Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 213
Filtrar
1.
ACS Appl Bio Mater ; 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39378355

RESUMO

Cellulose nanofiber-based aerogels (CNFAs) hold immense promise across diverse fields, but their innate hydrophilicity and structural fragility in water have constrained their utility in water purification. This study introduces a green approach to induce hydrophobicity into CNFAs via thermally induced phase separation (TIPS) of beeswax, which was adhered to the nanofiber by hydrogen bonding and hydrophobic-hydrophobic interactions. The fabricated aerogel was characterized by using FTIR, SEM, XRD, TGA, contact angle, BET, and compression test. The resulting beeswax cellulose nanofiber-based aerogels (BCNFAs) possess a highly porous structure and extremely low density, enabling the aerogels to self-float and facilitate practical applications and recycling. Due to these remarkable characteristics, BCNFAs had excellent adsorption capacity within 10 min to effectively remove tetracycline (TC) from water with an adsorption capacity of 31.6 mg/g. The demonstrated methodology to induce hydrophobicity in CNFAs via TIPS of beeswax on CNFAs could be an eco-friendly and scalable approach for the fabrication of robust BCNFAs without using any toxic chemicals. So far, this is the first report on to make robust hydrophobic CNFAs by employing TIPS of beeswax while maintaining the porosity of CNFAs, which is highly desirable for effective TC tablet adsorption from water in the present context. The demonstrated work has commercial potential as it focuses on the practical utility of the modified aerogel for adsorbing conventional tetracycline tablets, rather than exclusively targeting the pharmaceutical ingredient alone.

2.
Toxics ; 12(9)2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39330567

RESUMO

Honeybees and hive products could be used as bioindicators of pesticide exposure in surrounding areas, but the associations have rarely been examined. We collected samples of bees, hive products and environmental dust from 12 apiaries during the blooming season in eastern Taiwan and assessed the relationships between pesticides in apiarian samples and the environment. Samples were analyzed for 14 pesticides using gas or liquid chromatography coupled with mass spectrometry. Sick bees, dead bees, bee pollen, beeswax and environmental dust in the outer rings (>150 m) surrounding the apiaries were contaminated with high levels of pesticides (mean concentration: >270 ng/g in total). In terms of concentrations of all pesticides, insecticides, herbicides and fungicides, most apiarian sample matrices were significantly correlated with environmental dust within a range of 2.5 km (ρ > 0.6, p < 0.05), suggesting their potential as bioindicators. Of those apiarian matrices with high contamination contents, dead bees or beeswax may be a good bioindicator for all pesticides but not for herbicides, because of the insignificant correlation with environmental dust (ρ < 0.5). For all types of pesticides, we recommend sick bees and bee pollen as choices for bioindicators, because of their high contamination levels for detection and complete representativeness of the environment.

3.
Pharmaceuticals (Basel) ; 17(9)2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39338412

RESUMO

The current study was designed to compare in vivo efficacy between beeswax alcohol (BWA) and coenzyme Q10 (CoQ10) to treat fatty liver changes, oxidative stress, and damages in major organs of zebrafish by 12 weeks with high-cholesterol (HC) and galactose (Gal) supplementation. At week 12, the HC control and HC+Gal control groups showed 96% and 92% survivability, respectively, while co-supplementation of the 0.5% BWA and 1.0% BWA groups exhibited 96% and 100% survivability. However, co-supplementation of the 0.5% CoQ10 and 1.0% CoQ10 groups revealed the lowest survivability, around 92% and 89%, respectively. The 0.5% BWA and 1.0% BWA groups showed 21% (p < 0.001) and 41% (p < 0.001), respectively, lower total cholesterol (TC) than the HC+Gal control, while the 1.0% CoQ10 group showed only 15% lower TC than the control. Interestingly, the 0.5% BWA and 1.0% BWA groups showed 22% (p < 0.001) and 38% (p < 0.001), respectively, lower triglyceride (TG) than the HC+Gal control. However, both the 0.5% CoQ10 and 1.0% CoQ10 groups showed similar TG levels as the control, suggesting that CoQ10 supplementation had no effect on lowering serum TG. The 1.0% BWA group showed the highest plasma HDL-C and HDL-C/TC (%) up to 3.2-fold and 5.5-fold, respectively, higher than those of the HC+Gal control, while the 1.0% CoQ10 group showed 2.4-fold and 2.8-fold higher plasma HDL-C and HDL-C/TC (%), respectively, than the control. The plasma aspartate transaminase (AST) and alanine transaminase (ALT) levels were lowest in the 1.0% BWA group, 51% and 72%, respectively, lower than HC+Gal control, suggesting the lowest extent of hepatic damage. In hepatic tissue, neutrophil infiltration and interleukin (IL)-6 production were the lowest in the 1.0% BWA group, around 67% and 85%, respectively, lower than the HC+Gal control. Fatty liver change, cellular apoptosis, and cell senescence in hepatic tissue were remarkably lowered in the 1.0% BWA group, while the CoQ10 group showed much less effect than the BWA group. In kidney, ovary, and testis tissue, the 1.0% BWA group showed the lowest production of reactive oxygen species, the extent of cellular senescence, and cellular apoptosis with the healthiest cell morphology. In conclusion, supplementation of BWA remarkably protected the liver, kidney, ovary, and testis from oxidative damage by cholesterol and galactose consumption, with the least serum AST and ALT levels, inflammatory parameters, and senescence markers.

4.
Food Sci Biotechnol ; 33(13): 3019-3028, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39220319

RESUMO

The aim of this study was to investigate the utilization of clove bud oil as fat-soluble antioxidants for retarding lipid oxidation in organogels by structuring canola oil with beeswax at 5, 7.5, and 10% concentration under accelerated oxidation condition. Oil binding capacity and viscoelastic properties were increased with beeswax content, but were not nearly affected by the addition of clove bud oil. Organogel loaded with clove bud oil were found to be more effective in retarding lipid oxidation in high beeswax content systems, particularly evident in 10% beeswax samples. The addition of clove bud oil resulted in low levels of hyeoperxide and MDA, and protected against texture and color deterioration during the storage period. Additionally, the Pearson correlation between lipid oxidation indices and parameters of texture and color has been found to exhibit a limited association, with the exception of the a* and b* values, which show a strong correlation.

5.
J Mech Behav Biomed Mater ; 160: 106716, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39288665

RESUMO

Polydimethylsiloxane (PDMS) is an elastomer that has received primary attention from researchers due to its excellent physical, chemical, and thermal properties, together with biocompatibility and high flexibility properties. Another material that has been receiving attention is beeswax because it is a natural raw material, extremely ductile, and biodegradable, with peculiar hydrophobic properties. These materials are applied in hydrophobic coatings, clear films for foods, and films with controllable transparency. However, there is no study with a wide range of mechanical, optical, and wettability tests, and with various proportions of beeswax reported to date. Thus, we report an experimental study of these properties of pure PDMS with the addition of beeswax and manufactured in a multifunctional vacuum chamber. In this study, we report in a tensile test a 37% increase in deformation of a sample containing 1% beeswax (BW1%) when compared to pure PDMS (BW0%). The Shore A hardness test revealed a 27% increase in the BW8% sample compared to BW0%. In the optical test, the samples were subjected to a temperature of 80 °C and the BW1% sample increased 30% in transmittance when compared to room temperature making it as transparent as BW0% in the visible region. The thermogravimetric analysis showed thermal stability of the BW8% composite up to a temperature of 200 °C. The dynamic mechanical analysis test revealed a 100% increase in the storage modulus of the BW8% composite. Finally, in the wettability test, the composite BW8% presented a contact angle with water of 145°. As a result of this wide range of tests, it is possible to increase the hydrophobic properties of PDMS with beeswax and the composite has great potential for application in smart devices, food and medicines packaging films, and films with controllable transparency, water-repellent surfaces, and anti-corrosive coatings.

6.
Environ Sci Pollut Res Int ; 31(39): 51504-51520, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39112900

RESUMO

This study aims to use beeswax, a readily available and cost-effective organic material, as a novel phase change material (PCM) within blends of low-density polyethylene (LDPE) and styrene-b-(ethylene-co-butylene)-b-styrene (SEBS). LDPE and SEBS act as support materials to prevent beeswax leakage. The physicochemical properties of new blended phase change materials (B-PCM) were determined using an X-ray diffractometer and an infrared spectrometer, confirming the absence of a chemical reaction within the materials. A scanning electron microscope was used for microstructural analysis, indicating that the interconnection of the structure allowed better thermal conductivity. Thermal gravimetric analysis revealed enhanced thermal stability for the B-PCM when combined with SEBS, especially within its operating temperature range. Analysis of phase change temperature and latent heat with differential scanning calorimetry showed no major difference in the melting point of the various PCM blends created. During the melting/solidification process, the B-PCMs possess excellent performance as characterized by W70/P30 (112.45 J.g-1) > W70/P20/S10 (94.28 J.g-1) > W70/P10/S20 (96.21 J.g-1) of latent heat storage. Additionally, the blends tend to reduce supercooling compared to pure beeswax. During heating and cooling cycles, the B-PCM exhibited minimal leakage and degradation, especially in blends containing SEBS. In comparison to the rapid temperature drop observed during the cooling process of W70/P30, the temperature decline of W70/P30 was slower and longer, as demonstrated by infrared thermography. The addition of LDPE to the PCM reduced melting time, indicating an improvement in the thermal energy storage reaction time to the demand. According to the obtained findings, increasing the SEBS concentration in the composite increased the thermal stability of the resulting PCM blends significantly. Despite the challenges mentioned earlier, SEBS proved to be an effective encapsulating material for beeswax, whereas LDPE served well as a supporting material. Leak tests were performed to find the ideal mass ratio, and weight loss was analyzed after multiple cycles of cooling and heating at 70 °C. The morphology, thermal characteristics, and chemical composition of the beeswax/LDPE/SEBS composite were all examined. Beeswax proves to be a highly effective phase change material for storing thermal energy within LDPE/SEBS blends.


Assuntos
Ceras , Ceras/química , Polietileno/química
7.
Food Chem X ; 23: 101676, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39148530

RESUMO

Oleogel significantly affects the product's sensory properties, texture, and shelf life. The goal of this study was to create oleogel by combining corn oil and sunflower oil and utilizing beeswax as a structural agent. A variety of physicochemical analyses were done to evaluate the quality of oleogel, including peroxide value, iodine value, saponification value, fatty acid, rheological parameters and firmness. Different percentages of oleogel, ranging from 0% to 75%, were used to substitute margarine in cookies. The cookies' quality was evaluated using proximate analysis, color analysis, texture analysis, calorific value, and sensory analysis. The study yielded substantial results by finding the ideal margarine-to-oleogel mix ratio, allowing for the manufacturing of high-quality cookies with a greater degree of unsaturation. Cookies with oleogel showed higher levels of unsaturation and better properties, making them the preferred option among consumers.

8.
Artigo em Inglês | MEDLINE | ID: mdl-39068867

RESUMO

Beeswaxes are used as a coating agent or as a wrapping material for food products making them potentially ingested by consumers. There is no regulation yet in Europe giving maximum levels of contaminants in this type of product. Nevertheless, being a natural product, they are exposed to environmental pollution, thus it appears necessary to establish their contamination rate in order to evaluate potential human exposure. In this study, a method of extraction of different environmental contaminants including pesticides, phthalates, PAHs and phenols was developed. Based on a hot Soxhlet extraction, followed by cleaning steps, the method was validated for the quantitation of the cited contaminants by LC-MS/MS and GC-(MS)/MS. Three different types of waxes were analyzed including typical white waxes (Cera Alba) and yellow waxes (Cera Flava). It was shown that all waxes had the presence of at least one contaminant and that phthalates, in particular DEHP, was present in all beeswax samples. Insecticides were found in majority among all the classes of pesticides screened. The yellow waxes were found to be contaminated with the highest rates of PAHs (60%), pesticides (75%) and phenols (40%). The detection frequency of PAHs, in contrast to phthalates, was the lowest for all the types of waxes combined.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas , Espectrometria de Massas em Tandem , Ceras , Ceras/análise , Ceras/química , Espectrometria de Massas em Tandem/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Reprodutibilidade dos Testes , Poluentes Ambientais/análise , Cromatografia Líquida/métodos , Hidrocarbonetos Policíclicos Aromáticos/análise , Limite de Detecção , Fenóis/análise , Praguicidas/análise , Ácidos Ftálicos/análise , Modelos Lineares
9.
Food Chem ; 458: 140188, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38964098

RESUMO

Oleogels have been used in the gelled surimi products to replace animal fats due to its structure characteristics. The effect of structure characteristics in fish oil oleogels on the mechanism of oil/water retention was investigated in meat emulsions. Beeswax assembly improved the oil and water retention. The unsaturation degree of fatty acids lowered the mobility of bound water, immobilized water as well as bound fat in the fish oil oleogel, but enhanced the mobility of free water and protons of unsaturated fatty acids. Beeswax addition and oil phase characteristics could enhance ß-sheets, disulfide bonds and hydrophobic force to improve the viscoelasticity, gel strength and oil/water retention. Beeswax assembly facilitated the tight micro-sol network and filling effect, and high unsaturation degree promoted the emulsification effect, thus reducing phase transition temperature and juice loss. The study could lay the foundation for development of gelled shrimp meat products with EPA and DHA.


Assuntos
Emulsões , Óleos de Peixe , Compostos Orgânicos , Penaeidae , Transição de Fase , Água , Ceras , Animais , Ceras/química , Óleos de Peixe/química , Emulsões/química , Água/química , Penaeidae/química , Compostos Orgânicos/química , Géis/química , Produtos da Carne/análise
10.
Food Chem ; 459: 140337, 2024 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38996640

RESUMO

Oleogels containing bioactive substances such as citral (CT) are used as functional food ingredients. However, little information is available on the influence of different oleogel network structure caused by CT addition and fatty acid distribution on its digestion behavior. Coconut oil, palm oil, high oleic peanut oil, safflower seed oil, and perilla seed oil were used in this study. The results showed that perilla seed oil-CT-based oleogels had the highest oil-holding capacity (99.03 ± 0.3), whereas CT addition higher than 10 wt% could lead to the morphology collapse of oleogels. Physical and thermodynamic analyses revealed that CT could reduce oleogel hardness and higher unsaturated fatty acid content is more likely to form oleogel with stable and tight crystalline network. Moreover, the dense structure of oleogels hinders the contact between oleogels and lipase, thus weakening triglyceride digestion. These findings provide valuable insights into the design of oleogels loading with CT.


Assuntos
Monoterpenos Acíclicos , Digestão , Ácidos Graxos , Compostos Orgânicos , Óleos de Plantas , Monoterpenos Acíclicos/química , Óleos de Plantas/química , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Compostos Orgânicos/química , Monoterpenos/química , Modelos Biológicos , Humanos , Óleo de Palmeira/química , Óleo de Coco/química , Ácido alfa-Linolênico
11.
J Vet Res ; 68(2): 249-254, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38947155

RESUMO

Introduction: No maximum residue limits in honey have been legislated in the EU for antimicrobial substances such as sulphonamides, and they are not permitted, therefore, for treating honey bees unless in a cascade system. Since sulphonamides are used illegally in apiculture to treat foulbrood, their residues can be found in honey and other apiculture products, including beeswax. The study aimed to assess the contamination of honey from beeswax containing residues of 10 sulphonamides (sulphadimethoxine (SDM), sulphadoxine (SDX), sulphamonomethoxine (SMM), sulphamethoxazole (SMX), sulphameter (SMT), sulphamethazine (SMZ), sulphamerazine (SMR), sulphadiazine (SDA), sulphathiazole (STZ) and sulphacetamide (SCA)). Material and Methods: Wax-based foundations fortified with 10 sulphonamides at 10,000 µg/kg were evaluated for sulphonamide concentrations and then placed in a beehive so that honey bees (Apis mellifera L.) could build honeycombs with them. Frames of capped honey were taken out of the hives one month later and honey was sampled from them. The honeycombs were subsequently incubated in a laboratory at 35°C for five months, and honey was sampled monthly. The honey sulphonamide concentrations were measured using liquid chromatography-tandem mass spectrometry and compared to the wax-based foundation concentrations. Results: The maximum transfers to honey of the initial amount of SDM, SDX, SMM, SMX, SMT, SMZ, SMR, SDA, STZ and SCA in the wax-based foundations were 42.6, 34.3, 31.7, 30.1, 29.5, 25.2, 18.7, 16.1, 9.5 and 8.6%, respectively. Conclusion: This study demonstrated that every tested sulphonamide could migrate from beeswax in antimicrobial-tainted honeycombs to honey, SDM having the highest migration potential and SCA the lowest.

12.
Molecules ; 29(13)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38999144

RESUMO

This study assessed the nutritional profile of camellia oil through its fatty acid composition, highlighting its high oleic acid content (81.4%), followed by linoleic (7.99%) and palmitic acids (7.74%), demonstrating its excellence as an edible oil source. The impact of beeswax (BW) and glycerol monolaurate (GML) on camellia oil oleogels was investigated, revealing that increasing BW or GML concentrations enhanced hardness and springiness, with 10% BW oleogel exhibiting the highest hardness and springiness. FTIR results suggested that the structure of the oleogels was formed by interactions between molecules without altering the chemical composition. In biscuits, 10% BW oleogel provided superior crispness, expansion ratio, texture, and taste, whereas GML imparted a distinct odor. In sausages, no significant differences were observed in color, water retention, and pH between the control and replacement groups; however, the BW group scored higher than the GML group in the sensory evaluation. The findings suggest that the BW oleogel is an effective fat substitute in biscuits and sausages, promoting the application of camellia oil in food products.


Assuntos
Camellia , Lauratos , Monoglicerídeos , Compostos Orgânicos , Óleos de Plantas , Ceras , Camellia/química , Ceras/química , Óleos de Plantas/química , Lauratos/química , Compostos Orgânicos/química , Compostos Orgânicos/análise , Monoglicerídeos/química , Produtos da Carne/análise , Paladar , Ácidos Graxos/química , Ácidos Graxos/análise
13.
J Food Sci ; 89(7): 4372-4388, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38837376

RESUMO

High concentrations of carnauba waxes (CRWs) that can compromise organoleptic properties are required to create self-sustained and functional oleogels. The weak physical properties and stability of 4% w/w CRW-rice bran oil (RBO) oleogel were addressed by substituting CRW with beeswax (BW) in different weight ratios. The texture profile analyzer revealed that substituting only 10% (weight ratio) of CRW with BW improved the hardness compared to the mono-CRW oleogel. The hardness of binary oleogels increased gradually as the proportion of BW increased. At a BW ratio of 70% or more, the hardness was three times higher than that of mono-BW oleogel. Rheology analysis showed the same trend as the large deformation test; however, the hardest binary oleogels had lower critical strain and yield point compared to the mono-wax oleogels, implying that they are more prone to lose their structure upon applied stress. Nevertheless, nearly all binary mixtures (except for 10%BW90%CRW) showed oil-binding capacities above 99%, suggesting improved nucleation and crystallization process. Polarized light microscopy showed the coexistence of BW and CRW crystals and changes in the size and arrangement of wax crystals upon proportional changes of the two waxes. X-ray diffraction confirmed no differences in the peaks' location, and all oleogels had ß' polymorphism. Differential scanning calorimetry showed eutectic melting behavior in some binary blends. Oxidation stability in the binary wax oleogels improved as compared to the mono-wax oleogel and bulk RBO. BW and CRW mixtures have promising oil-structuring abilities and have various properties at different ratios that have the potential to be used as solid fat substitutes. PRACTICAL APPLICATION: As a trending green oil-structuring technology, oleogelation has shown great potential to reduce saturated fats in food systems. The current research provides valuable fundamental information on the strong synergistic interactions between beeswax and carnauba wax that have the potential to be used as solid fat substitutes created with a much lower total concentration of the required wax. This will help create wax oleogels with better organoleptic properties and less negative waxy mouthfeel. Such knowledge could prove beneficial for the development of healthy products that have potential applications in meat, bakery, dairy, pharmaceutical, as well as cosmetic industries.


Assuntos
Compostos Orgânicos , Oxirredução , Reologia , Ceras , Ceras/química , Compostos Orgânicos/química , Difração de Raios X
14.
ACS Appl Mater Interfaces ; 16(24): 31399-31406, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38836799

RESUMO

Layered perovskites, a novel class of two-dimensional (2D) layered materials, exhibit versatile photophysical properties of great interest in photovoltaics and optoelectronics. However, their instability to environmental factors, particularly water, has limited their utility. In this study, we introduce an innovative solution to the problem by leveraging the unique properties of natural beeswax as a protective coating of 2D-fluorinated phenylethylammonium lead iodide perovskite. These photodetectors show outstanding figures of merit, such as a responsivity of >2200 A/W and a detectivity of 2.4 × 1018 Jones. The hydrophobic nature of beeswax endows the 2D perovskite sensors with an unprecedented resilience to prolonged immersion in contaminated water, and it increases the lifespan of devices to a period longer than one year. At the same time, the biocompatibility of the beeswax and its self-cleaning properties make it possible to use the very same turbidity sensors for healthcare in photoplethysmography and monitor the human heartbeat with clear systolic and diastolic signatures. Beeswax-enabled multipurpose optoelectronics paves the way to sustainable electronics by ultimately reducing the need for multiple components.


Assuntos
Compostos de Cálcio , Óxidos , Titânio , Ceras , Compostos de Cálcio/química , Titânio/química , Óxidos/química , Ceras/química , Humanos , Monitoramento Ambiental/instrumentação , Monitoramento Ambiental/métodos , Chumbo/química , Chumbo/análise
15.
Pharmaceutics ; 16(5)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38794262

RESUMO

In this study, a methodology for synthesizing oleogels based on linseed oil and emulsifiers, such as beeswax and Tween 20 and Tween 80, was developed. Linseed oil served as the main oil phase, while beeswax acted as a gelling and emulsifying agent. Tween compounds are non-ionic surfactants composed of hydrophobic and hydrophilic parts, allowing for the formation of a stable system with promising properties. Surface wetting analysis of the obtained oleogels, FT-IR spectroscopy, and determination of relative and absolute humidity over time, as well as optical microscope analysis and rheological analysis of the obtained oleogels, were conducted as part of the research. The results indicate that increasing the amount of Tween 20 decreases the hydrophilicity of the oleogel, while Tween 80 exhibits the opposite effect. Surface energy analysis suggests that a higher content of Tween 20 may lead to a reduction in the surface energy of the oleogels, which may indicate greater material stability. Changes in relative humidity and FT-IR spectral analysis confirm the influence of emulsifiers on the presence of characteristic functional groups in the structure of the oleogels. Additionally, microscopic analysis suggests that an emulsifier with a longer hydrophobic tail leads to a denser material structure.

16.
Int J Biol Macromol ; 272(Pt 1): 132532, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38806082

RESUMO

The study involved preparing and applying edible nano-emulsion coatings containing hydroxypropyl methylcellulose (HPMC), beeswax (BW), and essential oils (thyme, cinnamon, clove, and peppermint) onto sweet cherries. The application was conducted at 4 °C, and the coated cherries were stored for 36 days. This research examines synthesized nano-emulsions physicochemical properties and antibacterial and antifungal activities (C1, C2, and C3). Additionally, it evaluates the quality parameters of control and coated sweet cherry samples. The features of the three edible coatings were assessed, and the findings from the zeta sizer, zeta potential, FTIR, and SEM analyses were deemed satisfactory. It was observed that the application of nano-emulsion coating C1 yielded positive results in maintaining quality attributes such as total suspended solids (TSS), total solids (TS), color, weight loss, respiration rate, firmness, total phenolic contents, and sensory evaluations. Nano-emulsion coating C1 demonstrated efficacy as an antibacterial and antifungal agent against foodborne pathogens E. coli and A. niger, respectively. The current research results are promising and applicable in food industries. The implications suggest that composite nano-emulsion, specifically nano-emulsion edible coatings, can be extensively and effectively used to preserve the quality and shelf life of fruits and vegetables. Furthermore, the environmental waste from conventional food packaging will be minimized using edible packaging applications.


Assuntos
Derivados da Hipromelose , Óleos Voláteis , Ceras , Ceras/química , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Derivados da Hipromelose/química , Antibacterianos/farmacologia , Antibacterianos/química , Conservação de Alimentos/métodos , Armazenamento de Alimentos , Emulsões , Cymbopogon/química , Filmes Comestíveis , Antifúngicos/farmacologia , Antifúngicos/química , Escherichia coli/efeitos dos fármacos , Frutas/química
17.
Front Nutr ; 11: 1323067, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38633604

RESUMO

In recent years, lipophilic bioactive compounds have gained much attention due to their wide range of health-benefiting effects. However, their low solubility and susceptibility to harsh conditions such as high temperatures and oxidation stress have limited their potential application for the development of functional foods and nutraceutical products in the food industry. Nanoencapsulation can help to improve the stability of hydrophobic bioactive compounds and protect these sensitive compounds during food processing conditions, thus overcoming the limitation of their pure use in food products. The objective of this work was to co-entrap vitamin D3 (VD3) and omega 3 (ω3) as hydrophobic bioactive compounds providing significant health benefits in beeswax solid lipid nanoparticles (BW. SLNs) for the first time and to investigate the effect of different concentrations of VD3 (5 and 10 mg/mL) and ω3 (8 and 10 mg) on encapsulation efficiency (EE). Our findings revealed that the highest EE was obtained for VD3 and ω3 at concentrations of 5 mg/mL and 10 mg, respectively. VD3/ω3 loaded BW. SLNs (VD3/ω3-BW. SLNs) were prepared with zeta potential and size of-32 mV and 63.5 nm, respectively. Results obtained by in-vitro release study indicated that VD3 release was lower compared to ω3 in the buffer solution. VD3 and ω3 incorporated in BW. SLNs demonstrated excellent stability under alkaline and acidic conditions. At highly oxidizing conditions, 96.2 and 90.4% of entrapped VD3 and ω3 remained stable in nanoparticles. Moreover, nanoparticles were stable during 1 month of storage, and no aggregation was observed. In conclusion, co-loaded VD3 and ω3 in BW. SLNs have the great potential to be used as bioactive compounds in food fortification and production of functional foods.

18.
Gels ; 10(4)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38667633

RESUMO

With the aim to produce solid fats with a high percentage of unsaturated fatty acids, oleogels based on olive and peanut oil with different concentrations of beeswax (BW) and glycerol monostearate (GMS) as oleogelators were studied and compared. The critical oleogelator concentration for both BW and GMS was 3%. Thermal properties of the developed GMS-based oleogels pointed to a polymorphic structure, confirmed by the presence of two exothermic and endothermic peaks. All developed oleogels released less than 4% of oil, highlighting their high oil binding capacity. A morphology evaluation of oleogels showed platelet-like crystals, characterized by a cross-sectional length of 50 µm in BW-based oleogels and irregular clusters of needle-like crystals with a higher diameter in GMS-based oleogels. BW-based oleogels showed a solid fat content ranging from 1.16% to 2.27%, and no solid fat content was found at 37 °C. GMS-based oleogels reached slightly higher values of SFC that ranged from 1.58% to 2.97% at 25 °C and from 1.00% to 1.75% at 37 °C. Olive oil-based oleogels with GMS showed higher firmness compared with BW-based ones. The stronger structure network in olive oil/GMS-based oleogels provided a real physical barrier to oxidants, showing a high oxidation stability.

19.
Food Res Int ; 184: 114213, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38609212

RESUMO

Understanding the impact of minor components and the fatty acid profile of oil on oleogel properties is essential for optimizing their characteristics. Considering the scarcity of literature addressing this aspect, this study aimed to explore the correlation between these factors and the properties of beeswax and stearic acid-based oleogels derived from rice bran oil and sesame oil. Minor oil components were modified by stripping the oil, heating the oil with water, and adding ß-sitosterol. Oleogels were then prepared using a mixture of beeswax and stearic acid (3:1, w/w) at a concentration of 11.74 % (w/w). The properties of oils and oleogels were evaluated. The findings indicated that minor components and fatty acid composition of the oils substantially influence the oleogel properties. Removing minor components by stripping resulted in smaller and less uniformly distributed crystals and less oil binding capacity compared to the oleogels prepared from untreated oils. A moderate amount of minor components exhibited a significant influence on oleogel properties. The addition of ß-sitosterol did not show any influence on oleogel properties except for the oleogel made from untreated oil blend added with ß-sitosterol which had more uniform crystals in the microstructure and demonstrated better rheological stability when stored at 5 °C for two months. The oil composition did not show any influence on the thermal and molecular properties of oleogels. Consequently, the oleogel formulation derived from the untreated oil blend enriched with ß-sitosterol was identified as the optimal formula for subsequent development. The findings of this study suggest that the physical and mechanical properties as well as the oxidative stability of beeswax and stearic acid-based oleogels are significantly affected by the minor constituents and fatty acid composition of the oil. Moreover, it demonstrates that the properties of oleogels can be tailored by modifying oil composition by blending different oils.


Assuntos
Ácidos Graxos , Ácidos Esteáricos , Ceras , Óleo de Farelo de Arroz , Compostos Orgânicos
20.
Drug Dev Ind Pharm ; 50(5): 432-445, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38526993

RESUMO

OBJECTIVE: The purpose of this research was to determine any connections between the characteristics of oleogels made of beeswax and the impact of mango butter. METHODS: Oleogel was prepared through inverted tube methods, and optimized through oil binding capacity. Other evaluations like bright field and polarized microscopy, Fourier-transform infrared (FTIR) spectroscopy, crystallization kinetics, mechanical study, and X-ray diffractometry (XRD). The drug release kinetic studies and in vitro antibacterial studies were performed. RESULTS: FTIR study reveals that the gelation process does not significantly alter the chemical composition of the individual components. Prepared gel exhibiting fluid-like behavior or composed of brittle networks is particularly vulnerable to disruptions in their network design. The incorporation of mango butter increases the drug permeation. In-vitro microbial efficacy study was found to be excellent. CONCLUSION: The studies revealed that mango butter can be used to modify the physico-chemical properties of the oleogels.


Assuntos
Mangifera , Compostos Orgânicos , Óleos de Plantas , Ceras , Ceras/química , Mangifera/química , Compostos Orgânicos/química , Óleos de Plantas/química , Óleos de Plantas/farmacologia , Sementes/química , Antibacterianos/química , Antibacterianos/farmacologia , Antibacterianos/administração & dosagem , Administração Tópica , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Liberação Controlada de Fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA