Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.730
Filtrar
1.
Heliyon ; 10(13): e34141, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39071615

RESUMO

China is rich in mineral resources, and problems of goaf formed in the process of resource exploitation are serious obstacle to the development of China's economic, so it is of great significance for the assessment and management of goafs. This paper introduces emerging dung beetle optimizer (DBO) algorithm and establishes DBO-BP (back-propagation) model, at the same time, it is compared with a series of heuristic algorithms coupled with BP neural network models: PSO (particle swarm optimization) - BP model, WOA (whale optimization algorithm) - BP model, and SSA (sparrow search algorithm) - BP model. Then they are applied to evaluate the hazard of goafs, the result shows that the DBO-BP model gets the highest train set accuracy, which is at least 2.7 % higher than other models, while the DBO-BP model obtains the highest test set accuracy, meanwhile its effectiveness and stability have also been proven. Finally we apply the established DBO-BP model to evaluate the hazard of the tungsten mine goaf of Yaogangshan in Hunan Province, and its excellent practicability was confirmed. This paper may provide a reference for the solution of nonlinear engineering problems.

2.
Curr Biol ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39067451

RESUMO

The extraordinary diversification of beetles on Earth is a textbook example of adaptive evolution. Yet, the tempo and drivers of this super-radiation remain largely unclear. Here, we address this problem by investigating macroevolutionary dynamics in darkling beetles (Coleoptera: Tenebrionidae), one of the most ecomorphologically diverse beetle families (with over 30,000 species). Using multiple genomic datasets and analytical approaches, we resolve the long-standing inconsistency over deep relationships in the family. In conjunction with a landmark-based dataset of body shape morphology, we show that the evolutionary history of darkling beetles is marked by ancient rapid radiations, frequent ecological transitions, and rapid bursts of morphological diversification. On a global scale, our analyses uncovered a significant pulse of phenotypic diversification proximal to the Cretaceous-Palaeogene (K/Pg) mass extinction and convergence of body shape associated with recurrent ecological specializations. On a regional scale, two major Australasian radiations, the Adeliini and the Heleine clade, exhibited contrasting patterns of ecomorphological diversification, representing phylogenetic niche conservatism versus adaptive radiation. Our findings align with the Simpsonian model of adaptive evolution across the macroevolutionary landscape and highlight a significant role of ecological opportunity in driving the immense ecomorphological diversity in a hyperdiverse beetle group.

3.
Entropy (Basel) ; 26(7)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-39056897

RESUMO

Accurate prediction of air quality is crucial for assessing the state of the atmospheric environment, especially considering the nonlinearity, volatility, and abrupt changes in air quality data. This paper introduces an air quality index (AQI) prediction model based on the Dung Beetle Algorithm (DBO) aimed at overcoming limitations in traditional prediction models, such as inadequate access to data features, challenges in parameter setting, and accuracy constraints. The proposed model optimizes the parameters of Variational Mode Decomposition (VMD) and integrates the Informer adaptive sequential prediction model with the Convolutional Neural Network-Long Short Term Memory (CNN-LSTM). Initially, the correlation coefficient method is utilized to identify key impact features from multivariate weather and meteorological data. Subsequently, penalty factors and the number of variational modes in the VMD are optimized using DBO. The optimized parameters are utilized to develop a variationally constrained model to decompose the air quality sequence. The data are categorized based on approximate entropy, and high-frequency data are fed into the Informer model, while low-frequency data are fed into the CNN-LSTM model. The predicted values of the subsystems are then combined and reconstructed to obtain the AQI prediction results. Evaluation using actual monitoring data from Beijing demonstrates that the proposed coupling prediction model of the air quality index in this paper is superior to other parameter optimization models. The Mean Absolute Error (MAE) decreases by 13.59%, the Root-Mean-Square Error (RMSE) decreases by 7.04%, and the R-square (R2) increases by 1.39%. This model surpasses 11 other models in terms of lower error rates and enhances prediction accuracy. Compared with the mainstream swarm intelligence optimization algorithm, DBO, as an optimization algorithm, demonstrates higher computational efficiency and is closer to the actual value. The proposed coupling model provides a new method for air quality index prediction.

4.
Insects ; 15(7)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39057274

RESUMO

The acoustic communication system (ACS) in bark beetles has been studied mainly in species of the genera Dendroctonus, Ips and Polygraphus. Specifically, ACS of the roundheaded pine beetle, Dendroctonus adjunctus, has been little studied. In this study, we described the stridulatory apparatus of this beetle using optical and scanning electron microscopy and recorded the call types produced by males in three behavioral contexts: stress, female-male-, and male-male interactions. From the spectrograms and waveforms, call types, as well as temporal (tooth strike, tooth strike rate, and intertooth strike interval) and spectral features (minimum, maximum and dominant frequency), were determined. Males have a functional elytro-tergal stridulatory apparatus-females do not-consisting of a file for the pars stridens and two lobes for the plectrum. Most of spectro-temporal features were statistically different between single- and multi-noted calls and across the three behavioral contexts. In the male-male interaction, a new type of call named "withdrawal" was produced by the male withdrawing or fleeing. Our results suggest that the spectro-temporal features of single- and multiple-noted calls in the three behavioral conditions are specific and different from each other. Yet, the combination of single and multiple calls determines an overall calling pattern characteristic of the tested behaviors and, therefore, is species-specific.

5.
J Fungi (Basel) ; 10(7)2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-39057327

RESUMO

In this study, yeasts from the gut of O. barnabita larvae were isolated and molecularly identified. It is worth noting that this research provides the first analysis of the gut yeast community in O. barnabita larvae in Lithuania, which is a significant contribution to the field. Two hermit-like L3-praepupa instars were collected from a decaying oak log in Lithuania. The isolation, morphology, biochemistry, and physiology of the yeast isolates were characterized using standards commonly employed in yeast taxonomy studies. The isolates were identified by sequencing the large subunit (26S) rDNA (D1/D2 domain of the LSU). All gut compartments were colonized by the yeast. A total of 45 yeast strains were obtained from the gut of both O. barnabita larvae, with 23 strains originating from Larva 1, 16 strains from Larva 2, and 6 strains from the galleries. According to our identification results of the 45 yeast strains, most of the species were related to Ascomycota, with most of them belonging to the Saccharomycetales order. Yeasts of the genera Candida, Debaryomyces, Meyerozyma, Priceomyces, Schwanniomyces, Spencermartinsiella, Trichomonascus, and Blastobotrys were present in gut of O. barnabita larvae. Species of the Trichosporonales order represented the Basidiomycota phylum.

6.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124718, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38950481

RESUMO

A new transfer approach was proposed to share calibration models of the hexamethylenetetramine-acetic acid solution for studying hexamethylenetetramine concentration values across different near-infrared (NIR) spectrometers. This approach combines Savitzky-Golay first derivative (S_G_1) and orthogonal signal correction (OSC) preprocessing, along with feature variable optimization using an adaptive chaotic dung beetle optimization (ACDBO) algorithm. The ACDBO algorithm employs tent chaotic mapping and a nonlinear decreasing strategy, enhancing the balance between global and local search capabilities and increasing population diversity to address limitations observed in traditional dung beetle optimization (DBO). Validated using the CEC-2017 benchmark functions, the ACDBO algorithm demonstrated superior convergence speed, accuracy, and stability. In the context of a partial least squares (PLS) regression model for transferring hexamethylenetetramine-acetic acid solutions using NIR spectroscopy, the ACDBO algorithm excelled over alternative methods such as uninformative variable elimination, competitive adaptive reweighted sampling, cuckoo search, grey wolf optimizer, differential evolution, and DBO in efficiency, accuracy of feature variable selection, and enhancement of model predictive performance. The algorithm attained outstanding metrics, including a determination coefficient for the calibration set (Rc2) of 0.99999, a root mean square error for the calibration set (RMSEC) of 0.00195%, a determination coefficient for the validation set (Rv2) of 0.99643, a root mean squared error for the validation set (RMSEV) of 0.03818%, residual predictive deviation (RPD) of 16.72574. Compared to existing OSC, slope and bias correction (S/B), direct standardization (DS), and piecewise direct standardization (PDS) model transfer methods, the novel strategy enhances the accuracy and robustness of model predictions. It eliminates irrelevant background information about the hexamethylenetetramine concentration, thereby minimizing the spectral discrepancies across different instruments. As a result, this approach yields a determination coefficient for the prediction set (Rp2) of 0.96228, a root mean squared error for the prediction set (RMSEP) of 0.12462%, and a relative error rate (RER) of 17.62331, respectively. These figures closely follow those obtained using DS and PDS, which recorded Rp2, RMSEP, and RER values of 0.97505, 0.10135%, 21.67030, and 0.98311, 0.08339%, 26.33552, respectively. Unlike conventional methods such as OSC, S/B, DS, and PDS, this novel approach does not require the analysis of identical samples across different instruments. This characteristic significantly broadens its applicability for model transfer, which is particularly beneficial for transferring specific measurement samples.

7.
Sensors (Basel) ; 24(13)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39001204

RESUMO

To address the issues of sluggish response and inadequate precision in traditional gate opening control systems, this study presents a novel approach for direct current (DC) motor control utilizing an enhanced beetle antennae search (BAS) algorithm to fine-tune the parameters of a fuzzy proportional integral derivative (PID) controller. Initially, the mathematical model of the DC motor drive system is formulated. Subsequently, employing a search algorithm, the three parameters of the PID controller are optimized in accordance with the control requirements. Next, software simulation is employed to analyze the system's response time and overshoot. Furthermore, a comparative analysis is conducted between fuzzy PID control based on the improved beetle antennae search algorithm, and conventional approaches such as the traditional beetle antennae search algorithm, the traditional particle swarm algorithm, and the enhanced particle swarm algorithm. The findings indicate the superior performance of the proposed method, characterized by reduced oscillations and accelerated convergence compared to the alternative methods.

8.
J Environ Manage ; 366: 121659, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38991344

RESUMO

Mountain forests play an essential role in protecting people and infrastructure from natural hazards. However, forests are currently experiencing an increasing rate of natural disturbances (including windthrows, bark beetle outbreaks and forest fires) that may jeopardize their capacity to provide this ecosystem service in the future. Here, we mapped the risk to forests' protective service across the European Alps by integrating the risk components of hazard (in this case, the probability of a disturbance occurring), exposure (the proportion of forests that protect people or infrastructure), and vulnerability (the probability that the forests lose their protective structure after a disturbance). We combined satellite-based data on forest disturbances from 1986 to 2020 with data on key forest structural characteristics (cover and height) from spaceborne lidar (GEDI), and used ensemble models to predict disturbance probabilities and post-disturbance forest structure based on topographic and climatic predictors. Wind and bark beetles are dominant natural disturbance agents in the Alps, with a mean annual probability of occurrence of 0.05%, while forest fires were less likely (mean annual probability <0.01%), except in the south-western Alps. After a disturbance, over 40% of forests maintained their protective structure, highlighting the important role of residual living or dead trees. Within 30 years after wind and bark beetle disturbance, 61% of forests were likely to either maintain or recover their protective structure. Vulnerability to fires was higher, with 51% of forest still lacking sufficient protective structure 30 years after fire. Fire vulnerability was especially pronounced at dry sites, which also had a high fire hazard. Combining hazard and vulnerability with the exposure of protective forests we identified 186 Alpine municipalities with a high risk to protective forests due to wind and bark beetles, and 117 with a high fire risk. Mapping the disturbance risk to ecosystem services can help identify priority areas for increasing preparedness and managing forests towards lower susceptibility under an intensifying disturbance regime.

9.
Zookeys ; 1206: 231-239, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39015532

RESUMO

The Pselaphodes Westwood complex of genera is represented in Hubei Province by four genera and eight species. Recent field work at Wanchaoshan Nature Reserve, Xingshan County revealed a small series of material belonging to this complex. In this paper, we describe Pselaphodeswanchaoshanus sp. nov. and provide new faunistic data for P.nomurai Yin, Li & Zhao. A key to the hitherto known members of Pselaphodes complex that occur in Hubei is provided to facilitate ready species identification.

10.
Biodivers Data J ; 12: e120340, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39015798

RESUMO

Background: The univoltine leaf beetle Psylliodesattenuata (Koch, 1803) is a pest of Cannabis and Humulus (Cannabaceae) and native to the Palaearctic Region, known from eastern Asia to western Europe. New information: First North American records are presented for P.attenuata from Canada: Ontario and Québec. Adult beetle feeding damage to hops Humuluslupulus L. (Cannabacaea) plants is recorded from Québec. Diagnostic information is presented to distinguish P.attenuata from other North American Chrysomelidae and a preliminary assessment of its potential to spread in North America is presented. While our climate analysis is limited by a lack of data, it appears P.attenuata is physiologically capable of persisting throughout the range of Humulus in North America.The United States of America and Canada are now known to be home to 71 or more species of adventive Chrysomelidae.

11.
Sci Rep ; 14(1): 17016, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39043811

RESUMO

As the most numerous group of animals on Earth, insects are found in almost every ecosystem. Their useful role in the environment is priceless; however, for humans, their presence may be considered negative or even harmful. For years, people have been trying to control the number of pests by using synthetic insecticides, which eventually causes an increased level of resistance to applied compounds. The effects of synthetic insecticides have encouraged researchers to search for alternatives and thus develop safe compounds with high specificity. Using knowledge about the physiology of insects and the functionality of compounds of insect origin, a new class of bioinsecticides called peptidomimetics, which are appropriately modified insect analogues, was created. One promising compound that might be successfully modified is the thirteen amino acid peptide alloferon (HGVSGHGQHGVHG), which is obtained from the hemolymph of the blue blowfly Calliphora vicinia. Our research aimed to understand the physiological properties of alloferon and the activity of its peptidomimetics, which will provide the possibility of using alloferon or its analogues in the pharmaceutical industry, as a drug or adjuvant, or in agriculture as a bioinsecticide. We used alloferon and its three peptidomimetics, which are conjugates of the native peptide with three unsaturated fatty acids with various chain lengths: caprylic, myristic, and palmitic. We tested their effects on the morphology and activity of the reproductive system and the embryogenesis of the Tenebrio molitor beetle. We found that the tested compounds influenced the growth and maturation of ovaries and the expression level of the vitellogenin gene. The tested compounds also influenced the process of egg laying, embryogenesis, and offspring hatching, showing that alloferon might be a good peptide for the synthesis of effective bioinsecticides or biopharmaceuticals.


Assuntos
Reprodução , Tenebrio , Animais , Tenebrio/efeitos dos fármacos , Reprodução/efeitos dos fármacos , Feminino , Inseticidas/farmacologia , Inseticidas/química , Masculino , Peptidomiméticos/farmacologia , Peptidomiméticos/química , Hemolinfa/metabolismo , Hemolinfa/efeitos dos fármacos , Peptídeos/farmacologia , Peptídeos/química , Larva/efeitos dos fármacos
12.
Environ Entomol ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39052937

RESUMO

Identifying dormancy traits is important for predicting insect population success, particularly in a changing climate that could disrupt evolved traits. The mountain pine beetle (Dendroctonus ponderosae Hopkins) is native to North America, is responsible for millions of acres of tree mortality, and is expanding northward in Canada. Research has identified thermal traits important to epidemic-phase ecology that vary among populations. Genomic research identified 3 mountain pine beetle haplogroups representing Pleistocene glacial refugia. Significant variation in generation timing aligning with the haplogroups has been observed. The adult stage was previously identified as the likely cause of differences among populations, although the mechanism(s) remain unclear. We tested for an adult summer diapause that varies among populations from 2 haplogroups, southern Colorado (CO) (central haplogroup) and southern Idaho (ID) (eastern haplogroup) using respirometry and reproduction experiments. Warm temperatures (25 °C) resulted in reduced respiration rates of central haplogroup mountain pine beetle compared to a cool temperature treatment (15 °C), whereas respiration of the eastern haplogroup did not differ between the treatments. Mated pairs of central haplogroup mountain pine beetle reared/held at 15 °C were more likely to be classified with a higher reproductive success rating compared to pairs reared/held at 25 °C. These results support a facultative summer adult diapause in southern CO central haplogroup mountain pine beetle. Manifestation of this diapause was low/absent among adults from the northerly ID location. This diapause likely serves to maintain univoltinism shown to be important for mountain pine beetle epidemic-phase ecology. The variation occurring among haplogroups highlights the long-term, evolved processes driving local adaptations in mountain pine beetle.

13.
PeerJ ; 12: e17597, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38974417

RESUMO

The huhu beetle (Prionoplus reticularis) is the largest endemic beetle found throughout Aotearoa New Zealand, and is characterised by feeding on wood during its larval stage. It has been hypothesised that its gut microbiome plays a fundamental role in the degradation of wood. To explore this idea we examined the fungal and bacterial community composition of huhu grubs' frass, using amplicon sequencing. Grubs were reared on an exclusive diet of either a predominantly cellulose source (cotton) or lignocellulose source (pine) for 4 months; subsequently a diet switch was performed and the grubs were grown for another 4 months. The fungal community of cellulose-reared huhu grubs was abundant in potential cellulose degraders, contrasting with the community of lignocellulose-reared grubs, which showed abundant potential soft rot fungi, yeasts, and hemicellulose and cellulose degraders. Cellulose-reared grubs showed a less diverse fungal community, however, diet switch from cellulose to lignocellulose resulted in a change in community composition that showed grubs were still capable of utilising this substrate. Conversely, diet seemed to have a limited influence on huhu grub gut bacterial communities.


Assuntos
Besouros , Microbioma Gastrointestinal , Lignina , Microbioma Gastrointestinal/fisiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Animais , Lignina/metabolismo , Besouros/microbiologia , Celulose/metabolismo , Dieta , Nova Zelândia , Fungos/genética , Fungos/metabolismo , Bactérias/genética , Bactérias/classificação , Bactérias/metabolismo
14.
J Econ Entomol ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38981127

RESUMO

Sulfur dioxide (SO2) fumigation was studied in laboratory to determine its potential as an alternative treatment for postharvest control of stored product insects, confused flour beetle, Tribolium confusum Jacquelin du Val (Coleoptera: Tenebrionidae), and rice weevil, Sitophilus oryzae (L.) (Coleoptera: Curculionidae). Three-hour fumigations with 0.1%-2.0% SO2 were conducted against eggs, immature stages, and adults of the 2 insects at 20 °C. Effective control of both insects was achieved. However, there were considerable variations between the 2 insects and among different life stages. Confused flour beetle was more susceptible to SO2 fumigation than rice weevil. Complete control of adults and all life stages of confused flour beetle was achieved in 3-h fumigations with 0.5% and 2.0% SO2, respectively. For rice weevil, 3-h fumigation with 1.5% SO2 resulted in 96.5% adult mortality and the fumigation with 2.0% SO2 resulted in 99.27% mortality of adults and 87.5% mortality of immature stages. Three-hour fumigations with 1% SO2 resulted in <5% egg survival to adults. The study demonstrated high efficacy of SO2 fumigation against the insects and suggested that SO2 fumigation has good potential for postharvest pest control on stored products.

15.
Microbiome ; 12(1): 127, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014485

RESUMO

BACKGROUND: Since the 1980s, soils in a 22-km2 area near Lake Neuchâtel in Switzerland have been recognized for their innate ability to suppress the black root rot plant disease caused by the fungal pathogen Thielaviopsis basicola. However, the efficacy of natural disease suppressive soils against insect pests has not been studied. RESULTS: We demonstrate that natural soil suppressiveness also protects plants from the leaf-feeding pest insect Oulema melanopus. Plants grown in the most suppressive soil have a reduced stress response to Oulema feeding, reflected by dampened levels of herbivore defense-related phytohormones and benzoxazinoids. Enhanced salicylate levels in insect-free plants indicate defense-priming operating in this soil. The rhizosphere microbiome of suppressive soils contained a higher proportion of plant-beneficial bacteria, coinciding with their microbiome networks being highly tolerant to the destabilizing impact of insect exposure observed in the rhizosphere of plants grown in the conducive soils. We suggest that presence of plant-beneficial bacteria in the suppressive soils along with priming, conferred plant resistance to the insect pest, manifesting also in the onset of insect microbiome dysbiosis by the displacement of the insect endosymbionts. CONCLUSIONS: Our results show that an intricate soil-plant-insect feedback, relying on a stress tolerant microbiome network with the presence of plant-beneficial bacteria and plant priming, extends natural soil suppressiveness from soilborne diseases to insect pests. Video Abstract.


Assuntos
Microbiota , Doenças das Plantas , Microbiologia do Solo , Animais , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Rizosfera , Suíça , Insetos , Bactérias/classificação , Solo/química , Ascomicetos/fisiologia , Controle de Insetos/métodos , Raízes de Plantas/microbiologia , Herbivoria , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Simbiose
16.
Wellcome Open Res ; 9: 212, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39022324

RESUMO

We present a genome assembly from an individual female Anaspis maculata (false flower beetle; Arthropoda; Insecta; Coleoptera; Scraptiidae). The genome sequence is 757.8 megabases in span. Most of the assembly is scaffolded into 8 chromosomal pseudomolecules, including the X sex chromosome. The mitochondrial genome has also been assembled and is 16.31 kilobases in length. Gene annotation of this assembly on Ensembl identified 21,965 protein coding genes.

17.
Proc Natl Acad Sci U S A ; 121(29): e2406194121, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38990942

RESUMO

Animals can alter their body compositions in anticipation of dormancy to endure seasons with limited food availability. Accumulation of lipid reserves, mostly in the form of triglycerides (TAGs), is observed during the preparation for dormancy in diverse animals, including insects (diapause) and mammals (hibernation). However, the mechanisms involved in the regulation of lipid accumulation and the ecological consequences of failure to accumulate adequate lipid stores in preparation for animal dormancy remain understudied. In the broadest sense, lipid reserves can be accumulated in two ways: the animal either receives lipids directly from the environment or converts the sugars and amino acids present in food to fatty acids through de novo lipogenesis and then to TAGs. Here, we show that preparation for diapause in the Colorado potato beetle (Leptinotarsa decemlineata) involves orchestrated upregulation of genes involved in lipid metabolism with a transcript peak in 8- and 10-d-old diapause-destined insects. Regulation at the transcript abundance level was associated with the accumulation of substantial fat stores. Furthermore, the knockdown of de novo lipogenesis enzymes (ACCase and FAS-1) prolonged the preparatory phase, while the knockdown of fatty acid transportation genes shortened the preparatory phase. Our findings suggest a model in which the insects dynamically decide when to transition from the preparation phase into diapause, depending on the progress in lipid accumulation through de novo lipogenesis.


Assuntos
Besouros , Lipogênese , Estações do Ano , Animais , Lipogênese/fisiologia , Besouros/metabolismo , Besouros/genética , Besouros/fisiologia , Triglicerídeos/metabolismo , Metabolismo dos Lipídeos , Diapausa de Inseto , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética
18.
Dig Endosc ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886902

RESUMO

OBJECTIVES: Colorectal endoscopic submucosal dissection (ESD) is a technically complex procedure. The scissor knife mechanism may potentially provide easier and safer colorectal ESD. The aim of this meta-analysis is to evaluate the efficacy and safety of scissor-assisted vs. conventional ESD for colorectal lesions. METHODS: A search strategy was conducted in MEDLINE, Embase, and Lilacs databases from January 1990 to November 2023 according to PRISMA guidelines. Fixed and random-effects models were used for statistical analysis. Heterogeneity was assessed using I2 test. Risk of bias was assessed using the ROBINS-I and RoB-2 tools. Quality of evidence was assessed using the Grading of Recommendations Assessment, Development and Evaluation tool. RESULTS: A total of five studies (three retrospective and two randomized controlled trials, including a total of 1575 colorectal ESD) were selected. The intraoperative perforation rate was statistically lower (risk difference [RD] -0.02; 95% confidence interval [CI] -0.04 to -0.01; P = 0.001; I2 = 0%) and the self-completion rate was statistically higher (RD 0.14; 95% CI 0.06, 0.23; P = 0.0006; I2 = 0%) in the scissor-assisted group compared with the conventional ESD group. There was no statistical difference in R0 resection rate, en bloc resection rate, mean procedure time, or delayed bleeding rate between the groups. CONCLUSION: Scissor knife-assisted ESD is as effective as conventional knife-assisted ESD for colorectal lesions with lower intraoperative perforation rate and a higher self-completion rate.

19.
Front Microbiol ; 15: 1387248, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38881661

RESUMO

Invasive pests may disturb and destructively reformat the local ecosystem. The small hive beetle (SHB), Aethina tumida, originated in Africa and has expanded to America, Australia, Europe, and Asia. A key factor facilitating its fast global expansion is its ability to subsist on diverse food inside and outside honey bee colonies. SHBs feed on various plant fruits and exudates in the environment while searching for bee hives. After sneaking into a bee hive, they switch their diet to honey, pollen, and bee larvae. How SHBs survive on such a broad range of food remains unclear. In this study, we simulated the outside and within hive stages by providing banana and hive resources and quantified the SHB associated microbes adjusted by the diet. We found that SHBs fed on bananas were colonized by microbes coding more carbohydrate-active enzymes and a higher alpha diversity than communities from SHBs feeding on hive products or those collected directly from bee hives. SHBs fed on bananas and those collected from the hive showed high symbiont variance, indicated by the beta diversity. Surprisingly, we found the honey bee core symbiont Snodgrassella alvi in the guts of SHBs collected in bee hives. To determine the role of S. alvi in SHB biology, we inoculated SHBs with a genetically tagged culture of S. alvi, showing that this symbiont is a likely transient of SHBs. In contrast, the fungus Kodamaea ohmeri is the primary commensal of SHBs. Diet-based microbiome shifts are likely to play a key role in the spread and success of SHBs.

20.
Mitochondrial DNA B Resour ; 9(6): 711-715, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38855355

RESUMO

The ground beetle Synuchus nitidus (Motschulsky, 1861) (Carabidae: Harpalinae: Sphodrini) is one of the most common species in the forests of South Korea, which has the potential to be utilized as an environmental indicator. Here, we characterized the complete mitochondrial genome (mitogenome) of S. nitidus, which is the first in the harpaline tribe Sphodrini. Its genome is 16,392 bp in length and composed of 13 protein-coding genes (PCGs), 22 tRNA genes, two rRNA genes, and an A + T rich region. In addition, we reconstructed a maximum likelihood tree to elucidate the phylogenetic position of Sphodrini among the seven harpaline tribes using nucleotide sequences of the 13 PCGs. The ML tree supported a monophyletic clade of the subfamily Harpalinae and showed a close relationship between Sphodrini and Lebinii with a low bootstrap value. The complete mitogenome of S. nitidus could be helpful for molecular species identification and exploring phylogenetic relationships among carabids.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...