Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Neurochem Int ; 158: 105378, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35753511

RESUMO

Temporal lobe epilepsy (TLE) is the most common form of focal epilepsies. Pharmacological treatment with anti-seizure drugs (ASDs) remains the mainstay in epilepsy management. Levetiracetam (LEV) is a second-generation ASD with a novel SV2A protein target and is indicated for treating focal epilepsies. While there is considerable literature in acute models, its effect in chronic epilepsy is less clear. Particularly, its effects on neuronal excitability, synaptic plasticity, adult hippocampal neurogenesis, and histological changes in chronic epilepsy have not been evaluated thus far, which formed the basis of the present study. Six weeks post-lithium-pilocarpine-induced status epilepticus (SE), epileptic rats were injected with levetiracetam (54 mg/kg b.w. i.p.) once daily for two weeks. Following LEV treatment, Schaffer collateral - CA1 (CA3-CA1) synaptic plasticity and structural changes in hippocampal subregions CA3 and CA1 were evaluated. The number of doublecortin (DCX+) and reelin (RLN+) positive neurons was estimated. Further, mossy fiber sprouting was evaluated in DG by Timm staining, and splash test was performed to assess the anxiety-like behavior. Chronic epilepsy resulted in decreased basal synaptic transmission and increased paired-pulse facilitation without affecting post-tetanic potentiation and long-term potentiation. Moreover, chronic epilepsy decreased hippocampal subfields volume, adult hippocampal neurogenesis, and increased reelin expression and mossy fiber sprouting with increased anxiety-like behavior. LEV treatment restored basal synaptic transmission and paired-pulse facilitation ratio in CA3-CA1 synapses. LEV also restored the CA1 subfield volume in chronic epilepsy. LEV did not affect epilepsy-induced abnormal adult hippocampal neurogenesis, ectopic migration of newborn granule cells, mossy fiber sprouting in DG, and anxiety-like behavior. Our results indicate that in addition to reducing seizures, LEV has favorable effects on synaptic transmission and structural plasticity in chronic epilepsy. These findings add new dimensions to the use of LEV in chronic epilepsy and paves way for further research into its effects on cognition and affective behavior.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Animais , Giro Denteado/patologia , Epilepsia/induzido quimicamente , Epilepsia/tratamento farmacológico , Hipocampo/patologia , Levetiracetam/farmacologia , Fibras Musgosas Hipocampais/patologia , Fibras Musgosas Hipocampais/fisiologia , Plasticidade Neuronal/fisiologia , Ratos
2.
Front Integr Neurosci ; 16: 799147, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35295186

RESUMO

Octodon degus are a diurnal long-lived social animal widely used to perform longitudinal studies and complex cognitive tasks to test for physiological conditions with similitude in human behavior. They show a complex social organization feasible to be studied under different conditions and ages. Several aspects in degus physiology demonstrated that these animals are susceptible to environmental conditions, such as stress, fear, feeding quality, and isolation. However, the relevance of these factors in life of this animal depends on sex and age. Despite its significance, there are few studies with the intent to characterize neurological parameters that include these two parameters. To determine the basal neurophysiological status, we analyzed basic electrophysiological parameters generated during basal activity or synaptic plasticity in the brain slices of young and aged female and male degus. We studied the hippocampal circuit of animals kept in social ambient in captivity under controlled conditions. The study of basal synaptic activity in young animals (12-24 months old) was similar between sexes, but female degus showed more efficient synaptic transmission than male degus. We found the opposite in aged animals (60-84 months old), where male degus had a more efficient basal transmission and facilitation index than female degus. Furthermore, female and male degus develop significant but not different long-term synaptic plasticity (LTP). However, aged female degus need to recruit twice as many axons to evoke the same postsynaptic activity as male degus and four times more when compared to young female degus. These data suggest that, unlike male degus, the neural status of aged female degus change, showing less number or functional axons available at advanced ages. Our data represent the first approach to incorporate the effect of sex along with age progression in basal neural status.

3.
Front Neurosci ; 15: 655901, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34483814

RESUMO

Loss of function mutations in PARK6, the gene that encodes the protein PTEN-induced kinase 1 (PINK1), cause autosomal recessive familial Parkinson's disease (PD). While PD is clinically diagnosed by its motor symptoms, recent studies point to the impact of non-motor symptoms, including cognitive dysfunction in the early pre-motor stages of the disease (Aarsland et al., 2004; Chaudhuri and Schapira, 2009). As the hippocampus is a key structure for learning and memory, this study aimed to determine whether synaptic transmission is affected at CA3-CA1 excitatory synapses in PINK1 knockout rats at an age when we recently reported a gain of function at excitatory synapses onto spiny projection neurons in the dorsal striatum (Creed et al., 2020) and when motor symptoms are beginning to appear (Dave et al., 2014). Using extracellular dendritic field excitatory postsynaptic potential recordings at CA3-CA1 synapses in dorsal hippocampus 4-to 5- month old PINK1 KO rats and wild-type littermate controls, we observed no detectable differences in the strength of basal synaptic transmission, paired-pulse facilitation, or long-term potentiation. Our results suggest that loss of PINK1 protein does not cause a general dysfunction of excitatory transmission throughout the brain at this young adult age when excitatory transmission is abnormal in the striatum.

4.
J Neurosci Res ; 99(6): 1646-1665, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33713475

RESUMO

Temporal lobe epilepsy (TLE) is the most common form of focal epilepsies. Pharmacoresistance and comorbidities pose significant challenges to its treatment necessitating the development of non-pharmacological approaches. In an earlier study, exposure to enriched environment (EE) reduced seizure frequency and duration and ameliorated chronic epilepsy-induced depression in rats. However, the cellular basis of beneficial effects of EE remains unknown. Accordingly, in the current study, we evaluated the effects of EE in chronic epilepsy-induced changes in behavioral hyperexcitability, synaptic transmission, synaptophysin (SYN), and calbindin (CB) expression, hippocampal subfield volumes and cell density in male Wistar rats. Epilepsy was induced by lithium-pilocarpine-induced status epilepticus. Chronic epilepsy resulted in behavioral hyperexcitability, decreased basal synaptic transmission, increased paired-pulse facilitation ratio, decreased hippocampal subfields volumes. Moreover, epileptic rats showed decreased synaptophysin and CB expression in the hippocampus. Six weeks post-SE, epileptic rats were exposed to EE for 2 weeks, 6 hr/day. EE significantly reduced the behavioral hyperexcitability and restored basal synaptic transmission correlating with increased expression of SYN and CB. Our results reaffirm the beneficial effects of EE on behavior in chronic epilepsy and establishes some of the putative cellular mechanisms. Since drug resistance and comorbidities are a major concern in TLE, we propose EE as a potent non-pharmacological treatment modality to mitigate these changes in chronic epilepsy.


Assuntos
Região CA1 Hipocampal/fisiopatologia , Região CA3 Hipocampal/fisiopatologia , Meio Ambiente , Epilepsia do Lobo Temporal/psicologia , Epilepsia do Lobo Temporal/terapia , Hipercinese/terapia , Plasticidade Neuronal , Sinapses , Animais , Calbindinas/metabolismo , Epilepsia do Lobo Temporal/complicações , Hipercinese/etiologia , Lítio , Masculino , Pilocarpina , Ratos , Ratos Wistar , Estado Epiléptico/fisiopatologia , Estado Epiléptico/prevenção & controle , Transmissão Sináptica , Sinaptofisina/metabolismo
5.
Neurobiol Stress ; 14: 100286, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33392367

RESUMO

Translational animal models for studying post-traumatic stress disorder (PTSD) are valuable for elucidating the poorly understood neurobiology of this neuropsychiatric disorder. These models should encompass crucial features, including persistence of PTSD-like phenotypes triggered after exposure to a single traumatic event, trauma susceptibility/resilience and predictive validity. Here we propose a novel arousal-based individual screening (AIS) model that recapitulates all these features. The AIS model was designed by coupling the traumatization (24 h restraint) of C57BL/6 J mice with a novel individual screening. This screening consists of z-normalization of post-trauma changes in startle reactivity, which is a measure of arousal depending on neural circuits conserved across mammals. Through the AIS model, we identified susceptible mice showing long-lasting hyperarousal (up to 56 days post-trauma), and resilient mice showing normal arousal. Susceptible mice further showed persistent PTSD-like phenotypes including exaggerated fear reactivity and avoidance of trauma-related cue (up to 75 days post-trauma), increased avoidance-like behavior and social/cognitive impairment. Conversely, resilient mice adopted active coping strategies, behaving like control mice. We further uncovered novel transcriptional signatures driven by PTSD-related genes as well as dysfunction of hypothalamic-pituitary-adrenal axis, which corroborated the segregation in susceptible/resilient subpopulations obtained through the AIS model and correlated with trauma susceptibility/resilience. Impaired hippocampal synaptic plasticity was also observed in susceptible mice. Finally, chronic treatment with paroxetine ameliorated the PTSD-like phenotypes of susceptible mice. These findings indicate that the AIS model might be a new translational animal model for the study of crucial features of PTSD. It might shed light on the unclear PTSD neurobiology and identify new pharmacological targets for this difficult-to-treat disorder.

6.
Iran J Pharm Res ; 20(4): 435-449, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35194458

RESUMO

Chronic cerebral hypoperfusion (CCH) leads to vascular dementia with progressive hippocampal damage and cognitive impairments. In the present study, we compared early and late Minocycline (MINO) treatment on cognitive function, long and short-term synaptic-plasticity following CCH. We used bilateral common carotid arteries occlusion model (2VO) for induction of hypoperfusion. Male Sprague-Dawley rats were divided into 5 following groups (each having 2 subgroups): 2VO + V (vehicle), 2VO+MINO-E (early treatment of MINO on days 0 to 3 after 2VO), 2VO+MINO-L (late-treatment on days 21 to 32 after 2VO), control, and sham. Passive-avoidance (PA) and radial arm maze (RAM) tests were used to investigate learning and memory. Long term and short term synaptic plasticity were assessed by field potential recording, the brains were removed after recording and preserved for histological study to count pyramidal cells in CA1 region.Cerebral hypoperfusion could impair memory performance, synaptic plasticity, and basal synaptic transmission (BST) along with hippocampal cell loss. Thus, we found a significant reduction in step-through latency (STL) of PA test with a higher number of working and reference errors in RAM in CCH rats. However, only late treatment with MINO improved memory performance, synaptic plasticity, hippocampal cell loss, and increased neurotransmitter pool (NP) in CCH rats, but early treatment could not produce long-lasting beneficial effects 32 days after 2VO. MINO may improve synaptic plasticity and memory performance in hypo-perfused rats directly and indirectly by increasing NP and/or suppressing inflammatory factors, respectively.

7.
Neuroscience ; 420: 22-31, 2019 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-30481567

RESUMO

Trafficking or delivery of neurotransmitter receptors on postsynaptic membranes is critical for basal neurotransmission and synaptic plasticity. Importantly, dysfunction of such postsynaptic receptor trafficking can lead to severe brain diseases such as Alzheimer's Disease, autism spectrum disorder, and intellectual disability, yet underlying mechanisms remain elusive. One attractive hypothesis is that postsynaptic SNARE proteins play key roles in the delivery of receptors by mediating membrane fusion at postsynaptic neurons. However, the identities of the critical SNARE proteins mediating the delivery remain controversial. The lack of consensus in previous studies is partly due to differences in preparations and methodologies. In this review, we propose to employ a pyramidal-neuron specific conditional knockout (cKO) model to study the roles of candidate SNARE proteins in postsynaptic receptor trafficking. We highlight our recent results which we obtained from such approaches to syntaxin-4 protein. These results provide clear evidence on the critical role of syntaxin-4 in trafficking of ionotropic glutamate receptors which are essential for basal neurotransmission, synaptic plasticity and spatial memory.


Assuntos
Plasticidade Neuronal/fisiologia , Transporte Proteico/fisiologia , Células Piramidais/metabolismo , Receptores de Glutamato/metabolismo , Proteínas SNARE/metabolismo , Animais , Camundongos , Camundongos Knockout , Modelos Animais
8.
Front Cell Neurosci ; 12: 403, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30459562

RESUMO

The induction of both long-term potentiation (LTP) and long-term depression (LTD) of synaptic transmission entails pre- and postsynaptic Ca2+ signals, which represent transient increments in cytoplasmic free Ca2+ concentration. In diverse synapse types, Ca2+ release from intracellular stores contributes to amplify the Ca2+ signals initially generated by activation of neuronal Ca2+ entry pathways. Here, we used hippocampal slices from young male rats to evaluate whether pharmacological activation or inhibition of Ca2+ release from the endoplasmic reticulum (ER) mediated by ryanodine receptor (RyR) channels modifies LTD induction at Schaffer collateral-CA1 synapses. Pre-incubation of slices with ryanodine (1 µM, 1 h) or caffeine (1 mM, 30 min) to promote RyR-mediated Ca2+ release facilitated LTD induction by low frequency stimulation (LFS), but did not affect the amplitude of synaptic transmission, the profiles of field excitatory postsynaptic potentials (fEPSP) or the paired-pulse (PP) responses. Conversely, treatment with inhibitory ryanodine (20 µM, 1 h) to suppress RyR-mediated Ca2+ release prevented LTD induction, but did not affect baseline synaptic transmission or PP responses. Previous literature reports indicate that LTD induction requires presynaptic CaMKII activity. We found that 1 h after applying the LTD induction protocol, slices displayed a significant increase in CaMKII phosphorylation relative to the levels exhibited by un-stimulated (naïve) slices. In addition, LTD induction (1 h) enhanced the phosphorylation of the presynaptic protein Synapsin I at a CaMKII-dependent phosphorylation site, indicating that LTD induction stimulates presynaptic CaMKII activity. Pre-incubation of slices with 20 µM ryanodine abolished the increased CaMKII and Synapsin I phosphorylation induced by LTD, whereas naïve slices pre-incubated with inhibitory ryanodine displayed similar CaMKII and Synapsin I phosphorylation levels as naïve control slices. We posit that inhibitory ryanodine suppressed LTD-induced presynaptic CaMKII activity, as evidenced by the suppression of Synapsin I phosphorylation induced by LTD. Accordingly, we propose that presynaptic RyR-mediated Ca2+ signals contribute to LTD induction at Schaffer collateral-CA1 synapses.

9.
Exp Neurol ; 287(Pt 1): 65-74, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27527984

RESUMO

Selective apoptosis of granule cells in the hippocampal dentate gyrus (DG) of rats with bilateral adrenalectomy (ADX) and in patients who died of adrenal insufficiency has been reported. Although adrenal insufficiency is a common disease and is usually associated with hyponatremia, its effect on the central nervous system and in apoptosis in the hippocampus remain to be elucidated. Using rat models to represent clinical hyponatremia accompanying adrenal insufficiency, we show that reduced serum [Na+] was associated with selective apoptosis in the DG. Nine days after ADX, apoptotic cells were observed in the DG of rats whose serum [Na+] was <125mEq/L (moderate hyponatremia), but rarely in those whose serum [Na+] was ≥125mEq/L or in normonatremic rats. Although all hyponatremic ADX rats survived following treatment with corticosterone and saline started 7days after ADX when apoptosis had not yet occurred, selective apoptosis on day 9 was not prevented in moderately hyponatremic rats. Interestingly, treatment with memantine, a noncompetitive NMDAR antagonist, prevented the selective apoptosis in the DG in moderately hyponatremic, ADX rats, and improved electrophysiological dysfunction, including impaired basal synaptic transmission and long-term potentiation at the entorhinal cortex-DG synapses. These results demonstrated that in adrenal insufficient rats, hyponatremia was associated with apoptosis in the DG, and that memantine prevented the apoptosis and improved cell function. Our data imply the importance of assessing the possibility of neurological impairments after treatment with CORT in patients with moderate or severe hyponatremia accompanying adrenal insufficiency and that memantine may represent a beneficial therapeutic strategy to prevent neurological impairments in such patients.


Assuntos
Insuficiência Adrenal/patologia , Apoptose/efeitos dos fármacos , Giro Denteado/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Hiponatremia/patologia , Memantina/farmacologia , Insuficiência Adrenal/complicações , Adrenalectomia/efeitos adversos , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Corticosterona/administração & dosagem , Giro Denteado/patologia , Modelos Animais de Doenças , Proteínas do Domínio Duplacortina , Esquema de Medicação , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/metabolismo , Hiponatremia/complicações , Masculino , Memantina/uso terapêutico , Proteínas dos Microfilamentos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Neurogênese/efeitos dos fármacos , Neuropeptídeos/metabolismo , Ratos , Ratos Sprague-Dawley , Cloreto de Sódio/efeitos adversos , Fatores de Tempo
10.
Mol Neurobiol ; 52(3): 1067-1076, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25288155

RESUMO

The dentate gyrus (DG) of the hippocampus is known to be more resistant to the effects of various external factors than other hippocampal areas. This study investigated the neuroprotective effects of moderate treadmill exercise on early-phase long-term potentiation (E-LTP) and its molecular signaling pathways in the DG of amyloid ß rat model of sporadic Alzheimer's disease (AD). Animals were preconditioned to run on treadmill for 4 weeks and concurrently received ICV infusion of Aß1₋42 peptides (250 pmol/day) during the third and fourth weeks of exercise training. We utilized in vivo electrophysiological recordings to assess the effect of exercise and/or AD pathology on basal synaptic transmission and E-LTP magnitude of the perforant pathway synapses in urethane-anesthetized rats. Immunoblotting analysis was used to quantify changes in the levels of learning and memory-related key signaling molecules. The AD-impaired basal synaptic transmission and suppression of E-LTP in the DG were prevented by prior moderate treadmill exercise. In addition, exercise normalized the basal levels of memory and E-LTP-related signaling molecules including Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), calcineurin (PP2B), and brain-derived neurotrophic factor (BDNF). Exercise also prevented the reduction of phosphorylated CaMKII and aberrant increase of PP2B seen after E-LTP induction in amyloid-infused rats. Our data suggests that by restoring the balance of kinase-phosphatase, 4 weeks of moderate treadmill exercise prevents DG synaptic deficits and deleterious alterations in signaling pathways associated with AD.


Assuntos
Doença de Alzheimer/terapia , Giro Denteado/fisiopatologia , Terapia por Exercício , Plasticidade Neuronal , Condicionamento Físico Animal/fisiologia , Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/toxicidade , Animais , Fator Neurotrófico Derivado do Encéfalo/biossíntese , Calcineurina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Potenciais Pós-Sinápticos Excitadores/fisiologia , Humanos , Potenciação de Longa Duração , Masculino , Proteínas do Tecido Nervoso/metabolismo , Fragmentos de Peptídeos/toxicidade , Via Perfurante/fisiologia , Fosforilação , Processamento de Proteína Pós-Traducional , Ratos , Ratos Wistar , Corrida/fisiologia , Transdução de Sinais/fisiologia
11.
Cereb Cortex ; 25(4): 859-68, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24108805

RESUMO

Electrophysiological studies have shown the enhanced response of anterior cingulate cortex (ACC) to colorectal distension in viscerally hypersensitive (VH) rats, which can be observed up to 7 weeks following colonic anaphylaxis, independent of colon inflammation, suggesting a mechanism for learning and triggering of pain memories in the ACC neuronal circuitry. Activity-dependent plasticity in synaptic strength may serve as a key mechanism that reflects cortical plasticity. However, only a few reports have indicated the synaptic plasticity of ACC in vivo. In the present study, electrophysiological recording showed long-lasting potentiation of local field potential in the medial thalamus (MT)-ACC synapses in VH rats. Theta burst stimulation in the MT reliably induced long-term potentiation in the MT-ACC pathway in normal rats, but was occluded in the VH state. Further, repeated tetanization of MT increased ACC neuronal activity and visceral pain responses of normal rats, mimicking VH rats. In conclusion, we demonstrated for the first time that visceral hypersensitivity is associated with alterations of synaptic plasticity in the ACC. The ACC synaptic strengthening in chronic visceral pain may engage signal transduction pathways that are in common with those activated by electrical stimulation, and serves as an attractive cellular model of functional visceral pain.


Assuntos
Anafilaxia/fisiopatologia , Giro do Cíngulo/fisiopatologia , Plasticidade Neuronal/fisiologia , Transmissão Sináptica/fisiologia , Dor Visceral/fisiopatologia , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Modelos Animais de Doenças , Estimulação Elétrica , Eletrodos Implantados , Antagonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Receptores de GABA-A/farmacologia , Giro do Cíngulo/efeitos dos fármacos , Masculino , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiopatologia , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiologia , Plasticidade Neuronal/efeitos dos fármacos , Ratos Sprague-Dawley , Receptores de GABA-A/metabolismo , Receptores de Glutamato/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Tálamo/efeitos dos fármacos , Tálamo/fisiologia
12.
J Neurosci ; 34(34): 11228-32, 2014 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-25143604

RESUMO

Fast exchange of extracellular signals between neurons and astrocytes is crucial for synaptic function. Over the last few decades, different pathways of astroglial release of neuroactive substances have been proposed to modulate neurotransmission. However, their involvement in physiological conditions is highly debated. Connexins, the gap junction forming proteins, are highly expressed in astrocytes and have recently been shown to scale synaptic transmission and plasticity. Interestingly, in addition to gap junction channels, the most abundant connexin (Cx) in astrocytes, Cx43, also forms hemichannels. While such channels are mostly active in pathological conditions, they have recently been shown to regulate cognitive function. However, whether astroglial Cx43 hemichannels are active in resting conditions and regulate basal synaptic transmission is unknown. Here we show that in basal conditions Cx43 forms functional hemichannels in astrocytes from mouse hippocampal slices. We furthermore demonstrate that the activity of astroglial Cx43 hemichannels in resting states regulates basal excitatory synaptic transmission of hippocampal CA1 pyramidal cells through ATP signaling. These data reveal Cx43 hemichannels as a novel astroglial release pathway at play in basal conditions, which tunes the moment-to-moment glutamatergic synaptic transmission.


Assuntos
Astrócitos/metabolismo , Conexina 43/metabolismo , Potenciais Pós-Sinápticos Excitadores/fisiologia , Hipocampo/citologia , Transmissão Sináptica/fisiologia , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Animais Recém-Nascidos , Astrócitos/efeitos dos fármacos , Carbenoxolona/farmacologia , Conexina 43/genética , Estimulação Elétrica , Etídio/metabolismo , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Técnicas In Vitro , Camundongos , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Técnicas de Patch-Clamp , Peptídeos/farmacologia , Antagonistas do Receptor Purinérgico P2/farmacologia , Fosfato de Piridoxal/análogos & derivados , Fosfato de Piridoxal/farmacologia , Transmissão Sináptica/efeitos dos fármacos
13.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-565646

RESUMO

Aim To study the effect of synapsinⅠon synaptic transmission in rat dentate gyrus induced by(-) clausenamide.Methods The basal synaptic transmission experiment was conducted through electrophysiological recordings.The effect of(-) clausenamide on synapsinⅠ phosphorylation was measured by western blot and confocal microscopy.Results(-)Clausenamide increased the population spike(PS) of hippocampal dentate gyrus.The phosphorylation of synapsinⅠ was increased both in cortex and hippocampus,the maximum effect was observed at 5 min in hippocampus and at 15 min in cortex.Furthermore,(-)clausenamide promoted the phosphorylation of synapsinⅠat a dose-denpendent manner in PC12 cells.The phosphorylation of synapsinⅠ in PC12 cells and synaptosomes incubated with(-)clausenamide was increased and reached maximum at 1~2 min.However,H89,PKA inhibitor,blocked the effect of(-)clausenamide on synapsinⅠ phosphorylation.Conclusion(-)Clausenamide activated synapsinⅠ via PKA signal pathway,which may contribute to the effect of(-)clausenamide on potentiating basal synaptic transmission.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...