEG-fMRI was recorded from twenty-one young adults during both EO and EC resting. In the older cohort, functional MRI was recorded from forty older adults during EO and EC resting, along with FLAIR and diffusion MRI. For a subset of twenty older adults, EEG was recorded during EO and EC resting in a separate session. In both young and older adults, functional connectivity between the basal nucleus of Meynert (BNM), the major source of cortical acetylcholine, and the visual cortex increased from EC to EO, and this connectivity increase was positively associated with alpha reactivity; namely, the stronger the BNM-visual cortex functional connectivity increase from EC to EO, the larger the EC-to-EO alpha desynchronization. In older adults, lesions of the fiber tracts linking BNM and visual cortex quantified by leukoaraiosis volume, associated with reduced alpha reactivity. These findings support a role of acetylcholine and particularly cholinergic pathways in mediating EC-to-EO alpha reactivity and suggest that impaired alpha reactivity could serve as a marker of the integrity of the cholinergic system.


Assuntos
Acetilcolina/fisiologia , Ritmo alfa/fisiologia , Núcleo Basal de Meynert/fisiologia , Sincronização Cortical/fisiologia , Eletroencefalografia , Neuroimagem Funcional , Leucoaraiose/patologia , Rede Nervosa/fisiologia , Transdução de Sinais/fisiologia , Córtex Visual/fisiologia , Adulto , Núcleo Basal de Meynert/diagnóstico por imagem , Biomarcadores , Movimentos Oculares/fisiologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/diagnóstico por imagem , Córtex Visual/diagnóstico por imagem , Adulto Jovem
10.
Front Neurosci ; 12: 614, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30233297

RESUMO

Deep brain stimulation (DBS) of nucleus basalis of Meynert (NBM) is currently being evaluated as a potential therapy to improve memory and overall cognitive function in dementia. Although, the animal literature has demonstrated robust improvement in cognitive functions, phase 1 trial results in humans have not been as clear-cut. We hypothesize that this may reflect differences in electrode location within the NBM, type and timing of stimulation, and the lack of a biomarker for determining the stimulation's effectiveness in real time. In this article, we propose a methodology to address these issues in an effort to effectively interface with this powerful cognitive nucleus for the treatment of dementia. Specifically, we propose the use of diffusion tensor imaging to identify the nucleus and its tracts, quantitative electroencephalography (QEEG) to identify the physiologic response to stimulation during programming, and investigation of stimulation parameters that incorporate the phase locking and cross frequency coupling of gamma and slower oscillations characteristic of the NBM's innate physiology. We propose that modulating the baseline gamma burst stimulation frequency, specifically with a slower rhythm such as theta or delta will pose more effective coupling between NBM and different cortical regions involved in many learning processes.

11.
Arq. neuropsiquiatr ; 75(7): 477-483, July 2017. graf
Artigo em Inglês | LILACS | ID: biblio-888290

RESUMO

ABSTRACT In this study, we proposed that administration of hippocampal growth hormone in ageing animals with growth hormone deficiency can compensate long-term potentiation and synaptic plasticity in nucleus basalis magnocellularis (NBM)-lesioned rats. Aged male Wistar rats were randomly divided into six groups (seven in each) of sham-operated healthy rats (Cont); NBM-lesioned rats (L); NBM-lesioned rats and intrahippocampal injection of growth hormone vehicle (L + Veh); NBM-lesioned and intrahippocampal injection of growth hormone (10, 20 and 40 µg.2 µl-1) (L + GH). In vivo electrophysiological recording techniques were used to characterize maintenance of long-term potentiation at distinct times (1, 2, 3, 24 and 48 hours) after high-frequency stimulation. The population spike was enhanced significantly for about 48 hours following tetanic stimulation in rats treated with a dose-dependent growth hormone compared to the vehicle group (p < 0.05), possibly through neuronal plasticity and neurogenesis in affected areas.


RESUMO Neste estudo, propusemos que a administração de hormônio hipocampal do crescimento em animais envelhecidos com deficiência de hormônio do crescimento pode compensar a potencialização em longo prazo e a plasticidade sináptica em ratos lesados do núcleo basalis magnocellularis (NBM). Ratos machos Wistar foram divididos aleatoriamente em seis grupos (sete ratos em cada grupo) de ratos falso-operados saudáveis (Cont); ratos lesados do NBM (L); ratos lesados do NBM e injeção intrahipocampal de veículo de hormônio do crescimento (L + Veh); ratos lesados do NBM e injeção de hormônio do crescimento (10, 20 e 40 μg.2 μl-1) (L + GH). Técnicas de registro eletrofisiológico in vivo foram utilizadas para caracterizar a manutenção da potencialização em longo prazo em momentos distintos (1, 2, 3, 24 e 48 horas) após estimulação de alta frequência. O pico populacional aumentou significativamente cerca de 48 horas após a estimulação tetânica em ratos tratados com um hormônio do crescimento dose-dependente, em comparação com o grupo veículo (p <0,05), possivelmente através da plasticidade neuronal e da neogênese nas áreas afetadas.


Assuntos
Animais , Masculino , Hormônio do Crescimento/farmacologia , Núcleo Basal de Meynert/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Fatores de Tempo , Ratos Wistar , Núcleo Basal de Meynert/fisiologia , Modelos Animais , Hipocampo/fisiologia , Plasticidade Neuronal/fisiologia
12.
Front Aging Neurosci ; 9: 127, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28522971

RESUMO

Background: Cholinergic dysfunction plays an important role in mild cognitive impairment (MCI). The basal nucleus of Meynert (BNM) provides the main source of cortical cholinergic innervation. Previous studies have characterized structural changes of the cholinergic basal forebrain in individuals at risk of developing Alzheimer's disease (AD). However, whether and how functional connectivity of the BNM (BNM-FC) is altered in MCI remains unknown. Objective: The aim of this study was to identify alterations in BNM-FC in individuals with MCI as compared to healthy controls (HCs), and to examine the relationship between these alterations with neuropsychological measures in individuals with MCI. Method: One-hundred-and-one MCI patients and 103 HCs underwent resting-state functional magnetic resonance imaging (rs-fMRI). Imaging data were processed with SPM8 and CONN software. BNM-FC was examined via correlation in low frequency fMRI signal fluctuations between the BNM and all other brain voxels. Group differences were examined with a covariance analysis with age, gender, education level, mean framewise displacement (FD) and global correlation (GCOR) as nuisance covariates. Pearson's correlation was conducted to evaluate the relationship between the BNM-FC and clinical assessments. Result: Compared with HCs, individuals with MCI showed significantly decreased BNM-FC in the left insula extending into claustrum (insula/claustrum). Furthermore, greater decrease in BNM-FC with insula/claustrum was associated with more severe impairment in immediate recall during Auditory Verbal Learning Test (AVLT) in MCI patients. Conclusion: MCI is associated with changes in BNM-FC to the insula/claustrum in relation to cognitive impairments. These new findings may advance research of the cholinergic bases of cognitive dysfunction during healthy aging and in individuals at risk of developing AD.

13.
Nucl Med Biol ; 41(1): 90-5, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24267055

RESUMO

INTRODUCTION: Dysfunction of the cholinergic neurotransmitter system is present in Parkinson's disease, Parkinson's disease related dementia and dementia with Lewy bodies, and is thought to contribute to cognitive deficits in these patients. In vivo imaging of the cholinergic system in these diseases may be of value to monitor central cholinergic disturbances and to select cases in which treatment with cholinesterase inhibitors could be beneficial. The muscarinic receptor tracer [(123)I]iododexetimide, predominantly reflecting M1 receptor binding, may be an appropriate tool for imaging of the cholinergic system by means of SPECT. In this study, we used [(123)I]iododexetimide to study the effects of a 6-hydroxydopamine lesion (an animal model of Parkinson's disease) on the muscarinic receptor availability in the rat brain. METHODS: Rats (n=5) were injected in vivo at 10-13 days after a confirmed unilateral 6-hydroxydopamine lesion. Muscarinic receptor availability was measured bilaterally in multiple brain areas on storage phosphor images by region of interest analysis. RESULTS: Autoradiography revealed a consistent and statistically significant lower [(123)I]iododexetimide binding in all examined neocortical areas on the ipsilateral side of the lesion as compared to the contralateral side. In hippocampal and subcortical areas, such asymmetry was not detected. CONCLUSIONS: This study suggests that evaluation of muscarinic receptor availability in dopamine depleted brains using [(123)I]iododexetimide is feasible. We conclude that 6-hydroxydopamine lesions induce a decrease of neocortical muscarinic receptor availability. We hypothesize that this arises from down regulation of muscarinic postsynaptic M1 receptors due to hyperactivation of the cortical cholinergic system in response to dopamine depletion. ADVANCES IN KNOWLEDGE: In rats, dopamine depletion provokes a decrease in neocortical muscarinic receptor availability, which is evaluable by [(123)I]iododexetimide imaging. IMPLICATIONS FOR PATIENT CARE: This study may further underline the role of a dysregulated muscarinic system in patients with Lewy body disorders.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Dexetimida/análogos & derivados , Oxidopamina/toxicidade , Receptores Muscarínicos/metabolismo , Animais , Encéfalo/diagnóstico por imagem , Dexetimida/metabolismo , Masculino , Ligação Proteica/efeitos dos fármacos , Ratos , Ratos Wistar , Tomografia Computadorizada de Emissão de Fóton Único
14.
Arq. bras. oftalmol ; 76(2): 85-89, mar.-abr. 2013. ilus, tab
Artigo em Inglês | LILACS | ID: lil-678172

RESUMO

BACKGROUND: Visual processing deficits have been reported for patients with schizophrenia. Previous studies demonstrated differences in early-stage processing of schizophrenics, although the nature, extent, and localization of the disturbance are unknown. The magnocellular and parvocellular visual pathways are associated with transient and sustained channels, but their respective contributions to schizophrenia-related visual deficits remains controversial. PURPOSE: The aim of this study was to evaluate magnocellular dysfunction in schizophrenia using frequency doubling technology. METHODS: Thirty-one patients with schizophrenia and 34 healthy volunteers were examined. Frequency doubling technology testing was performed in one session, consisting of a 15-minute screening strategy followed by the C-20 program for frequency doubling technology. RESULTS: Schizophrenic patients showed lower global mean sensitivity (30,97 ± 2,25 dB) compared with controls (32,17 ± 3,08 dB), p<0.009. Although there was no difference in the delta sensitivity of hemispheres, there was a difference in sensitivity analysis of the fibers crossing the optic chiasm, with lower mean sensitivity in the patient group (28,80 dB) versus controls (30,66 dB). The difference was higher in fibers that do not cross the optic chiasm, with lower mean sensitivity in patients (27,61 dB) versus controls (30,26 dB), p<0.005. CONCLUSIONS: Our results suggest that there are differences between global sensitivity and fiber sensitivity measured by frequency doubling technology. The different sensitivity of fibers that do not cross the optic chiasm is consistent with most current etiological hypotheses for schizophrenia. The decreased sensitivity responses in the optic radiations may significantly contribute to research assessing early-stage visual processing deficits for patients with schizophrenia.


HISTÓRICO: Déficits de processamento visual foram relatados em pacientes com esquizofrenia. Estudos anteriores demonstraram diferenças no estágio inicial de processamento de esquizofrênicos, embora a natureza, extensão e localização do distúrbio são desconhecidas. As vias magnocelulares e parvocelular visuais são associados com canais transitórios e sustentado, mas suas respectivas contribuições para a esquizofrenia relacionados com déficits visuais permanece controverso. OBJETIVO: Avaliar a disfunção magnocelular na esquizofrenia usando a tecnologia de frequência dupla. MÉTODOS: Trinta e um pacientes com esquizofrenia e 34 voluntários saudáveis ​​foram examinados. Tecnologia de frequência dupla foi realizada em uma sessão, consistindo de uma estratégia de rastreio de 15 minutos, seguido do programa de C-20 para tecnologia de frequência dupla. RESULTADOS: Os pacientes esquizofrênicos apresentaram sensibilidade média inferior global (30,97 ± 2,25 dB), em comparação com os controles (32,17 ± 3,08 dB), p<0,009. Embora não tenha ocorrido diferença na sensibilidade do delta de hemisférios, houve uma diferença na análise de sensibilidade das fibras que atravessam a quiasma, com menor sensibilidade média no grupo de pacientes (28,80 dB) versus controlos (30,66 dB). A diferença foi maior em fibras que não cruzam o quiasma óptico, com menor sensibilidade média em pacientes (27,61 dB) versus controles (30,26 dB), p<0,005. CONCLUSÕES: Nossos resultados sugerem que há diferenças entre a sensibilidade global e sensibilidade da fibra medida pela tecnologia de frequência dupla. A sensibilidade diferente de fibras que não cruzam o quiasma óptico é compatível com a maioria das atuais hipóteses etiológicas para a esquizofrenia. As respostas diminuição da sensibilidade nas radiações ópticas podem contribuir significativamente para pesquisar a avaliação em estágio inicial déficits de processamento visual em pacientes com esquizofrenia.


Assuntos
Adulto , Feminino , Humanos , Masculino , Corpos Geniculados/fisiopatologia , Esquizofrenia/fisiopatologia , Testes de Campo Visual/métodos , Vias Visuais/fisiopatologia , Percepção Visual/fisiologia , Estudos de Casos e Controles , Sensibilidades de Contraste/fisiologia , Esquizofrenia/complicações
15.
Chinese Journal of Neuroanatomy ; (6): 234-238, 2000.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-412372

RESUMO

The distribution of TrkA and the postnatal development(PD) of TrkA and ChAT-immunoreactive(-IR) neurons andthe relation between them in the basal nucleus of Meynert of rats were studied with immunohistochemical method. The number,mean profile areas and grey degree of TrkA-IR and ChAT-IR neurons were examined with image analyser. The data revealed thatTrkA-IR neurons were localized in the basal forebrain of rats. TrkA immunostaining was present at PDI, but ChAT was not.ChAT immunostaining was present at PD5. Most densely stained TrkA and ChAT neuronal bodies and fibers were present atPD20, the mean grey degrees of TrkA-IR and ChAT-IR neuronal profiles reached its peak. Both TrkA and ChAT neurons beganto cline at PD30 and maintained a relatively higher level in the adult. However, during aging both TrkA and ChAT-IR neuronsatrophy and became smaller than that in the adult. The number of TrkA-IR and ChAT-IR neurons were decreased by 41.38% and 51.61%; the mean profile areas decreased by 15.7% and 12.8%; and the mean grey degrees by 29.9% and 9.9%, respec-tively. The mean profile areas of TrkA-IR and ChAT-IR neurons from PD5 to aged rats were positively correlated. The resultsindicated that the expression of TrkA was earlier than ChAT. The expression of TrkA and ChAT followed a very similar tempo-ral pattern in the basal nucleus of Meynert from PD5 to aged rats, suggesting that TrkA might participate the regulation ofChAT-IR neuronal development, differentiation, maturation, and ageing. The down-regulation of TrkA and ChAT of aged ratsis associated with neuronal atrophy and loss and may contribute to the pronounced vulnerability of these neurons to degenerationin aging animals and Alzheimer's disease.

16.
Artigo em Coreano | WPRIM (Pacífico Ocidental) | ID: wpr-113584

RESUMO

Thiamine deficiency is generally accepted as the primary etiologic factor for the Wernicke encephalopathy in human and for the similar neurologic symptoms in thiamine depleted experimental animals. Although pyrithiariiineinduced thiamine deficiency has been known to produce histopathologic lesions within many nuclei of the rat brain, the pathogenic mechanisms involved have not been clarified. Furthermore, the effect of thiamine deprivation on the nature and anatomic distribution of neurotransmitter changes has not been fully explored. The present studies were undertaken to investigate - morphological changes of the basal nucleus of Meynert and vestibular nucleus in thiamine deficient rats induced by pyrithiamine and thiamine deficient diet. For this purpose immunohistochemical stain for choline acetyltransferase was performed. Fifty healthy Sprague-Dawley strain rats weighing about 150 gm, were divided into 10 control group and 40 thiamine deficient group. Animals in thiamine deficient group were treated with daily intraperitoneal injection of pyrithiamine( 50 ug/lOOgm of BW/dbLy, Sigma Co.) for 9 days and were continuously given thiamine deficient diet until to be sacrificed. Thiamine deficient rats were subdivided into 3 groups according to different stages of neurologic manifestations ; the early group, the beginning stage of anorexia, hypothermia and weight loss without neurologic manifestations(sacrificed day ; 9th-13th day) the intermediate group, the developing stage of gait ataxia and hypotonia(sacrificed day ; 17th-19th day) the late group, the established stage of tremor, convulsion and back arching(sacrificed day ; 23th-26th day). All animals were anesthetized with sodium pentobarbital(40mg/kg, I.p.) and perfused in vivo through the ascending aorta with 10% neutral buffered formalin or 4% paraformaldehyde-0. 1% glutaraldehyde in PBS, and then brains were removed. Luxol-fast blue and cresyl violet stain was performed according to routine paraffin method for observing morphologic changes in basal nucleus of Meynert and vestibular nucleus. In addition immunohistochemical stains in the same regions were performed by free floating method in cell culture plate. All preparations were observed with a light microscope. The results obtained were as follows ; 1. Sequential changes of the neurologic manifestations in thiamine deficient rats were weight loss, hypothermia and ariorexia on the 9th-10th day, followed by gait ataxia and hypotonia on the 13th-15th day, and then tremor, convulsion and back arching on the 22th-26th day. 2. Glial proliferation was noted in the basal nucleus of the early group but not in the vestibular nucleus. Atrophy and pyknosis of neurons in basal nucleus and vestibular nucleus were shown in the intermediate group and marke neuronal loss and edematous tissue necrosis were noted in the late group. 3. Choline acetyltransferase immurforeactivity in the basal nucleus and vestibular nucleus was markedly positive in the early group as well as control group, moderately positive in the intermediate groupand minimally positive in the late group. It is suggested that the extent of neuronal damage in thiamine deficient rats is proportional to the duration of thiamine depletion. And the data presented here may account for: the regional susceptability and reversibility of certain symptoms in thiamine deficient rats.


Assuntos
Animais , Humanos , Ratos , Anorexia , Aorta , Atrofia , Núcleo Basal de Meynert , Encéfalo , Técnicas de Cultura de Células , Colina O-Acetiltransferase , Colina , Corantes , Dieta , Formaldeído , Marcha Atáxica , Glutaral , Hipotermia , Injeções Intraperitoneais , Hipotonia Muscular , Necrose , Manifestações Neurológicas , Neurônios , Neurotransmissores , Parafina , Piritiamina , Ratos Sprague-Dawley , Convulsões , Sódio , Deficiência de Tiamina , Tiamina , Tremor , Viola , Redução de Peso , Encefalopatia de Wernicke
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...