Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38922352

RESUMO

Diabetes is one of the most common endocrine metabolic diseases and is associated with the accumulation of beta-amyloid plaques in the brain. Amyloid beta (Aß) and abnormal tau proteins are effective in the development of Alzheimer's disease. The aim of this study is to investigate the therapeutic and protective effects of curcumin on beta-amyloid (Aß) accumulation and tau protein expression levels, as well as biochemical and oxidative changes in streptozotocin-induced diabetes in rats. The study comprised five groups, each consisting of eight rats: control, diabetic, curcumin, curcumin during diabetic induction, and curcumin post-diabetic induction. Groups 2 and 4 were administered a single dose of 45 mg/kg streptozotocin on day 1, while group 5 received it on day 28. Curcumin was orally administered via gavage at a dose of 100 mg/kg/day for 35 days to the third, fourth, and fifth groups. At the end of the trial (day 35), blood sugar levels and insulin resistance were similar between the control and curcumin-treated groups but significantly higher in the diabetic groups (P < 0.05). The protective effect of curcumin is tested during induction and active diabetes. The results indicated that diabetic rats displayed increased levels of Aß, tau protein, and total oxidant capacity (TOS) compared to the curcumin-treated groups. Additionally, the total antioxidant capacity (TAS) levels were lower in the diabetic rats (P < 0.05). Aß protein levels are lower in both the serum and brain of rats with active diabetes and treated with curcumin compared to control rats (P > 0.05). In addition, serum TAS levels were higher in rats treated with curcumin following the induction of diabetes than pre-induction of diabetes (P > 0.05). The TOS levels in the serum were higher in the rats treated with curcumin during active diabetes compared to the rats treated prior to the induction of diabetes (P < 0.05). However, no significant difference was observed in the brain. The above results show that curcumin has an effect on reducing oxidative stress caused by diabetes and increasing antioxidant activity.

2.
Talanta ; 269: 125519, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38086100

RESUMO

Alzheimer's disease (AD) is a devastating neurodegenerative disorder characterized by progressive cognitive decline and the accumulation of beta-amyloid plaques and tau tangles in the brain. Current therapies have limited efficacy, prompting the search for novel treatments. Selenium nanoparticles (SeNPs) have emerged as promising candidates for AD therapy due to their unique physicochemical properties and potential therapeutic effects. This review provides an overview of SeNPs and their potential application in AD treatment, as well as the main bioanalytical techniques applied in this field. SeNPs possess antioxidant and anti-inflammatory properties, making them potential candidates to combat the oxidative stress and neuroinflammation associated with AD. Moreover, SeNPs have shown the ability to cross the blood-brain barrier (BBB), allowing them to target brain regions affected by AD pathology. Various methods for synthesizing SeNPs are explored, including chemical, physical and biological synthesis approaches. Based on the employment of algae, yeast, fungi, and plants, green methods offer a promising and biocompatible alternative for SeNPs production. In vitro studies have demonstrated the potential of SeNPs in reducing beta-amyloid aggregation and inhibiting tau hyperphosphorylation, providing evidence of their neuroprotective effects on neuronal cells. In vivo studies using transgenic mouse models and AD-induced symptoms have shown promising results, with SeNPs treatment leading to cognitive improvements and reduced amyloid plaque burden in the hippocampus. Looking ahead, future trends in SeNPs research involve developing innovative brain delivery strategies to enhance their therapeutic potential, exploring alternative animal models to complement traditional mouse studies, and investigating multi-targeted SeNPs formulations to address multiple aspects of AD pathology. Overall, SeNPs represent a promising avenue for AD treatment, and further research in this field may pave the way for effective and much-needed therapeutic interventions for individuals affected by this debilitating disease.


Assuntos
Doença de Alzheimer , Nanopartículas , Selênio , Camundongos , Animais , Doença de Alzheimer/tratamento farmacológico , Selênio/uso terapêutico , Peptídeos beta-Amiloides/química , Encéfalo/metabolismo , Camundongos Transgênicos , Nanopartículas/química , Modelos Animais de Doenças
3.
Brain Res Bull ; 188: 203-213, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35934162

RESUMO

Beta-amyloid protein (Aß) is one of the most important pathogenic factors of Alzheimer's disease (AD). N-linoleyltyrosine (NITyr) was synthesized in our laboratory and exerted neuroprotective effects in APP/PS1 transgenic mice in previous reports. In this study, the neuroprotective effects and mechanisms of NITyr were evaluated in Aß1-40-treated primary cortical neurons for the first time in vitro. NITyr treatment attenuated cytotoxicity induced by Aß1-40, and the best effect of NITyr was observed at 1 µmol/L. NITyr treatment increased the BDNF protein expression and the ratio of p-CREB/CREB, but weakened the Caspase-3 protein expression. Meanwhile, NITyr enhanced the expressions of autophagy-related proteins (LC3-II, Beclin-1, ATG5 and ATG13). The autophagy inhibitor 3-methyladenine (3MA) reversed the effects of NITyr on cell viability and the protein expressions of neuron-related proteins, including BDNF, p-CREB and Caspase-3. The CB2 receptor antagonist AM630 weakened the neuroprotective effects of NITyr and the autophagy-related protein expression (LC3-II, Beclin-1, ATG5 and ATG13). Moreover, NITyr significantly increased the expressions of p-AMPK, p-mTOR and p-ULK1, but not p-p38. AM630 ablated the above phenomenon. Therefore, NITyr protected the neurons against Aß1-40-induced cytotoxicity by inducing autophagy, which involved the CB2/AMPK/mTOR/ULK1 pathway.


Assuntos
Peptídeos beta-Amiloides , Fármacos Neuroprotetores , Proteínas Quinases Ativadas por AMP/metabolismo , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/toxicidade , Animais , Autofagia , Proteína Beclina-1/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Caspase 3/metabolismo , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Tirosina/análogos & derivados
4.
Artigo em Chinês | MEDLINE | ID: mdl-35634664

RESUMO

Objective: To uncover the time-dependent expression pattern of ptk2b gene and ptk2b-encoded protein, protein tyrosine kinase 2 beta(PTK2B), in the brain tissues of transgenic animal models of Alzheimer's disease (AD) and its relationship with the levels of Aß1-42, phosphorylation of Tau (p-Tau) and low density lipoprotein receptor-related protein-1(LRP-1) in blood and brain tissues. Methods: In this study, 5-, 10- and 15-month-old APPswe/PS1dE9 double-transgenic mice harboring the genotype of AD confirmed by the gene test were divided into the 5-, 10- and 15-month-old experiment groups, and simultaneously, age-matched C57BL/6J mice were placed into the corresponding control groups, with 8 mice in each group. All mice were subjected to the Morris Water Maze for test of cognitive and behavioral ability. Expression profiles of PTK2B, Aß1-42, p-Tau/Tau and LRP-1 in the hippocampus or blood of mice were quantified by using the immunohistochemistry staining, Western blot or enzyme-linked immunosorbent assay (ELISA), while the mRNA expression of ptk2b in the hippocampus was quantified by using the real-time quantitative polymerase chain reaction (qRT-PCR). Results: Results of experiment groups demonstrated that as mice aged, the expression levels of PTK2B, ptk2b mRNA, Aß1-42 and p-Tau/Tau in the hippocampus were increased, and the expression of LRP-1 was decreased gradually. While in the blood, the level of Aß1-42 was decreased, and the cognitive and behavioral ability was decreased in an age-dependent manner (all P< 0.05). However, comparisons among the control groups, only the age-dependent downregulation of LRP-1 were observed in hippocampus(P<0.05), but other indicators had no significant differences (P>0.05). Conclusion: In the hippocampus of APP/PS1 double-transgenic mice, the expressions of PTK2B, Aß1-42 and p-Tau/Tau are upregulated, LRP-1 is downregulated, while cognitive and behavioral ability is decreased, and such changes are presented in a time-dependent manner.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides , Precursor de Proteína beta-Amiloide/genética , Animais , Quinase 2 de Adesão Focal/metabolismo , Hipocampo/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Aprendizagem em Labirinto , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , RNA Mensageiro
5.
Drug Chem Toxicol ; 45(2): 839-849, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32907430

RESUMO

This study investigated the exposure of pyrethroids in the development of Alzheimer's type neurodegeneration by analyzing ß- amyloid, tau and Glial Fibrillary Acidic Protein (GFAP) in adult Wistar rats. Forty adult Wistar rats (130-150 g) of both sexes were assigned into five groups (n = 8). Groups A-C were treated with three different sub-lethal doses (75, 50 and 25%)of the pyrethroids formulation diluted with olive oil once/daily for 45 days, while groups D&E received olive oil and distilled water respectively (as control groups). During the treatments, physical clinical signs were monitored for cognitive behavioral studies involving object recognition tasks and novel object identification test. At the end of treatment, the rats were sacrificed by cervical dislocation, the brains were harvested and the hippocampus located and dissected out for immunohistochemical studies. Standard histochemical techniques were employed. The results showed a significant decrease (p ≤ 0.05) in the spontaneous alternation and discrimination index in the treatment groups when compared to the control groups. Histological observation showed nuclear fragmentation in treated rats in a dose dependent manner when compared to the controls. Amyloid plaques were further observed and markedly stained with Congo-red in the treated rats compared to the control groups. Immunohistochemical observation revealed that exposure to pyrethroids increased immunoreactivity of GFAP and tau protein in both CA3 and Dentate gyrus (DG) regions in the treated rats indicative of Alzheimer's type degenerative diseases.


Assuntos
Doença de Alzheimer , Piretrinas , Doença de Alzheimer/induzido quimicamente , Peptídeos beta-Amiloides/metabolismo , Animais , Feminino , Masculino , Emaranhados Neurofibrilares/metabolismo , Emaranhados Neurofibrilares/patologia , Piretrinas/toxicidade , Ratos , Ratos Wistar
6.
Neuropathol Appl Neurobiol ; 48(3): e12782, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34823269

RESUMO

The pathological processes leading to synapse loss, neuronal loss, brain atrophy and gliosis in Alzheimer's disease (AD) and their relation to vascular disease and immunological changes are yet to be fully explored. Amyloid-ß (Aß) aggregation, vascular damage and altered immune response interact at the blood-brain barrier (BBB), affecting the brain endothelium and fuelling neurodegeneration. The aim of the present systematic literature review was to critically appraise and to summarise the published evidence on the clinical correlations and pathophysiological concepts of BBB damage in AD, focusing on human data. The PubMed, Cochrane, Medline and Embase databases were searched for original research articles, systematic reviews and meta-analyses, published in English language from 01/2000 to 07/2021, using the keywords Alzheimer*, amyloid-ß or ß-amyloid or abeta and BBB. This review shows that specific changes of intercellular structures, reduced expression of transendothelial carriers, induction of vasoactive mediators and activation of both astroglia and monocytes/macrophages characterise BBB damage in human AD and AD models. BBB dysfunction on magnetic resonance imaging takes place early in the disease course in AD-specific brain regions. The toxic effects of Aß and apolipoprotein E (ApoE) are likely to induce a non-cerebral-amyloid-angiopathy-related degeneration of endothelial cells, independently of cerebrovascular disease; however, some of the observed structural changes may just arise with age. Small vessel disease, ApoE, loss of pericytes, proinflammatory signalling and cerebral amyloid angiopathy enhance BBB damage. Novel therapeutic approaches for AD, including magnetic resonance-guided focused ultrasound, aim to open the BBB, potentially leading to an improved drainage of Aß along perivascular channels and increased elimination from the brain. In vitro treatments with ApoE-modifying agents yielded promising effects on modulating BBB function. Reducing cardiovascular risk factors represents one of the most promising interventions for dementia prevention at present. However, further research is needed to elucidate the connection of BBB damage and tau pathology, the role of proinflammatory mediators in draining macromolecules and cells from the cerebral parenchyma, including their contribution to cerebral amyloid angiopathy. Improved insight into these pathomechanisms may allow to shed light on the role of Aß deposition as a primary versus a secondary event in the complex pathogenesis of AD.


Assuntos
Doença de Alzheimer , Angiopatia Amiloide Cerebral , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Barreira Hematoencefálica/patologia , Encéfalo/patologia , Angiopatia Amiloide Cerebral/patologia , Células Endoteliais/patologia , Humanos
7.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-927891

RESUMO

Objective: To uncover the time-dependent expression pattern of ptk2b gene and ptk2b-encoded protein, protein tyrosine kinase 2 beta(PTK2B), in the brain tissues of transgenic animal models of Alzheimer's disease (AD) and its relationship with the levels of Aβ1-42, phosphorylation of Tau (p-Tau) and low density lipoprotein receptor-related protein-1(LRP-1) in blood and brain tissues. Methods: In this study, 5-, 10- and 15-month-old APPswe/PS1dE9 double-transgenic mice harboring the genotype of AD confirmed by the gene test were divided into the 5-, 10- and 15-month-old experiment groups, and simultaneously, age-matched C57BL/6J mice were placed into the corresponding control groups, with 8 mice in each group. All mice were subjected to the Morris Water Maze for test of cognitive and behavioral ability. Expression profiles of PTK2B, Aβ1-42, p-Tau/Tau and LRP-1 in the hippocampus or blood of mice were quantified by using the immunohistochemistry staining, Western blot or enzyme-linked immunosorbent assay (ELISA), while the mRNA expression of ptk2b in the hippocampus was quantified by using the real-time quantitative polymerase chain reaction (qRT-PCR). Results: Results of experiment groups demonstrated that as mice aged, the expression levels of PTK2B, ptk2b mRNA, Aβ1-42 and p-Tau/Tau in the hippocampus were increased, and the expression of LRP-1 was decreased gradually. While in the blood, the level of Aβ1-42 was decreased, and the cognitive and behavioral ability was decreased in an age-dependent manner (all P< 0.05). However, comparisons among the control groups, only the age-dependent downregulation of LRP-1 were observed in hippocampus(P<0.05), but other indicators had no significant differences (P>0.05). Conclusion: In the hippocampus of APP/PS1 double-transgenic mice, the expressions of PTK2B, Aβ1-42 and p-Tau/Tau are upregulated, LRP-1 is downregulated, while cognitive and behavioral ability is decreased, and such changes are presented in a time-dependent manner.


Assuntos
Animais , Camundongos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides , Precursor de Proteína beta-Amiloide/genética , Quinase 2 de Adesão Focal/metabolismo , Hipocampo/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Aprendizagem em Labirinto , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , RNA Mensageiro
8.
Exp Gerontol ; 153: 111502, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34339821

RESUMO

The excessive deposition of ß-amyloid proteins (Aß) is directly correlated with the establishment and development of Alzheimer's Disease (AD). Current treatments for AD only reduce symptoms instead of acting on Aß, the primary etiological agent. Hence, the anti-amyloid effect of regular exercise has been widely investigated as an alternative therapy. This systematic review and meta-analysis examined the anti-amyloid effect of regular physical exercise in animal models of AD. The search was conducted on the electronic databases Pubmed, Embase, Scopus and Web of Science without data limitation and using the following describers: "amyloid beta" (OR senile plaque OR amyloid plaque) and "exercise" (OR physical activity OR training). The risk of bias was evaluated using the SYRCLE's tool. Meta-analyses were conducted using models of random continuous effects. A total of 36 studies were selected and most used: transgenic mice (n = 29), treadmill training, duration of 12 weeks (interval of 4 to 28 weeks), rate of 60 min/day (interval of 30 min and up until free access) and speed of 12 m/min (interval of 3.2 to 32 m/min). The hippocampus and cortex were the most frequently investigated regions. Meta-analysis demonstrated a decrease in Aß with greater effect in unspecified isoforms Meta-analysis demonstrated a decrease in Aß with greater effect in unspecified isoforms (N = 4; SMD = -2.71, IC 95%: -3.59, -1.84, p < 0.00001, Q2 = 3.38, I2 = 11%) and Aß1-42 (N = 21; SMD = -1.94, IC 95%: -2.37, -1.51, p < 0.00001, Q2 = 33,37, I2 = 40%). Concerning training, greater effect was found with: 1) swimming (N = 4; SMD = -1.98, IC 95%: -3,28 - -0,68, p = 0.003, Q2 = 9.74, I2 = 69%), 2) moderate intensity (N = 4; SMD = -2.03, IC 95%: -3.31 - -0.75, p < 0.005, Q2 = 12.68, I2 = 76%); 3) duration up to six weeks (N = 6; N = 6; SMD = -2.35, IC 95%: -3.15 - -1.55, p < 0.00001, Q2 = 8.38, I2 = 40%); 4) young animals (SMD = -2.00, IC 95%: -2.59 - -1.42, p < 0.00001, Q2 = 24.90, I2 = 52%); 5) in the amygdala region (N = 1; SMD = -8.56, IC 95%: -12.88 - -4.23, p = 0.0001) and females (N = 4; SMD = -2.14, IC 95%: -3.48 - -0.79, p = 0.002, Q2 = 10.31, I2 = 71%). However, the reduction of Aß was associated with decrease of amyloidogenic pathway and increase of non-amyloidogenic. Hence, regular physical exercise demonstrated anti-amyloid effect in experimental models of AD through positive alterations in APP processing through different signaling pathways.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Doença de Alzheimer/terapia , Precursor de Proteína beta-Amiloide , Animais , Modelos Animais de Doenças , Exercício Físico , Feminino , Camundongos , Camundongos Transgênicos , Modelos Teóricos , Placa Amiloide
9.
Life Sci ; 275: 119372, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33745893

RESUMO

AIMS: Alzheimer's disease (AD) is the most common irreversible chronic neurodegenerative disease. It is characterized by the abnormal accumulation of ß-amyloid protein (Aß), which triggers homeostatic breakage in several physiological systems. However, the effect of chronic exercise on the formation of Aß as an alternative therapy has been investigated. This systematic review examines the antiamyloid effect of different types and intensities of exercise, seeking to elucidate its neuroprotective mechanisms. MAIN METHODS: The research was conducted in the electronic databases Pubmed, Embase, Scopus and Web of Science, using the following descriptors: "amyloid beta" (OR senile plaque OR amyloid plaque) and "exercise" (OR physical activity OR training). The risk of bias was evaluated through SYRCLE's Risk of Bias for experimental studies. KEY FINDINGS: 2268 articles were found, being 36 included in the study. A higher frequency of use of mice with genetic alterations was identified for the Alzheimer's disease (AD) model (n = 29). It was used as chronic training: treadmill running (n = 24), voluntary running wheel (n = 7), swimming (n = 4) and climbing (n = 2). The hippocampus and the cortex were the most investigated regions. However, physiological changes accompanied by the reduction of Aß and associated with AD progression were verified. It is concluded that exercise reduces the production of Aß in models of animals with AD. SIGNIFICANCE: Nevertheless, this effect contributes to the improvement of several physiological aspects related to Aß and that contribute to neurological impairment in AD.


Assuntos
Doença de Alzheimer/prevenção & controle , Condicionamento Físico Animal , Placa Amiloide/prevenção & controle , Doença de Alzheimer/patologia , Doença de Alzheimer/terapia , Animais , Encéfalo/patologia , Camundongos , Placa Amiloide/patologia , Placa Amiloide/terapia
10.
FASEB J ; 35(5): e21445, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33774866

RESUMO

Mitochondrial Tu translation elongation factor (TUFM or EF-Tu) is part of the mitochondrial translation machinery. It is reported that TUFM expression is reduced in the brain of Alzheimer's disease (AD), suggesting that TUFM might play a role in the pathophysiology. In this study, we found that TUFM protein level was decreased in the hippocampus and cortex especially in the aged APP/PS1 mice, an animal model of AD. In HEK cells that stably express full-length human amyloid-ß precursor protein (HEK-APP), TUFM knockdown or overexpression increased or reduced the protein levels of ß-amyloid protein (Aß) and ß-amyloid converting enzyme 1 (BACE1), respectively. TUFM-mediated reduction of BACE1 was attenuated by translation inhibitor cycloheximide (CHX) or α-[2-[4-(3,4-Dichlorophenyl)-2-thiazolyl]hydrazinylidene]-2-nitro-benzenepropanoic acid (4EGI1), and in cells overexpressing BACE1 constructs deleting the 5' untranslated region (5'UTR). TUFM silencing increased the half-life of BACE1 mRNA, suggesting that RNA stability was affected by TUFM. In support, transcription inhibitor Actinomycin D (ActD) and silencing of nuclear factor κB (NFκB) failed to abolish TUFM-mediated regulation of BACE1 protein and mRNA. We further found that the mitochondria-targeted antioxidant TEMPO diminished the effects of TUFM on BACE1, suggesting that reactive oxygen species (ROS) played an important role. Indeed, cellular ROS levels were affected by TUFM knockdown or overexpression, and TUFM-mediated regulation of apoptosis and Tau phosphorylation at selective sites was attenuated by TEMPO. Collectively, TUFM protein levels were decreased in APP/PS1 mice. TUFM is involved in AD pathology by regulating BACE1 translation, apoptosis, and Tau phosphorylation, in which ROS plays an important role.


Assuntos
Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Modelos Animais de Doenças , Mitocôndrias/patologia , Fator Tu de Elongação de Peptídeos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Precursor de Proteína beta-Amiloide/fisiologia , Animais , Humanos , Camundongos , Camundongos Transgênicos , Mitocôndrias/metabolismo , Fator Tu de Elongação de Peptídeos/genética , Fosforilação , Presenilina-1/fisiologia
11.
Drug Deliv ; 28(1): 580-593, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33729067

RESUMO

Alzheimer's disease (AD) is a degenerative disease of the central nervous system characterized by progressive cognitive and memory-related impairment. However, current therapeutic treatments have not proved sufficiently effective, mainly due to the complicated pathogenesis of the disease. In this study, a nano-formulation of graphene oxide (GO) loaded with dauricine (Dau) was investigated in terms of the combined anti-inflammatory and anti-oxidative stress effects of Dau and the inhibition of misfolding and aggregation of the amyloid-ß (Aß) protein by GO. Both in vivo and in vitro models were induced using Aß1-42, and the formulation was administered nasally in mice. The results showed that GO loaded with Dau greatly reduced oxidative stress through increasing superoxide dismutase levels and decreasing reactive oxygen species and malondialdehyde levels in vitro; it also alleviated the cognitive memory deficits and brain glial cell activation in mice with Aß1-42-induced AD. This proved that GO loaded with Dau could protect against Aß1-42-induced oxidative damage and apoptosis in both in vitro and in vivo AD models; therefore, GO loaded with Dau has the potential to be an effective and agent for the rapid treatment of AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Anti-Inflamatórios não Esteroides/farmacologia , Benzilisoquinolinas/farmacologia , Portadores de Fármacos/química , Nanopartículas/química , Tetra-Hidroisoquinolinas/farmacologia , Administração Intranasal , Peptídeos beta-Amiloides/efeitos dos fármacos , Animais , Anti-Inflamatórios não Esteroides/administração & dosagem , Benzilisoquinolinas/administração & dosagem , Linhagem Celular , Química Farmacêutica , Modelos Animais de Doenças , Grafite/química , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuroglia/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/biossíntese , Propriedades de Superfície , Tetra-Hidroisoquinolinas/administração & dosagem
12.
Front Neurosci ; 14: 525970, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33071726

RESUMO

Even prior to the onset of the prodromal stages of Alzheimer's disease (AD), a constellation of sleep disturbances are apparent. A series of epidemiological studies indicate that multiple forms of these sleep disturbances are associated with increased risk for developing mild cognitive impairment (MCI) and AD, even triggering disease onset at an earlier age. Through the combination of causal manipulation studies in humans and rodents, as well as targeted examination of sleep disturbance with respect to AD biomarkers, mechanisms linking sleep disturbance to AD are beginning to emerge. In this review, we explore recent evidence linking local deficits in brain oscillatory function during sleep with local AD pathological burden and circuit-level dysfunction and degeneration. In short, three deficits in the local expression of sleep oscillations have been identified in relation to AD pathophysiology: (1) frequency-specific frontal deficits in slow wave expression during non-rapid eye movement (NREM) sleep, (2) deficits in parietal sleep spindle expression, and (3) deficits in the quality of electroencephalographic (EEG) desynchrony characteristic of REM sleep. These deficits are noteworthy since they differ from that seen in normal aging, indicating the potential presence of an abnormal aging process. How each of these are associated with ß-amyloid (Aß) and tau pathology, as well as neurodegeneration of circuits sensitive to AD pathophysiology, are examined in the present review, with a focus on the role of dysfunction within fronto-hippocampal and subcortical sleep-wake circuits. It is hypothesized that each of these local sleep deficits arise from distinct network-specific dysfunctions driven by regionally-specific accumulation of AD pathologies, as well as their associated neurodegeneration. Overall, the evolution of these local sleep deficits offer unique windows into the circuit-specific progression of distinct AD pathophysiological processes prior to AD onset, as well as their impact on brain function. This includes the potential erosion of sleep-dependent memory mechanisms, which may contribute to memory decline in AD. This review closes with a discussion of the remaining critical knowledge gaps and implications of this work for future mechanistic studies and studies implementing sleep-based treatment interventions.

13.
Toxicol Rep ; 7: 723-729, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32551234

RESUMO

Fruit by-products are considered nature's golden gift for human health and a good starting point to discover new drugs depending on the fact that they contain millions of bio-active compounds that are responsible for therapeutic activities. In this context, the main goal of this study is to recycle Citrus aurantium (C. aurantium) seeds to produce pharmaceutical molecules to be used in the prevention of the progressive neurological damage associated with Alzheimer disease (AD). Donepezil (0.75 mg/kg), hesperidin (125 and 250 mg/kg) and limonoids (50 and 100 mg/kg) were used for treatment of rats for 2 weeks prior to concomitant administration of AlCl3 for three successive weeks. Protection against cognitive deterioration was observed among study group with insignificant difference from normal control group and significant difference from positive control group in the Y-Maze test. On the other hand, treatment with both doses of hesperidin (125 and 250 mg/kg) and high dose of limonoids only (100 mg/kg) produced improvement in psychological state, observed by significant increase in ambulation frequency in comparison to positive control group, however it was not as frequent as normal group, as it was significantly less than normal group in the open field test. Regarding acetylcholine esterase (AChE) and beta-amyloid (ß amyloid) levels, the effect of limonoids low dose was the best as it didn't have a significant effect when compared to normal control, also hesperidin in both doses showed insignificant effects on ß amyloid levels when compared to normal control group. Our results encourage the use of C. aurantium seeds which are wasted in huge amounts, as Alzheimer prophylactic food additives.

14.
Alzheimers Res Ther ; 12(1): 31, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32209123

RESUMO

BACKGROUND: Abnormal beta-amyloid (Aß) is associated with deleterious changes in central cholinergic tone in the very early stages of Alzheimer's disease (AD), which may be unmasked by a cholinergic antagonist (J Prev Alzheimers Dis 1:1-4, 2017). Previously, we established the scopolamine challenge test (SCT) as a "cognitive stress test" screening measure to identify individuals at risk for AD (Alzheimer's & Dementia 10(2):262-7, 2014) (Neurobiol. Aging 36(10):2709-15, 2015). Here we aim to demonstrate the potential of the SCT as an indicator of cognitive change and neocortical amyloid aggregation after a 27-month follow-up interval. METHODS: Older adults (N = 63, aged 55-75 years) with self-reported memory difficulties and first-degree family history of AD completed the SCT and PET amyloid imaging at baseline and were then seen for cognitive testing at 9, 18, and 27 months post-baseline. Repeat PET amyloid imaging was completed at the time of the 27-month exam. RESULTS: Significant differences in both cognitive performance and in Aß neocortical burden were observed between participants who either failed vs. passed the SCT at baseline, after a 27-month follow-up period. CONCLUSIONS: Cognitive response to the SCT (Alzheimer's & Dementia 10(2):262-7, 2014) at baseline is related to cognitive change and PET amyloid imaging results, over the course of 27 months, in preclinical AD. The SCT may be a clinically useful screening tool to identify individuals who are more likely to both have positive evidence of amyloidosis on PET imaging and to show measurable cognitive decline over several years.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Idoso , Doença de Alzheimer/complicações , Doença de Alzheimer/diagnóstico por imagem , Peptídeos beta-Amiloides , Cognição , Disfunção Cognitiva/diagnóstico por imagem , Feminino , Humanos , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons , Transmissão Sináptica
15.
Front Genet ; 10: 1179, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31824572

RESUMO

This year marks the 20th anniversary of the discovery that the nucleolus can temporarily immobilize proteins, a process known as nucleolar sequestration. This review reflects on the progress made to understand the physiological roles of nucleolar sequestration and the mechanisms involved in the immobilization of proteins. We discuss how protein immobilization can occur through a highly choreographed amyloidogenic program that converts the nucleolus into a large fibrous organelle with amyloid-like characteristics called the amyloid body (A-body). We propose a working model of A-body biogenesis that includes a role for low-complexity ribosomal intergenic spacer RNA (rIGSRNA) and a discrete peptide sequence, the amyloid-converting motif (ACM), found in many proteins that undergo immobilization. Amyloid bodies provide a unique model to study the multistep assembly of a membraneless compartment and may provide alternative insights into the pathological amyloidogenesis involved in neurological disorders.

16.
Front Pharmacol ; 10: 258, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30941041

RESUMO

Jia-Wei-Kai-Xin-San (JWKXS) is a Chinese medicine formula applied for treating morbid forgetfulness in ancient China. Today, this formula is frequently applied for Alzheimer's disease and vascular dementia (VD) in clinic. Here, we developed it as granules and aimed to evaluate its anti-AD effect on ß amyloid protein 1-42 (Aß1-42) induced cognitive deficit mice and reveal the possible molecular mechanisms. Firstly, daily intra-gastric administration of chemically standardized of JWKXS granules for 7 days significantly ameliorated the cognitive deficit symptoms and inhibited cell apoptosis in hippocampus on Aß1-42 injection mice. JWKXS granules significantly decreased Aß level, increased superoxide dismutase activity and decreased malondialdehyde level in hippocampus of model mice. It also restored acetylcholine amounts, inhibited acetylcholinesterase activities and increased choline acetyltransferase activities. In addition, JWKXS granules enabled the transformation of precursors of NGF and BDNF into mature forms. Furthermore, JWKXS granules could regulate gene expressions related to Aß production, transportation, degradation and neurotrophic factor transformation, which led to down-regulation of Aß and up-regulation of NGF and BDNF. These findings suggested that JWKXS granules ameliorated cognitive deficit via decreasing Aß levels, protecting neuron from oxidation damages and nourishing neuron, which could serve as alternative medicine for patients suffering from AD.

17.
Zhen Ci Yan Jiu ; 43(11): 692-7, 2018 Nov 25.
Artigo em Chinês | MEDLINE | ID: mdl-30585465

RESUMO

OBJECTIVE: To observe the effect of acupuncture and moxibustion (AM) on learning-memory ability and expression of amyloid beta (Aß) in the hippocampal dentate gyrus (DG) of Alzheimer's disease (AD) rats, so as to explore its mechanism underlying improvement of AD. METHODS: Forty male Wistar rats were randomly divided into normal, sham operation, model and AM groups (n=10 in each). The AD model was established by bilateral hippocampal injection of Aß1-42(5 µL). The AM was applied at "Baihui" (GV 20) and "Shenshu" (BL 23) for 15 min, once daily for 12 times. Morris water maze tests were used to assess the rats' learning-memory ability. The levels of serum Aß1-42 and Aß internalizing enzymes including transthyretin (TTR), lipoprotein lipase (LPL), alpha 2 macroglobulin (α 2M) and apolipoprotein E (ApoE) were detected by ELISA. The expression of Aß1-42 in the hippocampal DG was detected by immunohistochemistry. RESULTS: Compared with the sham operation group, the average escape latency of location navigation test was significantly prolonged in the first 5 days and the last 3 days (P<0.01), and the residence time of the target-quadrant and the platform crossing times of special probing task were significantly reduced in the model group (P<0.01). After the intervention, the average escape latency was obviously shortened in the first 5 days and the last 3 days (P<0.01), and both the residence time and the platform crossing times were significantly increased in the AM group relevant to the model group (P<0.01, P<0.05). After modeling, the contents of TTR, LPL, α 2M and ApoE in the serum were significantly lower in the model group than in the sham operation group (P<0.01, P<0.05), while the levels of serum Aß1-42 and hippocampal Aß1-42 expression were considerably increased relevant to the sham operation group (P<0.01). Following the intervention, the TTR, LPL, α2M and ApoE contents in the serum were significantly increased (P<0.01, P<0.05), and both serum Aß1-42 and hippocampal Aß1-42 expression were notably down-regulated in comparison with the model group (P<0.05). No significant differences were found between the normal and sham operation groups in the levels of all the above-mentioned indexes (P>0.05). CONCLUSION: AM can improve the learning-memory ability of AD rats, which may be related to its effects in up-regulating the contents of serum Aß internalizing enzymes and promoting the clearance of hippocampal Aß. It suggests a protective role of AM on hippocampal neurons.


Assuntos
Doença de Alzheimer , Moxibustão , Terapia por Acupuntura , Peptídeos beta-Amiloides , Animais , Modelos Animais de Doenças , Hipocampo , Masculino , Memória , Ratos , Ratos Wistar
18.
Neurochem Int ; 120: 238-250, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30217465

RESUMO

Amyloid ß peptide 1-42 (Aß1-42) could induce cognitive deficits through oxidative stress, inflammation, and neuron death in Alzheimer's disease (AD). MAPK pathways have been thought to mediate Aß1-42-induced neuroinflammation responses, neuron death and cognitive decline in AD. The α7 nicotinic acetylcholine receptor (α7nAChR) exerts a neuroprotective effect. However, whether α7nAChR alleviates Aß1-42-induced neurotoxicity through MAPKs (p38, ERK, JNK) in vivo remains unclear. In our study, memory was assessed in C57BL/6 mice using a Y-maze test. Cell death was assessed by Nissl and Hoechst staining and Bax, Bcl-2, Caspase 3, and Cytochrome C levels using Western blotting. Oxidative stress was assayed by superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA) levels. Inflammation was examined with GFAP and Iba1 using immunohistochemistry. The Aß degrading enzymes insulin degrading enzyme (IDE) and neprilysin (NEP) were tested using Western blotting. We found that activating α7nAChR or inhibiting p38 or JNK pathway alleviated Aß1-42-induced cognitive deficits and neuron loss and death by reducing oxidative stress. In addition, activating α7nAChR or inhibiting p38 or JNK pathway also reduced inflammation, which was observed as reduced GFAP and Iba1 levels with different effects on Aß degrading enzymes. Finally, we found that the activation of α7nAChR led to the downregulation of pp38 and pJNK levels. Conversely, the inhibition of p38 or JNK resulted in the upregulation of α7nAChR levels in the hippocampus and cortex. Our data indicate that the activation of α7nAChR alleviates Aß1-42-induced neurotoxicity, and this protective effect might act through the downregulation of p38 and JNK MAPKs.


Assuntos
Peptídeos beta-Amiloides/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Receptor Nicotínico de Acetilcolina alfa7/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/efeitos dos fármacos , Peptídeos beta-Amiloides/metabolismo , Animais , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Regulação para Baixo/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
19.
Neurodegener Dis ; 18(5-6): 302-309, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30814473

RESUMO

Evidence of cortical beta-amyloid (Aß) load, assessed by Aß positron emission tomography (Aß-PET), is an established in vivo biomarker of Alzheimer's disease (AD)-related pathophysiology. Qualitative assessment of Aß-PET provides binary information; meanwhile semiquantitative approaches require a parcellation of PET image either manually or by placement of atlas-based volumes of interest. We supposed that a whole-brain approach with voxel-by-voxel standardized uptake value ratio (SUVr) parametric images may better elucidate the spatial trajectories of Aß burden along the continuum of AD. METHODS: We recruited 32 subjects with a diagnosis of probable AD dementia (ADD, n = 20) and mild cognitive impairment due to AD (MCI-AD, n = 12) according to the NIA-AA 2011 criteria. We also enrolled a control group of 6 cognitively healthy individuals (HCs) with preserved cognitive functions and negative Aß-PET scan. The PET images were spatially normalized using the AV45 PET template in the MNI brain space. Subsequently, parametric SUVr images were calculated using the whole cerebellum as a reference region. A voxel-wise analysis of covariance was used to compare (between groups) the Αß distribution pattern considering age as a nuisance covariate. RESULTS: Both ADD and MCI-AD subjects showed a widespread increase in radiotracer uptake when compared with HC participants (p < 0.001, uncorrected). After applying a multiple comparison correction (p < 0.05, corrected), a relative large cluster of increased [18F]-flor-betapir uptake was observed in the precuneus in the ADD and MCI-AD groups compared to HCs. Voxel-wise regression analysis showed a significant positive linear association between the voxel-wise SUVr values and the disease duration. CONCLUSIONS: The voxel-wise semiquantitative analysis shows that the precuneus is a region with higher vulnerability to Aß depositions when compared to other cortical regions in both MCI-AD and ADD subjects. We think that the precuneus is a promising PET-based outcome measure for clinical trials of drugs targeting brain Aß. We found a positive association between the overall Aß-PET SUVr and the disease duration suggesting that the region-specific slow saturation of Aß deposition continuously takes place as the disease progresses.


Assuntos
Doença de Alzheimer/patologia , Encéfalo/patologia , Disfunção Cognitiva/patologia , Lobo Parietal/patologia , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Biomarcadores , Encéfalo/metabolismo , Cognição/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons/métodos
20.
Acupuncture Research ; (6): 692-697, 2018.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-844380

RESUMO

OBJECTIVE: To observe the effect of acupuncture and moxibustion (AM) on learning-memory ability and expression of amyloid beta (Aβ) in the hippocampal dentate gyrus (DG) of Alzheimer's disease (AD) rats, so as to explore its mechanism underlying improvement of AD. METHODS: Forty male Wistar rats were randomly divided into normal, sham operation, model and AM groups (n=10 in each). The AD model was established by bilateral hippocampal injection of Aβ1-42(5 µL). The AM was applied at "Baihui" (GV 20) and "Shenshu" (BL 23) for 15 min, once daily for 12 times. Morris water maze tests were used to assess the rats' learning-memory ability. The levels of serum Aβ1-42 and Aβ internalizing enzymes including transthyretin (TTR), lipoprotein lipase (LPL), alpha 2 macroglobulin (α 2M) and apolipoprotein E (ApoE) were detected by ELISA. The expression of Aβ1-42 in the hippocampal DG was detected by immunohistochemistry. RESULTS: Compared with the sham operation group, the average escape latency of location navigation test was significantly prolonged in the first 5 days and the last 3 days (P0.05). CONCLUSION: AM can improve the learning-memory ability of AD rats, which may be related to its effects in up-regulating the contents of serum Aβ internalizing enzymes and promoting the clearance of hippocampal Aβ. It suggests a protective role of AM on hippocampal neurons.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...