Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.071
Filtrar
1.
Br J Pharmacol ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961632

RESUMO

BACKGROUND AND PURPOSE: Doxorubicin is widely used in the treatment of malignant tumours, but doxorubicin-induced cardiotoxicity severely limits its clinical application. Spexin is a neuropeptide that acts as a novel biomarker in cardiovascular disease. However, the effects of spexin on doxorubicin-induced cardiotoxicity is unclear. EXPERIMENTAL APPROACH: We established a model of doxorubicin-induced cardiotoxicity both in vivo and in vitro. Levels of cardiac damage in mice was assessed through cardiac function assessment, determination of serum cardiac troponin T and CKMB levels and histological examination. CCK8 and PI staining were used to assess the doxorubicin-induced toxicity in cultures of cardiomyocytes in vitro. Ferroptosis was assessed using FerroOrange staining, determination of MDA and 4-HNE content and ferroptosis-associated proteins SLC7A11 and GPX4. Mitochondrial membrane potential and lipid peroxidation levels were measured using TMRE and C11-BODIPY 581/591 probes, respectively. Myocardial autophagy was assessed by expression of P62 and Beclin1. KEY RESULTS: Spexin treatment improved heart function of mice with doxorubicin-induced cardiotoxicity, and attenuated doxorubicin-induced cardiotoxicity by decreasing iron accumulation, abnormal lipid metabolism and inhibiting ferroptosis. Interestingly, doxorubicin caused excessive autophagy in cardiomyocyte in culture, which could be alleviated by treatment with spexin. Knockdown of Beclin 1 eliminated the protective effects of spexin in mice with DIC. CONCLUSION AND IMPLICATIONS: Spexin ameliorated doxorubicin-induced cardiotoxicity by inhibiting excessive autophagy-induced ferroptosis, suggesting that spexin could be a drug candidate against doxorubicin-induced cardiotoxicity. Beclin 1 might be critical in mediating the protective effect of spexin against doxorubicin-induced cardiotoxicity.

2.
Microbes Infect ; : 105385, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38950642

RESUMO

Trypanosoma cruzi, the etiological agent of Chagas' disease, can infect both phagocytic and non-phagocytic cells. T. cruzi gp82 and gp90 are cell surface proteins belonging to Group II trans-sialidases known to be involved in host cell binding and invasion. Phosphatidylinositol kinases (PIK) are lipid kinases that phosphorylate phospholipids in their substrates or in themselves, regulating important cellular functions such as metabolism, cell cycle and survival. Vps34, a class III PIK, regulates autophagy, trimeric G-protein signaling, and the mTOR (mammalian Target of Rapamycin) nutrient-sensing pathway. The mammalian autophagy gene Beclin1 interacts to Vps34 forming Beclin 1-Vps34 complexes involved in autophagy and protein sorting. In T. cruzi epimastigotes, (a non-infective replicative form), TcVps34 has been related to morphological and functional changes associated to vesicular trafficking, osmoregulation and receptor-mediated endocytosis. We aimed to characterize the role of TcVps34 during invasion of HeLa cells by metacyclic (MT) forms. MTs overexpressing TcVps34 showed lower invasion rates compared to controls, whilst exhibiting a significant decrease in gp82 expression in the parasite surface. In addition, we showed that T. cruzi Beclin (TcBeclin1) colocalizes with TcVps34 in epimastigotes, thus suggesting the formation of complexes that may play conserved cellular roles already described for other eukaryotes.

3.
J Inflamm (Lond) ; 21(1): 22, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877444

RESUMO

BACKGROUND: YTHDC1, a key m(6)A nuclear reader, plays a crucial role in regulating mRNA splicing, export, and stability. However, the functional significance and regulatory mechanisms of YTHDC1 in inflammatory bowel disease (IBD) remain to be explored. METHODS: We established a dextran sulfate sodium (DSS)-induced murine colitis model in vivo and LPS/IFN-γ-stimulated macrophage inflammation in vitro. The expression of YTHDC1 was determined. Colocalization of YTHDC1 and macrophages was assayed by immunofluorescence staining. LV-YTHDC1 or shYTHDC1 lentiviruses were applied for YTHDC1 overexpression or inhibition. For NF-κB inhibition, JSH-23 was utilized. The interaction of YTHDC1 and Beclin1 mRNA was determined by RIP, and the m6A modification of Beclin1 was confirmed by MeRIP. RESULTS: In DSS-induced colitis and LPS/IFN-γ-treated RAW264.7 macrophages, we observed a significant downregulation of YTHDC1. Overexpression of YTHDC1 resulted in decreased levels of iNOS, CD86, and IL-6 mRNA, along with inhibited NF-κB activation in LPS/IFN-γ-treated RAW264.7 cells. Conversely, downregulation of YTHDC1 promoted iNOS expression and inhibited autophagy. Additionally, the effect of YTHDC1 knockdown on CD86 and IL-6 mRNA induced by LPS/IFN-γ was abolished by the NF-κB inhibitor JSH-23. Mechanistically, YTHDC1 interacted with Beclin1 mRNA, thereby stabilizing Beclin1 mRNA and enhancing Beclin1 expression and autophagy. These effects ultimately led to the inhibition of NF-κB signaling in LPS/IFN-γ-challenged macrophages. CONCLUSIONS: YTHDC1 inhibited the macrophage-mediated inflammatory response by stabilizing Beclin1 mRNA, which may be a potential therapeutic target for the treatment of IBD.

4.
Pathol Res Pract ; 260: 155414, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38901141

RESUMO

Autophagy is a catabolic pathway involved both in tissue homeostasis and in cellular response to stress. The precise role of autophagy in cancer is still undefined and seems to depend on the tumor stage, appearing tumor-suppressive in physiological conditions and helpful to tumor progression in the established tumor. Here we analyzed by immunohistochemistry Beclin-1, p62, and LC3B, autophagic markers, in human specimens of normal breast, bone metastasis together with pair-matched invasive breast carcinoma of no special type (IBC-NST) as well as non-metastatic breast carcinoma, to disclose the possibility that they could be early prognostic indicators of the evolution of the disease toward the worst outcome. Different regions of metastatic carcinomas, i.e., areas adjacent to the tumor without signs of neoplastic growth, dysplastic lesions, and areas with invasive growth were considered. The pattern of autophagic parameters showed differences among the stages of breast carcinoma progression with a trend that indicated the activation of autophagic process in normal breast (Beclin-1 more elevated than p62), a pattern that was maintained in non-metastatic carcinoma. As the neoplasia proceeds with malignancy, the modification of the pattern of expression of autophagic markers (low ratio between Beclin-1 and p62) in areas of invasive growth of carcinomas suggested inhibition of the process. Of note, the parameters showed a different pattern in bone metastasis with respect to bone metastatic (bm)-IBC-NST, suggesting the reactivation of the autophagic process in the new growth site, helpful to the colonization. The course of autophagy markers during tumor progression could have a prognostic value towards bone metastasis and reveal different roles of the process in different phases of neoplastic growth. The understanding of the role of autophagy in bone metastasis could disclose new therapeutic targets to improve the conditions of patients.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38856913

RESUMO

Catharanthine, a component of the anticancer drug vinblastine along with vindoline, disrupts the cell cycle by interfering with mitotic spindle formation. Apart from their antioxidant properties, vinca alkaloids like catharanthine inhibit phosphodiesterase activity and elevate intracellular cAMP levels. The aim of this study was to investigate how catharantine affects apoptosis and autophagy. This study conducted experiments on HepG2 liver carcinoma cells with varying doses of catharanthine to evaluate cell death rates and viability and determine the IC50 concentration via MTT assays. The apoptotic and autophagic effects of catharanthine were assessed using flow cytometry with annexin V and PI staining, while the expression of autophagy-related genes was analyzed through quantitative PCR. Additionally, molecular docking and molecular dynamics simulations were employed to further investigate catharanthine's impact on autophagy mechanisms. The study showed that catharanthine reduced oxidative stress and triggered apoptosis in HepG2 cells in a dose-dependent manner. Catharanthine also upregulated the expression of autophagy-related genes like LC3, Beclin1, and ULK1. Notably, catharanthine increased sirtuin-1 levels, a known autophagy inducer, while decreasing Akt expression compared to untreated cells. Molecular docking results indicated rapamycin had a stronger binding affinity with FRB (-10.7 KJ/mol-1) than catharanthine (-7.3 KJ/mol-1). Additionally, molecular dynamics simulations revealed that catharanthine interacted effectively with the FRB domain of mTOR, displaying stability and a strong binding affinity, although not as potent as rapamycin. In summary, besides its cytotoxic and pro-apoptotic effects, catharanthine activates autophagy signaling pathways and induces autophagic necrosis by inhibiting mTOR.

6.
Eur J Pharmacol ; 977: 176744, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38897438

RESUMO

Approximately 90% of diabetic males have varying degrees of testicular dysfunction. The current study investigates the possible beneficial consequences of ranolazine against T1DM-induced testicular dysfunction in rats. Thirty-two male Sprague Dawley rats were assorted into 4 groups; normal, diabetic (single 50 mg/kg STZ, I.P.) and ranolazine (40 and 80 mg/kg, orally). The present investigation revealed that the hypoglycemic impact of ranolazine significantly improved the testicular weight and body weight of the final rats, as well as the concentration of blood testosterone, sperm count, and viability, all of which were associated with STZ-induced testicular dysfunction. Furthermore, as demonstrated by elevated reduced glutathione (GSH) activity and lowered malondialdehyde (MDA) levels, diabetic rats administered ranolazine showed a noteworthy improvement in the oxidant/antioxidant ratio. Furthermore, a substantial rise in beclin-1 concentration was seen in conjunction with a significant decrease in thioredoxin-interacting protein (TXNIP) and interleukin-18 (IL-18) concentrations when ranolazine was administered. Although ranolazine exhibited a reduction in inflammation as seen by lower expression of nuclear factor-κB (NF-κB) and cluster of differentiation (CD68) in the testicles, these biochemical findings were validated by improvements in the morphological and histopathological outcomes of both the pancreatic and testicular tissues. In conclusion, daily oral administration of ranolazine (40 and 80 mg/kg) for 8 weeks could be a promising therapy for T1DM-induced testicular dysfunction through its dose-dependent anti-oxidant and anti-inflammatory effects.


Assuntos
Proteína Beclina-1 , Interleucina-18 , NF-kappa B , Ranolazina , Ratos Sprague-Dawley , Transdução de Sinais , Testículo , Animais , Masculino , NF-kappa B/metabolismo , Ranolazina/farmacologia , Ranolazina/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Interleucina-18/metabolismo , Interleucina-18/sangue , Testículo/efeitos dos fármacos , Testículo/metabolismo , Testículo/patologia , Ratos , Proteína Beclina-1/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Proteínas de Transporte/metabolismo , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Doenças Testiculares/tratamento farmacológico , Doenças Testiculares/prevenção & controle , Doenças Testiculares/etiologia , Doenças Testiculares/patologia , Testosterona/sangue , Proteínas de Ciclo Celular
7.
FASEB J ; 38(13): e23765, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38934372

RESUMO

The importance of autophagy in atherosclerosis has garnered significant attention regarding the potential applications of autophagy inducers. However, the impact of TAT-Beclin1, a peptide inducer of autophagy, on the development of atherosclerotic plaques remains unclear. Single-cell omics analysis indicates a notable reduction in GAPR1 levels within fibroblasts, stromal cells, and macrophages during atherosclerosis. Tat-beclin1 (T-B), an autophagy-inducing peptide derived from Beclin1, could selectively bind to GAPR1, relieving its inhibition on Beclin1 and thereby augmenting autophagosome formation. To investigate its impact on atherosclerosic plaque progression, we established the ApoE-/- mouse model of carotid atherosclerotic plaques. Surprisingly, intravenous administration of Tat-beclin1 dramatically accelerated the development of carotid artery plaques. Immunofluorescence analysis suggested that macrophage aggregation and autophagosome formation within atherosclerotic plaques were significantly increased upon T-B treatment. However, immunofluorescence and transmission electron microscopy (TEM) analysis revealed a reduction in autophagy flux through lysosomes. In vitro, the interaction between T-B and GAPR1 was confirmed in RAW264.7 cells, resulting in the increased accumulation of p62/SQSTM1 and LC3-II in the presence of ox-LDL. Additionally, T-B treatment elevated the protein levels of p62/SQSTM1, LC3-II, and cleaved caspase 1, along with the secretion of IL-1ß in response to ox-LDL exposure. In summary, our study underscores that T-B treatment amplifies abnormal autophagy and inflammation, consequently exacerbating atherosclerotic plaque development in ApoE-/- mice.


Assuntos
Apolipoproteínas E , Aterosclerose , Autofagia , Proteína Beclina-1 , Placa Aterosclerótica , Animais , Camundongos , Proteína Beclina-1/metabolismo , Proteína Beclina-1/genética , Apolipoproteínas E/metabolismo , Apolipoproteínas E/deficiência , Aterosclerose/metabolismo , Aterosclerose/patologia , Autofagia/efeitos dos fármacos , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Células RAW 264.7 , Camundongos Endogâmicos C57BL , Masculino , Camundongos Knockout , Macrófagos/metabolismo
8.
Rev Int Androl ; 22(1): 29-37, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38735875

RESUMO

A significant clinical condition known as testicular torsion leads to permanent ischemic damage to the testicular tissue and consequent loss of function in the testicles. In this study, it was aimed to evaluate the protective effects of Astaxanthin (ASTX) on testicular damage in rats with testicular torsion/detorsion in the light of biochemical and histopathological data. Spraque Dawley rats of 21 were randomly divided into three groups; sham, testicular torsion/detorsion (TTD) and astaxanthin + testicular torsion/detorsion (ASTX + TTD). TTD and ASTX + TTD groups underwent testicular torsion for 2 hours and then detorsion for 4 hours. Rats in the ASTX + TTD group were given 1 mg/kg/day astaxanthin by oral gavage for 7 days before torsion. Following the detorsion process, oxidative stress parameters and histopathological changes in testicular tissue were evaluated. Malondialdehyde (MDA) and total oxidant status (TOS) levels were significantly decreased in the ASTX group compared to the TTD group, while superoxide dismutase (SOD), glutathione (GSH) and total antioxidant status (TAS) levels were increased (p < 0.05). Moreover, histopathological changes were significantly reduced in the group given ASTX (p < 0.0001). It was determined that ASTX administration increased Beclin-1 immunoreactivity in ischemic testicular tissue, while decreasing caspase-3 immunoreactivity (p < 0.0001). Our study is the first to investigate the antiautophagic and antiapoptotic properties of astaxanthin after testicular torsion/detorsion based on the close relationship of Beclin-1 and caspase-3 in ischemic tissues. Our results clearly demonstrate the protective effects of ASTX against ischemic damage in testicular tissue. In ischemic testicular tissue, ASTX contributes to the survival of cells by inducing autophagy and inhibiting the apoptosis.


Assuntos
Antioxidantes , Autofagia , Estresse Oxidativo , Ratos Sprague-Dawley , Torção do Cordão Espermático , Testículo , Xantofilas , Masculino , Animais , Xantofilas/farmacologia , Xantofilas/administração & dosagem , Autofagia/efeitos dos fármacos , Ratos , Testículo/efeitos dos fármacos , Testículo/patologia , Testículo/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/administração & dosagem , Apoptose/efeitos dos fármacos , Malondialdeído/metabolismo , Distribuição Aleatória , Traumatismo por Reperfusão/prevenção & controle , Superóxido Dismutase/metabolismo , Glutationa/metabolismo
9.
Cell Rep ; 43(6): 114293, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38814784

RESUMO

Chronic pain is associated with alterations in fundamental cellular processes. Here, we investigate whether Beclin 1, a protein essential for initiating the cellular process of autophagy, is involved in pain processing and is targetable for pain relief. We find that monoallelic deletion of Becn1 increases inflammation-induced mechanical hypersensitivity in male mice. However, in females, loss of Becn1 does not affect inflammation-induced mechanical hypersensitivity. In males, intrathecal delivery of a Beclin 1 activator, tat-beclin 1, reverses inflammation- and nerve injury-induced mechanical hypersensitivity and prevents mechanical hypersensitivity induced by brain-derived neurotrophic factor (BDNF), a mediator of inflammatory and neuropathic pain. Pain signaling pathways converge on the enhancement of N-methyl-D-aspartate receptors (NMDARs) in spinal dorsal horn neurons. The loss of Becn1 upregulates synaptic NMDAR-mediated currents in dorsal horn neurons from males but not females. We conclude that inhibition of Beclin 1 in the dorsal horn is critical in mediating inflammatory and neuropathic pain signaling pathways in males.


Assuntos
Autofagia , Proteína Beclina-1 , Animais , Proteína Beclina-1/metabolismo , Masculino , Feminino , Camundongos , Hiperalgesia/metabolismo , Hiperalgesia/patologia , Receptores de N-Metil-D-Aspartato/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Neuralgia/metabolismo , Neuralgia/patologia , Camundongos Endogâmicos C57BL , Inflamação/metabolismo , Inflamação/patologia , Transdução de Sinais , Células do Corno Posterior/metabolismo , Células do Corno Posterior/patologia
10.
Autophagy ; : 1-14, 2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38762759

RESUMO

Macroautophagy/autophagy is essential for the degradation and recycling of cytoplasmic materials. The initiation of this process is determined by phosphatidylinositol-3-kinase (PtdIns3K) complex, which is regulated by factor BECN1 (beclin 1). UFMylation is a novel ubiquitin-like modification that has been demonstrated to modulate several cellular activities. However, the role of UFMylation in regulating autophagy has not been fully elucidated. Here, we found that VCP/p97 is UFMylated on K109 by the E3 UFL1 (UFM1 specific ligase 1) and this modification promotes BECN1 stabilization and assembly of the PtdIns3K complex, suggesting a role for VCP/p97 UFMylation in autophagy initiation. Mechanistically, VCP/p97 UFMylation stabilizes BECN1 through ATXN3 (ataxin 3)-mediated deubiquitination. As a key component of the PtdIns3K complex, stabilized BECN1 facilitates assembly of this complex. Re-expression of VCP/p97, but not the UFMylation-defective mutant, rescued the VCP/p97 depletion-induced increase in MAP1LC3B/LC3B protein expression. We also showed that several pathogenic VCP/p97 mutations identified in a variety of neurological disorders and cancers were associated with reduced UFMylation, thus implicating VCP/p97 UFMylation as a potential therapeutic target for these diseases. Abbreviation: ATG14:autophagy related 14; Baf A1:bafilomycin A1;CMT2Y: Charcot-Marie-Toothdisease, axonal, 2Y; CYB5R3: cytochromeb5 reductase 3; DDRGK1: DDRGK domain containing 1; DMEM:Dulbecco'smodified Eagle's medium;ER:endoplasmic reticulum; FBS:fetalbovine serum;FTDALS6:frontotemporaldementia and/or amyotrophic lateral sclerosis 6; IBMPFD1:inclusion bodymyopathy with early-onset Paget disease with or withoutfrontotemporal dementia 1; LC-MS/MS:liquid chromatography tandem mass spectrometry; MAP1LC3B/LC3B:microtubule associated protein 1 light chain 3 beta; MS: massspectrometry; NPLOC4: NPL4 homolog, ubiquitin recognition factor;PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3;PIK3R4: phosphoinositide-3-kinase regulatory subunit 4; PtdIns3K:phosphatidylinositol 3-kinase; RPL26: ribosomal protein L26; RPN1:ribophorin I; SQSTM1/p62: sequestosome 1; UBA5: ubiquitin likemodifier activating enzyme 5; UFC1: ubiquitin-fold modifierconjugating enzyme 1; UFD1: ubiquitin recognition factor in ERassociated degradation 1; UFL1: UFM1 specific ligase 1; UFM1:ubiquitin fold modifier 1; UFSP2: UFM1 specific peptidase 2; UVRAG:UV radiation resistance associated; VCP/p97: valosin containingprotein; WT: wild-type.

11.
Asian Pac J Cancer Prev ; 25(5): 1753-1761, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38809648

RESUMO

Hepatic steatosis has become the most common cause of chronic liver disease among children worldwide.  Lipophagy has been considered as a pathway affecting steatosis development and progression. OBJECTIVE: this study aimed to evaluate the immunohistochemical expression of Beclin1 and LC3A in pediatric hepatic tissues with steatosis and to correlate their expression with clinicopathological parameters. METHODS: this study included 81 Egyptian pediatric patients with hepatic steatosis and 21 pediatric cases without hepatic steatosis. All specimens were stained by Beclin1 and LC3A antibodies. According to final diagnosis obtained from Pediatric Hepatology department, patients were divided into two groups: chronic liver disease (CLD) group that included 45 cases and inborn error of metabolism (IEM) group that included 36 cases. RESULTS: higher beclin1 expression was significantly correlated with higher stages of fibrosis and distorted liver architecture in CLD group, (P=0.043) for both. The control group showed higher positivity, percentage, as well as the median values of the H score of LC3A expression than did the CLD group or the IEM group (P=0.055, 0.001, and 0.008, respectively). Higher positivity of LC3A was significantly associated with higher stages of fibrosis and distorted liver architecture in the studied IEM group (P=0.021) for both. CONCLUSIONS: Varying intensity grades of LC3A and Beclin 1 immunohistochemical expression demonstrate the variation of autophagy at different phases of pediatric hepatic steatosis and varied disease etiology.


Assuntos
Autofagia , Proteína Beclina-1 , Fígado Gorduroso , Proteínas Associadas aos Microtúbulos , Humanos , Masculino , Feminino , Criança , Proteína Beclina-1/metabolismo , Fígado Gorduroso/patologia , Fígado Gorduroso/metabolismo , Pré-Escolar , Proteínas Associadas aos Microtúbulos/metabolismo , Estudos de Casos e Controles , Prognóstico , Cirrose Hepática/patologia , Cirrose Hepática/metabolismo , Adolescente , Seguimentos , Egito , Lactente , Biomarcadores/metabolismo , Fígado/patologia , Fígado/metabolismo
12.
Acta Pharm Sin B ; 14(5): 2026-2038, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38799643

RESUMO

Growing evidences indicate that dysfunction of autophagy contributes to the disease pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), two neurodegenerative disorders. The GGGGCC·GGCCCC repeat RNA expansion in chromosome 9 open reading frame 72 (C9orf72) is the most genetic cause of both ALS and FTD. According to the previous studies, GGGGCC·GGCCCC repeat undergoes the unconventional repeat-associated non-ATG translation, which produces dipeptide repeat (DPR) proteins. Although there is a growing understanding that C9orf72 DPRs have a strong ability to harm neurons and induce C9orf72-linked ALS/FTD, whether these DPRs can affect autophagy remains unclear. In the present study, we find that poly-GR and poly-PR, two arginine-containing DPRs which display the most cytotoxic properties according to the previous studies, strongly inhibit starvation-induced autophagy. Moreover, our data indicate that arginine-rich DPRs enhance the interaction between BCL2 and BECN1/Beclin 1 by inhibiting BCL2 phosphorylation, therefore they can impair autophagic clearance of neurodegenerative disease-associated protein aggregates under starvation condition in cells. Importantly, our study not only highlights the role of C9orf72 DPR in autophagy dysfunction, but also provides novel insight that pharmacological intervention of autophagy using SW063058, a small molecule compound that can disrupt the interaction between BECN1 and BCL2, may reduce C9orf72 DPR-induced neurotoxicity.

13.
Mol Genet Genomics ; 299(1): 56, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38787424

RESUMO

Breast cancer (BC) is a heterogenous disease with multiple pathways implicated in its development, progression, and drug resistance. Autophagy, a cellular process responsible for self-digestion of damaged organelles, had been recognized as eminent player in cancer progression and chemotherapeutic resistance. The haploinsufficiency of Beclin 1 (BECN1), autophagy protein, is believed to contribute to cancer pathogenesis and progression. In our study, we investigated the expression of BECN1 in a BC female Egyptian patient cohort, as well as its prognostic role through evaluating its association with disease free survival (DFS) after 2 years follow up and association of tumor clinicopathological features. Twenty frozen female BC tissue samples and 17 adjacent normal tissue were included and examined for the expression levels of BECN1. Although the tumor tissues showed lower expression 0.73 (0-8.95) than their corresponding normal tissues 1.02 (0.04-19.59), it was not statistically significant, p: 0.463. BECN1 expression was not associated with stage, nodal metastasis or tumor size, p:0.435, 0.541, 0.296, respectively. However, statistically significant negative correlation was found between grade and BECN1 mRNA expression in the studied cases, p:0.028. BECN1 expression had no statistically significant association with DFS, P = 0.944. However, we observed that triple negative (TNBC) cases had significantly lower DFS rate than luminal BC patients, p: 0.022, with mean DFS 19.0 months, while luminal BC patients had mean DFS of 23.41 months. Our study highlights the potential role of BECN1 in BC pathogenesis, showing that BECN1 expression correlates with poorer differentiation of BC, indicating its probable link with disease aggressiveness. DFS two years follow up showed that TNBC subtype remains associated with less favorable prognosis.


Assuntos
Proteína Beclina-1 , Neoplasias da Mama , Gradação de Tumores , RNA Mensageiro , Humanos , Feminino , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Pessoa de Meia-Idade , Adulto , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Prognóstico , Regulação Neoplásica da Expressão Gênica , Intervalo Livre de Doença , Biomarcadores Tumorais/genética , Idoso , Egito
14.
Mol Med ; 30(1): 65, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773376

RESUMO

OBJECTIVE: Catalpol (CAT) has various pharmacological activities and plays a protective role in cerebral ischemia. It has been reported that CAT played a protective role in cerebral ischemia by upregulaing NRF1 expression. Bioinformatics analysis reveals that NRF1 can be used as a transcription factor to bind to the histone acetyltransferase KAT2A. However, the role of KAT2A in cerebral ischemia remains to be studied. Therefore, we aimed to investigate the role of CAT in cerebral ischemia and its related mechanism. METHODS: In vitro, a cell model of oxygen and glucose deprivation/reperfusion (OGD/R) was constructed, followed by evaluation of neuronal injury and the expression of METTL3, Beclin-1, NRF1, and KAT2A. In vivo, a MCAO rat model was prepared by means of focal cerebral ischemia, followed by assessment of neurological deficit and brain injury in MCAO rats. Neuronal autophagy was evaluated by observation of autophagosomes in neurons or brain tissues by TEM and detection of the expression of LC3 and p62. RESULTS: In vivo, CAT reduced the neurological function deficit and infarct volume, inhibited neuronal apoptosis in the cerebral cortex, and significantly improved neuronal injury and excessive autophagy in MCAO rats. In vitro, CAT restored OGD/R-inhibited cell viability, inhibited cell apoptosis, LDH release, and neuronal autophagy. Mechanistically, CAT upregulated NRF1, NRF1 activated METTL3 via KAT2A transcription, and METTL3 inhibited Beclin-1 via m6A modification. CONCLUSION: CAT activated the NRF1/KAT2A/METTL3 axis and downregulated Beclin-1 expression, thus relieving neuronal injury and excessive autophagy after cerebral ischemia.


Assuntos
Autofagia , Proteína Beclina-1 , Isquemia Encefálica , Glucosídeos Iridoides , Neurônios , Animais , Autofagia/efeitos dos fármacos , Proteína Beclina-1/metabolismo , Proteína Beclina-1/genética , Ratos , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Isquemia Encefálica/metabolismo , Isquemia Encefálica/tratamento farmacológico , Masculino , Glucosídeos Iridoides/farmacologia , Glucosídeos Iridoides/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Modelos Animais de Doenças , Apoptose/efeitos dos fármacos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Adenosina/análogos & derivados
15.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167256, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38782303

RESUMO

The primary cilium, hereafter cilium, is an antenna-like organelle that modulates intracellular responses, including autophagy, a lysosomal degradation process essential for cell homeostasis. Dysfunction of the cilium is associated with impairment of autophagy and diseases known as "ciliopathies". The discovery of autophagy-related proteins at the base of the cilium suggests its potential role in coordinating autophagy initiation in response to physiopathological stimuli. One of these proteins, beclin-1 (BECN1), it which is necessary for autophagosome biogenesis. Additionally, polycystin-2 (PKD2), a calcium channel enriched at the cilium, is required and sufficient to induce autophagy in renal and cancer cells. We previously demonstrated that PKD2 and BECN1 form a protein complex at the endoplasmic reticulum in non-ciliated cells, where it initiates autophagy, but whether this protein complex is present at the cilium remains unknown. Anorexigenic pro-opiomelanocortin (POMC) neurons are ciliated cells that require autophagy to maintain intracellular homeostasis. POMC neurons are sensitive to metabolic changes, modulating signaling pathways crucial for controlling food intake. Exposure to the saturated fatty acid palmitic acid (PA) reduces ciliogenesis and inhibits autophagy in these cells. Here, we show that PKD2 and BECN1 form a protein complex in N43/5 cells, an in vitro model of POMC neurons, and that both PKD2 and BECN1 locate at the cilium. In addition, our data show that the cilium is required for PKD2-BECN1 protein complex formation and that PA disrupts the PKD2-BECN1 complex, suppressing autophagy. Our findings provide new insights into the mechanisms by which the cilium controls autophagy in hypothalamic neuronal cells.


Assuntos
Autofagia , Proteína Beclina-1 , Cílios , Hipotálamo , Neurônios , Canais de Cátion TRPP , Animais , Camundongos , Proteína Beclina-1/metabolismo , Cílios/metabolismo , Hipotálamo/metabolismo , Hipotálamo/citologia , Neurônios/metabolismo , Canais de Cátion TRPP/metabolismo , Canais de Cátion TRPP/genética
16.
Iran J Med Sci ; 49(3): 196-200, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38584654

RESUMO

Despite antiviral treatment, some patients with chronic hepatitis B (CHB) progress to cirrhosis. Enhancement of autophagy was implicated in the proliferation of hepatitis B in hepatocytes. This study aimed to evaluate the potential role of autophagy in the progression of liver fibrosis in patients receiving antiviral treatments and having completely inhibited viral replication. This descriptive-analytical study was designed and conducted in 2020 at Mottahhari Hepatitis Clinic affiliated with Shiraz University of Medical Science (Shiraz, Iran). Patients who were on anti-hepatitis B nucleotide treatments for at least two years, and those who were not cirrhotic at baseline but later progressed to cirrhosis were identified to be included in the case group. Besides, for the control group, patients on the nucleotide regimens who did not have cirrhosis at baseline or during follow-up were randomly selected. Ultimately, 16 cases and 14 controls were included in the study. Data were analyzed using SPSS software, and P<0.05 was considered statistically significant. Serum Beclin-1 and LC3 levels were compared between the two groups using enzyme-linked immunosorbent assays. The t test was used to assess the statistical differences between the case and control groups. Beclin-1 level was significantly higher in cirrhosis patients than the control group (1283±244 vs. 1063±257, P=0.024). However, there was no statistical difference between the level of LC3 in the cirrhotic group (168±31) and the control group (150±16) (P=0.065). Autophagy may have a role in the progression of cirrhosis in patients with CHB. Future larger prospective studies are required to determine the effect of blocking on the progression of liver disease in this population A preprint of this study was published at https://www.researchsquare.com/article/rs-1435490/v1.pdf.


Assuntos
Hepatite B Crônica , Humanos , Hepatite B Crônica/complicações , Hepatite B Crônica/tratamento farmacológico , Antivirais/farmacologia , Antivirais/uso terapêutico , Proteína Beclina-1 , Cirrose Hepática/complicações , Cirrose Hepática/tratamento farmacológico , Nucleotídeos/uso terapêutico , Autofagia
17.
Turk Psikiyatri Derg ; 35(1): 1-7, 2024.
Artigo em Inglês, Turco | MEDLINE | ID: mdl-38556931

RESUMO

OBJECTIVE: It is known that inflammation plays a role in the etiopathogenesis of schizophrenia. In this study, we examined high mobility group box 1 protein (HMGB1) and Beclin 1 levels and their relationship with clinical variables in patients with schizophrenia. METHOD: Forty-three patients with schizophrenia and 43 healthy controls were included in this study. The patients were administered sociodemographic data form, the Positive Negative Symptoms Assessment Scale (PANSS) and the Clinical Global Impressions (CGI) scale. After the scales were filled, venous blood samples were taken from both the patient and control groups to measure serum HMGB1 and Beclin 1 levels. Serum samples obtained at the end of centrifugation were measured by Enzyme-Linked ImmunoSorbent Assay (ELISA) method. RESULTS: The mean serum HMGB1 levels were significantly increased and the mean serum Beclin 1 levels were significantly decreased in the schizophrenia group compared to the control group. In addition, a negative correlation was found between HMGB1 and Beclin 1 levels. CONCLUSION: In conclusion, current research shows that HMGB1 is increased and Beclin 1 is decreased in patients with schizophrenia, and these findings may contribute to the role of autophagy in the pathogenesis of schizophrenia.


Assuntos
Proteína HMGB1 , Esquizofrenia , Humanos , Proteína Beclina-1 , Esquizofrenia/diagnóstico , Proteína HMGB1/metabolismo , Ensaio de Imunoadsorção Enzimática , Inflamação
18.
Front Bioeng Biotechnol ; 12: 1357686, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38600946

RESUMO

Fragility fractures, which are more prevalent in women, may be significantly influenced by autophagy due to altered bone turnover. As an essential mediator of autophagy, Beclin-1 modulates bone homeostasis by regulating osteoclast and chondrocyte differentiation, however, the alteration in the local bone mechanical environment in female Beclin-1+/- mice remains unclear. In this study, our aim is to investigate the biomechanical behavior of femurs from seven-month-old female wild-type (WT) and Beclin-1+/- mice under peak physiological load, using finite element analysis on micro-CT images. Micro-CT imaging analyses revealed femoral cortical thickening in Beclin-1+/- female mice compared to WT. Three-point bending test demonstrated a 63.94% increase in whole-bone strength and a 61.18% increase in stiffness for female Beclin-1+/- murine femurs, indicating improved biomechanical integrity. After conducting finite element analysis, Beclin-1+/- mice exhibited a 26.99% reduction in von Mises stress and a 31.62% reduction in maximum principal strain in the femoral midshaft, as well as a 36.64% decrease of von Mises stress in the distal femurs, compared to WT mice. Subsequently, the strength-safety factor was determined using an empirical formula, revealing that Beclin-1+/- mice exhibited significantly higher minimum safety factors in both the midshaft and distal regions compared to WT mice. In summary, considering the increased response of bone adaptation to mechanical loading in female Beclin-1+/- mice, our findings indicate that increasing cortical bone thickness significantly improves bone biomechanical behavior by effectively reducing stress and strain within the femoral shaft.

19.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(4): 378-384, 2024 Apr 15.
Artigo em Chinês | MEDLINE | ID: mdl-38660902

RESUMO

OBJECTIVES: To dynamically observe the changes in hypoxia-inducible factor 1α (HIF-1α) and Bcl-2/adenovirus E1B19kDa-interacting protein 3 (BNIP3) in children with traumatic brain injury (TBI) and evaluate their clinical value in predicting the severity and prognosis of pediatric TBI. METHODS: A prospective study included 47 children with moderate to severe TBI from January 2021 to July 2023, categorized into moderate (scores 9-12) and severe (scores 3-8) subgroups based on the Glasgow Coma Scale. A control group consisted of 30 children diagnosed and treated for inguinal hernia during the same period, with no underlying diseases. The levels of HIF-1α, BNIP3, autophagy-related protein Beclin-1, and S100B were compared among groups. The predictive value of HIF-1α, BNIP3, Beclin-1, and S100B for the severity and prognosis of TBI was assessed using receiver operating characteristic (ROC) curves. RESULTS: Serum levels of HIF-1α, BNIP3, Beclin-1, and S100B in the TBI group were higher than those in the control group (P<0.05). Among the TBI patients, the severe subgroup had higher levels of HIF-1α, BNIP3, Beclin-1, and S100B than the moderate subgroup (P<0.05). Correlation analysis showed that the serum levels of HIF-1α, BNIP3, Beclin-1, and S100B were negatively correlated with the Glasgow Coma Scale scores (P<0.05). After 7 days of treatment, serum levels of HIF-1α, BNIP3, Beclin-1, and S100B in both non-surgical and surgical TBI patients decreased compared to before treatment (P<0.05). ROC curve analysis indicated that the areas under the curve for predicting severe TBI based on serum levels of HIF-1α, BNIP3, Beclin-1, and S100B were 0.782, 0.835, 0.872, and 0.880, respectively (P<0.05), and for predicting poor prognosis of TBI were 0.749, 0.775, 0.814, and 0.751, respectively (P<0.05). CONCLUSIONS: Serum levels of HIF-1α, BNIP3, and Beclin-1 are significantly elevated in children with TBI, and their measurement can aid in the clinical assessment of the severity and prognosis of pediatric TBI.


Assuntos
Proteína Beclina-1 , Lesões Encefálicas Traumáticas , Subunidade alfa do Fator 1 Induzível por Hipóxia , Proteínas de Membrana , Humanos , Masculino , Feminino , Lesões Encefálicas Traumáticas/sangue , Criança , Proteínas de Membrana/sangue , Pré-Escolar , Subunidade alfa do Fator 1 Induzível por Hipóxia/sangue , Proteína Beclina-1/sangue , Prognóstico , Proteínas Proto-Oncogênicas/sangue , Subunidade beta da Proteína Ligante de Cálcio S100/sangue , Estudos Prospectivos , Lactente , Adolescente
20.
ACS Infect Dis ; 10(4): 1414-1428, 2024 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-38556987

RESUMO

PDZ protein interacting specifically with Tc10 or PIST is a mammalian trans-Golgi resident protein that regulates subcellular sorting of plasma membrane receptors. PIST has recently emerged as a key player in regulating viral pathogenesis. Nevertheless, the involvement of PIST in parasitic infections remains unexplored. Leishmania parasites infiltrate their host macrophage cells through phagocytosis, where they subsequently multiply within the parasitophorous vacuole (PV). Host cell autophagy has been found to be important in regulating this parasite infection. Since PIST plays a pivotal role in triggering autophagy through the Beclin 1-PI3KC3 pathway, it becomes interesting to identify the status of PIST during Leishmania infection. We found that while macrophage cells are infected with Leishmania major (L. major), the expression of PIST protein remains unaltered; however, it traffics from the Golgi compartment to PV. Further, we identified that in L. major-infected macrophage cells, PIST associates with the autophagy regulatory protein Beclin 1 within the PVs; however, PIST does not interact with LC3. Reduction in PIST protein through siRNA silencing significantly increased parasite burden, whereas overexpression of PIST in macrophages restricted L. major infectivity. Together, our study reports that the macrophage PIST protein is essential in regulating L. major infectivity.


Assuntos
Leishmania major , Leishmaniose , Macrófagos , Animais , Proteína Beclina-1/metabolismo , Proteínas de Transporte/metabolismo , Leishmania major/metabolismo , Macrófagos/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...