Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
medRxiv ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38853875

RESUMO

The left supramarginal gyrus (LSMG) may mediate attention to memory, and gauge memory state and performance. We performed a secondary analysis of 142 verbal delayed free recall experiments, in patients with medically-refractory epilepsy with electrode contacts implanted in the LSMG. In 14 of 142 experiments (in 14 of 113 patients), the cross-validated convolutional neural networks (CNNs) that used 1-dimensional(1-D) pairs of convolved high-gamma and beta tensors, derived from the LSMG recordings, could label recalled words with an area under the receiver operating curve (AUROC) of greater than 60% [range: 60-90%]. These 14 patients were distinguished by: 1) higher amplitudes of high-gamma bursts; 2) distinct electrode placement within the LSMG; and 3) superior performance compared with a CNN that used a 1-D tensor of the broadband recordings in the LSMG. In a pilot study of 7 of these patients, we also cross-validated CNNs using paired 1-D convolved high-gamma and beta tensors, from the LSMG, to: a) distinguish word encoding epochs from free recall epochs [AUC 0.6-1]; and distinguish better performance from poor performance during delayed free recall [AUC 0.5-0.86]. These experiments show that bursts of high-gamma and beta generated in the LSMG are biomarkers of verbal memory state and performance.

2.
Cereb Cortex ; 30(7): 4011-4025, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32108230

RESUMO

Adaptive behavior requires the comparison of outcome predictions with actual outcomes (e.g., performance feedback). This process of performance monitoring is computed by a distributed brain network comprising the medial prefrontal cortex (mPFC) and the anterior insular cortex (AIC). Despite being consistently co-activated during different tasks, the precise neuronal computations of each region and their interactions remain elusive. In order to assess the neural mechanism by which the AIC processes performance feedback, we recorded AIC electrophysiological activity in humans. We found that the AIC beta oscillations amplitude is modulated by the probability of performance feedback valence (positive or negative) given the context (task and condition difficulty). Furthermore, the valence of feedback was encoded by delta waves phase-modulating the power of beta oscillations. Finally, connectivity and causal analysis showed that beta oscillations relay feedback information signals to the mPFC. These results reveal that structured oscillatory activity in the anterior insula encodes performance feedback information, thus coordinating brain circuits related to reward-based learning.


Assuntos
Adaptação Psicológica/fisiologia , Tomada de Decisões , Retroalimentação Psicológica/fisiologia , Feedback Formativo , Córtex Insular/fisiologia , Memória de Curto Prazo , Córtex Pré-Frontal/fisiologia , Adolescente , Adulto , Ritmo beta/fisiologia , Epilepsia Resistente a Medicamentos , Eletrocorticografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Leitura , Memória Espacial , Adulto Jovem
3.
J Neural Transm (Vienna) ; 125(3): 461-470, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28364174

RESUMO

The study of non-human primates in complex behaviors such as rhythm perception and entrainment is critical to understand the neurophysiological basis of human cognition. Next to reviewing the role of beta oscillations in human beat perception, here we discuss the role of primate putaminal oscillatory activity in the control of rhythmic movements that are guided by a sensory metronome or internally gated. The analysis of the local field potentials of the behaving macaques showed that gamma-oscillations reflect local computations associated with stimulus processing of the metronome, whereas beta-activity involves the entrainment of large putaminal circuits, probably in conjunction with other elements of cortico-basal ganglia-thalamo-cortical circuit, during internally driven rhythmic tapping. Thus, this review emphasizes the need of parametric neurophysiological observations in non-human primates that display a well-controlled behavior during high-level cognitive processes.


Assuntos
Gânglios da Base/fisiologia , Ritmo beta/fisiologia , Periodicidade , Animais , Cognição/fisiologia , Primatas , Putamen/fisiologia
4.
Eur J Neurosci ; 46(3): 1906-1917, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28370471

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder characterised by progressive motor symptoms resulting from chronic loss of dopaminergic neurons in the nigrostriatal pathway. The over expression of the protein alpha-synuclein in the substantia nigra has been used to induce progressive dopaminergic neuronal loss and to reproduce key histopathological and temporal features of PD in animal models. However, the neurophysiological aspects of the alpha-synuclein PD model have been poorly characterised. Hereby, we performed chronic in vivo electrophysiological recordings in the corticostriatal circuit of rats injected with viral vector to over express alpha-synuclein in the right substantia nigra. Our model, previously shown to exhibit mild motor deficits, presented moderate dopaminergic cell loss but did not present prominent local field potential oscillations in the beta frequency range (11-30 Hz), considered a hallmark of PD, during the 9 weeks after onset of alpha-synuclein over expression. Spinal cord stimulation, a potential PD symptomatic therapy, was applied regularly from sixth to ninth week after alpha-synuclein over expression onset and had an inhibitory effect on the firing rate of corticostriatal neurons in both control and alpha-synuclein hemispheres. Dopamine synthesis inhibition at the end of the experiment resulted in severe parkinsonian symptoms such as akinesia and increased beta and high-frequency (>90 Hz) oscillations. These results suggest that the alpha-synuclein PD model with moderate level of dopaminergic depletion does not reproduce the prominent corticostriatal beta oscillatory activity associated to parkinsonian conditions.


Assuntos
Ritmo beta , Locomoção , Doença de Parkinson/fisiopatologia , alfa-Sinucleína/metabolismo , Animais , Modelos Animais de Doenças , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/fisiologia , Masculino , Doença de Parkinson/metabolismo , Ratos , Ratos Sprague-Dawley , Medula Espinal/fisiologia , Substância Negra/metabolismo , Substância Negra/fisiopatologia , alfa-Sinucleína/genética
5.
Transl Brain Rhythm ; 1(2): 49-53, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28691105

RESUMO

Gamma rhythms have been proposed to promote the feed forward or "bottom-up" flow of information from lower to higher regions in the brain during perception. On the other hand, beta rhythms have been proposed to represent feed back or "top-down" influence from higher regions to lower. The pedunculopontine nucleus (PPN) has been implicated in sleep-wake control and arousal, and is part of the reticular activating system (RAS). This review describes the properties of the cells in this nucleus. These properties are unique, and perhaps it is the particular characteristics of these cells that allow the PPN to be involved in a host of functions and disorders. The fact that all PPN neurons fire maximally at gamma band frequency regardless of electrophysiological or transmitter type, make this an unusual cell group. In other regions, for example in the cortex, cells with such a property represent only a sub-population. More importantly, the fact that this cell group's functions are related to the capacity to generate coherent activity at a preferred natural frequency, gamma band, speaks volumes about how the PPN functions. We propose that "bottom-up" gamma band influence arises in the RAS and contributes to the build-up of the background of activity necessary for preconscious awareness and gamma activity at cortical levels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA