Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.690
Filtrar
1.
J Environ Sci (China) ; 147: 1-10, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003031

RESUMO

Dibromoethane is a widespread, persistent organic pollutant. Biochars are known mediators of reductive dehalogenation by layered FeII-FeIII hydroxides (green rust), which can reduce 1,2-dibromoethane to innocuous bromide and ethylene. However, the critical characteristics that determine mediator functionality are lesser known. Fifteen biochar substrates were pyrolyzed at 600 °C and 800 °C, characterized by elemental analysis, X-ray photo spectrometry C and N surface speciation, X-ray powder diffraction, specific surface area analysis, and tested for mediation of reductive debromination of 1,2-dibromoethane by a green rust reductant under anoxic conditions. A statistical analysis was performed to determine the biochar properties, critical for debromination kinetics and total debromination extent. It was shown that selected plant based biochars can mediate debromination of 1,2-dibromoethane, that the highest first order rate constant was 0.082/hr, and the highest debromination extent was 27% in reactivity experiments with 0.1 µmol (20 µmol/L) 1,2-dibromoethane, ≈ 22 mmol/L FeIIGR, and 0.12 g/L soybean meal biochar (7 days). Contents of Ni, Zn, N, and P, and the relative contribution of quinone surface functional groups were significantly (p < 0.05) positively correlated with 1,2-dibromoethane debromination, while adsorption, specific surface area, and the relative contribution of pyridinic N oxide surface groups were significantly negatively correlated with debromination.


Assuntos
Carvão Vegetal , Carvão Vegetal/química , Halogenação , Oxirredução , Dibrometo de Etileno/química , Modelos Químicos
2.
J Environ Sci (China) ; 147: 165-178, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003037

RESUMO

In this study, two wheat-derived cadmium (Cd)-immobilizing endophytic Pseudomonas paralactis M14 and Priestia megaterium R27 were evaluated for their effects on wheat tissue Cd uptake under hydroponic conditions. Then, the impacts of the biochar (BC), M14+R27 (MR), and BC+MR treatments on wheat Cd uptake and the mechanisms involved were investigated at the jointing, heading, and mature stages of wheat plants under field-plot conditions. A hydroponic experiment showed that the MR treatment significantly decreased the above-ground tissue Cd content compared with the M14 or R27 treatment. The BC+MR treatment reduced the grain Cd content by 51.5%-67.7% and Cd translocation factor at the mature stage of wheat plants and increased the organic matter-bound Cd content by 31%-75% in the rhizosphere soils compared with the BC or MR treatment. Compared with the BC or MR treatment, the relative abundances of the biomarkers associated with Gemmatimonas, Altererythrobacter, Gammaproteobacteria, Xanthomonadaceae, Phenylobacterium, and Nocardioides in the BC+MR-treated rhizosphere microbiome decreased and negatively correlated with the organic matter-bound Cd contents. In the BC+MR-treated root interior microbiome, the relative abundance of the biomarker belonging to Exiguobacterium increased and negatively correlated with the Cd translocation factor, while the relative abundance of the biomarker belonging to Pseudonocardiaceae decreased and positively correlated with the Cd translocation factor. Our findings suggested that the BC+MR treatment reduced Cd availability and Cd transfer through affecting the abundances of these specific biomarkers in the rhizosphere soil and root interior microbiomes, leading to decreased wheat grain Cd uptake in the contaminated soil.


Assuntos
Cádmio , Carvão Vegetal , Microbiologia do Solo , Poluentes do Solo , Triticum , Triticum/metabolismo , Triticum/microbiologia , Cádmio/metabolismo , Poluentes do Solo/metabolismo , Endófitos/fisiologia , Rizosfera , Solo/química , Biodegradação Ambiental , Microbiota/efeitos dos fármacos
3.
J Environ Sci (China) ; 147: 259-267, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003045

RESUMO

Arsenic (As) pollution in soils is a pervasive environmental issue. Biochar immobilization offers a promising solution for addressing soil As contamination. The efficiency of biochar in immobilizing As in soils primarily hinges on the characteristics of both the soil and the biochar. However, the influence of a specific property on As immobilization varies among different studies, and the development and application of arsenic passivation materials based on biochar often rely on empirical knowledge. To enhance immobilization efficiency and reduce labor and time costs, a machine learning (ML) model was employed to predict As immobilization efficiency before biochar application. In this study, we collected a dataset comprising 182 data points on As immobilization efficiency from 17 publications to construct three ML models. The results demonstrated that the random forest (RF) model outperformed gradient boost regression tree and support vector regression models in predictive performance. Relative importance analysis and partial dependence plots based on the RF model were conducted to identify the most crucial factors influencing As immobilization. These findings highlighted the significant roles of biochar application time and biochar pH in As immobilization efficiency in soils. Furthermore, the study revealed that Fe-modified biochar exhibited a substantial improvement in As immobilization. These insights can facilitate targeted biochar property design and optimization of biochar application conditions to enhance As immobilization efficiency.


Assuntos
Arsênio , Carvão Vegetal , Aprendizado de Máquina , Poluentes do Solo , Solo , Carvão Vegetal/química , Arsênio/química , Poluentes do Solo/química , Poluentes do Solo/análise , Solo/química , Modelos Químicos
4.
J Environ Sci (China) ; 147: 474-486, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003063

RESUMO

Nano zero-valent iron (nZVI) is widely used in soil remediation due to its high reactivity. However, the easy agglomeration, poor antioxidant ability and passivation layer of Fe-Cr coprecipitates of nZVI have limited its application scale in Cr-contaminated soil remediation, especially in high concentration of Cr-contaminated soil. Herein, we found that the carboxymethyl cellulose on nZVI particles could increase the zeta potential value of soil and change the phase of nZVI. Along with the presence of biochar, 97.0% and 96.6% Cr immobilization efficiency through CMC-nZVI/BC were respectively achieved in high and low concentrations of Cr-contaminated soils after 90-days remediation. In addition, the immobilization efficiency of Cr(VI) only decreased by 5.1% through CMC-nZVI/BC treatment after 10 weeks aging in air, attributing to the strong antioxidation ability. As for the surrounding Cr-contaminated groundwater, the Cr(VI) removal capacity of CMC-nZVI/BC was evaluated under different reaction conditions through column experiments and COMSOL Multiphysics. CMC-nZVI/BC could efficiently remove 85% of Cr(VI) in about 400 hr when the initial Cr(VI) concentration was 40 mg/L and the flow rate was 0.5 mL/min. This study demonstrates that uniformly dispersed CMC-nZVI/BC has an excellent remediation effect on different concentrations of Cr-contaminated soils.


Assuntos
Carboximetilcelulose Sódica , Carvão Vegetal , Cromo , Recuperação e Remediação Ambiental , Ferro , Poluentes do Solo , Poluentes do Solo/química , Carvão Vegetal/química , Recuperação e Remediação Ambiental/métodos , Ferro/química , Cromo/química , Carboximetilcelulose Sódica/química , Solo/química , Nanopartículas Metálicas/química
5.
J Environ Sci (China) ; 147: 630-641, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003078

RESUMO

Cadmium (Cd) and arsenic (As) co-contamination has threatened rice production and food safety. It is challenging to mitigate Cd and As contamination in rice simultaneously due to their opposite geochemical behaviors. Mg-loaded biochar with outstanding adsorption capacity for As and Cd was used for the first time to remediate Cd/As contaminated paddy soils. In addition, the effect of zero-valent iron (ZVI) on grain As speciation accumulation in alkaline paddy soils was first investigated. The effect of rice straw biochar (SC), magnesium-loaded rice straw biochar (Mg/SC), and ZVI on concentrations of Cd and As speciation in soil porewater and their accumulation in rice tissues was investigated in a pot experiment. Addition of SC, Mg/SC and ZVI to soil reduced Cd concentrations in rice grain by 46.1%, 90.3% and 100%, and inorganic As (iAs) by 35.4%, 33.1% and 29.1%, respectively, and reduced Cd concentrations in porewater by 74.3%, 96.5% and 96.2%, respectively. Reductions of 51.6% and 87.7% in porewater iAs concentrations were observed with Mg/SC and ZVI amendments, but not with SC. Dimethylarsinic acid (DMA) concentrations in porewater and grain increased by a factor of 4.9 and 3.3, respectively, with ZVI amendment. The three amendments affected grain concentrations of iAs, DMA and Cd mainly by modulating their translocation within plant and the levels of As(III), silicon, dissolved organic carbon, iron or Cd in porewater. All three amendments (SC, Mg/SC and ZVI) have the potential to simultaneously mitigate Cd and iAs accumulation in rice grain, although the pathways are different.


Assuntos
Arsênio , Cádmio , Carvão Vegetal , Magnésio , Oryza , Poluentes do Solo , Solo , Oryza/química , Cádmio/análise , Cádmio/química , Carvão Vegetal/química , Poluentes do Solo/análise , Arsênio/análise , Solo/química , Magnésio/química , Ferro/química , Recuperação e Remediação Ambiental/métodos
6.
Biodegradation ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38954367

RESUMO

Evaluating industrial wastes in the system with minimum preprocessing and generation economically valuable products from them have critical importance. In this regard, especially cheap, wieldy, and readily available catalysts have been researched to increase variety of useful products in pyrolysis systems, to reduce process time, and to increase quality and diversity of products. Therefore, in this study, marble sludge (named K1) was evaluated as catalyst at different dosages (10%, 20%, 30%, 50%) and pyrolysis temperatures (300, 500, 700 °C) in olive pomace (OP) pyrolysis and; the potential green applications of produced new biochars at new usage areas with different purposes based on characteristics were investigated. ANOVA test results showed that temperature and catalysts ratio had significant effect on pyrolysis product yields since significance value for K1 and temperature was lower than 0.05 for pyrolysis products. OP-K1 biochars had alkaline properties and high earth metal quantities. Moreover, increment in K1 ratio and temperature resulted in decrement of the biochar surface acidity. Therefore, it can be indicated that these biochars can have a potential usage for anaerobic digestion processes, lithium-ion batteries, and direct carbon solid oxide fuel cell (DC-SOFC) but further electrochemical property test should be performed. Moreover, produced biochars can be alternative fuels in some processes instead of coal since they have low S content and high heat values. Consequently, it is foreseen that produced biochars will have an important place in the development of potential usage areas with a new and environmentally friendly approach in different areas apart from the conventional uses of catalytic pyrolysis chars.

7.
Environ Technol ; : 1-17, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38955503

RESUMO

The study investigated the spatial variation of potential methane (CH4) oxidation and residual carbon dioxide (CO2) sequestration in biogeochemical cover (BGCC) system designed to remove CH4, CO2, and hydrogen sulfide (H2S) from landfill gas (LFG) emissions. A 50 cm x 50 cm x 100 cm tank simulated BGCC system, comprising a biochar-amended soil (BAS) layer for CH4 oxidation, a basic oxygen furnace (BOF) slag layer for CO2 and H2S sequestration, and an upper topsoil layer. Synthetic LFG was flushed through the system in five phases, with each corresponding to different compositions and flow rates. Following monitoring, the system was dismantled, and samples were extracted from different depths and locations to analyze spatial variations, focusing on moisture content (MC), organic content (OC), pH, and electrical conductivity (EC). Additionally, batch tests on selected samples from BAS and BOF slag layers were performed to assess potential CH4 oxidation and residual carbonation capacity. The aim of study was to evaluate the BGCC's effectiveness in LFG mitigation, however this study focused on assessing spatial variations in physico-chemical properties, CH4 oxidation in the BAS layer, and residual carbonation in the BOF slag layer. Findings revealed CH4 oxidation in the BAS layer varied between 22.4 and 277.9 µg CH4/g-day, with higher rates in the upper part, and significant spatial variations at 50 cm below ground surface (bgs) compared to 85 cm bgs. The BOF slag layer showed a residual carbonation capacity of 40-49.3 g CO2/kg slag, indicating non-uniform carbonation. Overall, CH4 oxidation and CO2 sequestration capacities varied spatially and with depth in the BGCC system.

8.
Environ Geochem Health ; 46(8): 283, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963423

RESUMO

Phosphorus (P) scarcity and eutrophication have triggered the development of new materials for P recovery. In this work, a novel magnetic calcium-rich biochar nanocomposite (MCRB) was prepared through co-precipitation of crab shell derived biochar, Fe2+ and Fe3+. Characteristics of the material demonstrated that the MCRB was rich in calcite and that the Fe3O4 NPs with a diameter range of 18-22 nanometers were uniformly adhered on the biochar surface by strong ether linking (C-O-Fe). Batch tests demonstrated that the removal of P was pH dependent with an optimal pH of 3-7. The MCRB exhibited a superior P removal performance, with a maximum removal capacity of 105.6 mg g-1, which was even higher than the majority lanthanum containing compounds. Study of the removal mechanisms revealed that the P removal by MCRB involved the formation of hydroxyapatite (HAP-Ca5(PO4)3OH), electrostatic attraction and ligand exchange. The recyclability test demonstrated that a certain level (approximately 60%) was still maintained even after the six adsorption-desorption process, suggesting that MCRB is a promising material for P removal from wastewater.


Assuntos
Carvão Vegetal , Nanocompostos , Fosfatos , Poluentes Químicos da Água , Carvão Vegetal/química , Nanocompostos/química , Poluentes Químicos da Água/química , Fosfatos/química , Adsorção , Concentração de Íons de Hidrogênio , Cálcio/química , Purificação da Água/métodos , Águas Residuárias/química
9.
Sci Rep ; 14(1): 15062, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38956110

RESUMO

Soil salinity is a major nutritional challenge with poor agriculture production characterized by high sodium (Na+) ions in the soil. Zinc oxide nanoparticles (ZnO NPs) and biochar have received attention as a sustainable strategy to reduce biotic and abiotic stress. However, there is a lack of information regarding the incorporation of ZnO NPs with biochar to ameliorate the salinity stress (0, 50,100 mM). Therefore, the current study aimed to investigate the potentials of ZnO NPs application (priming and foliar) alone and with a combination of biochar on the growth and nutrient availability of spinach plants under salinity stress. Results demonstrated that salinity stress at a higher rate (100 mM) showed maximum growth retardation by inducing oxidative stress, resulted in reduced photosynthetic rate and nutrient availability. ZnO NPs (priming and foliar) alone enhanced growth, chlorophyll contents and gas exchange parameters by improving the antioxidant enzymes activity of spinach under salinity stress. While, a significant and more pronounced effect was observed at combined treatments of ZnO NPs with biochar amendment. More importantly, ZnO NPs foliar application with biochar significantly reduced the Na+ contents in root 57.69%, and leaves 61.27% of spinach as compared to the respective control. Furthermore, higher nutrient contents were also found at the combined treatment of ZnO NPs foliar application with biochar. Overall, ZnO NPs combined application with biochar proved to be an efficient and sustainable strategy to alleviate salinity stress and improve crop nutritional quality under salinity stress. We inferred that ZnO NPs foliar application with a combination of biochar is more effectual in improving crop nutritional status and salinity mitigation than priming treatments with a combination of biochar.


Assuntos
Carvão Vegetal , Fotossíntese , Folhas de Planta , Estresse Salino , Spinacia oleracea , Óxido de Zinco , Zinco , Spinacia oleracea/efeitos dos fármacos , Spinacia oleracea/metabolismo , Spinacia oleracea/crescimento & desenvolvimento , Carvão Vegetal/farmacologia , Carvão Vegetal/química , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Fotossíntese/efeitos dos fármacos , Zinco/farmacologia , Zinco/metabolismo , Nutrientes/metabolismo , Clorofila/metabolismo , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Antioxidantes/metabolismo , Solo/química , Estresse Oxidativo/efeitos dos fármacos , Salinidade
10.
Anal Chim Acta ; 1316: 342837, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38969427

RESUMO

Monitoring the levels of L-Tryptophan (L-Trp) in body fluids is crucial due to its significant role in metabolism and protein synthesis, which ultimately affects neurological health. Herein, we have developed a novel magneto-responsive electrochemical enantioselective sensor for the recognition of L-Trp based on oriented biochar derived from Loofah, Fe3O4 nanoparticles, and molecularly imprinted polydopamine (MIPDA) in xanthan hydrogel. The successful synthesis of these materials has been confirmed through physicochemical and electrochemical characterization. Various operational factors such as pH, response time, loading sample volume, and loading of active materials were optimized. As a result, the sensor exhibited an affordable linear range of 1.0-60.0 µM, with a desirable limit of detection of 0.44 µM. Furthermore, the proposed electrochemical sensor demonstrated good reproducibility and desirable selectivity for the determination of L-Trp, making it suitable for analyzing L-Trp levels in human plasma and serum samples. The development presented offers an appealing, easily accessible, and efficient strategy. It utilizes xanthan hydrogel to improve mass transfer and adhesion, biochar-stabilized Fe3O4 to facilitate magnetic orientation and accelerate mass transfer and sensitivity, and polydopamine MIP to enhance selectivity. This approach enables on-site evaluation of L-Trp levels, which holds significant value for healthcare monitoring and early detection of related conditions.


Assuntos
Técnicas Eletroquímicas , Hidrogéis , Polissacarídeos Bacterianos , Triptofano , Triptofano/química , Triptofano/sangue , Polissacarídeos Bacterianos/química , Hidrogéis/química , Estereoisomerismo , Humanos , Impressão Molecular , Polímeros/química , Polímeros Molecularmente Impressos/química , Indóis/química , Biopolímeros/química , Limite de Detecção , Nanopartículas de Magnetita/química
11.
J Environ Sci (China) ; 146: 304-317, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38969460

RESUMO

A biochar-assisted anaerobic membrane bioreactor (BC-AnMBR) was conducted to evaluate the performance in treating swine wastewater with different organic loading rates (OLR) ranging from 0.38 to 1.13 kg-COD/(m3.d). Results indicated that adding spent coffee grounds biochar (SCG-BC) improved the organic removal efficiency compared to the conventional AnMBR, with an overall COD removal rate of > 95.01%. Meanwhile, methane production of up to 0.22 LCH4/gCOD with an improvement of 45.45% was achieved under a high OLR of 1.13 kg-COD/(m3.d). Furthermore, the transmembrane pressure (TMP) in the BC-AnMBR system was stable at 4.5 kPa, and no irreversible membrane fouling occurred within 125 days. Microbial community analysis revealed that the addition of SCG-BC increased the relative abundance of autotrophic methanogenic archaea, particularly Methanosarcina (from 0.11% to 11.16%) and Methanothrix (from 16.34% to 24.05%). More importantly, Desulfobacterota and Firmicutes phylum with direct interspecific electron transfer (DIET) capabilities were also enriched with autotrophic methanogens. Analysis of the electron transfer pathway showed that the concentration of c-type cytochromes increased by 38.60% in the presence of SCG-BC, and thus facilitated the establishment of DIET and maintained high activity of the electron transfer system even at high OLR. In short, the BC-AnMBR system performs well under various OLR conditions and is stable in the recovery energy system for swine wastewater.


Assuntos
Reatores Biológicos , Carvão Vegetal , Eliminação de Resíduos Líquidos , Águas Residuárias , Animais , Águas Residuárias/química , Carvão Vegetal/química , Suínos , Eliminação de Resíduos Líquidos/métodos , Anaerobiose , Membranas Artificiais , Metano/metabolismo
12.
Chemosphere ; 362: 142775, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38969222

RESUMO

A significant amount of effort has been devoted to the utilization of biochar-based catalysts in the treatment of wastewater. By virtue of its abundant functional groups and high specific surface area, biochar holds significant promise as a catalyst. This article presents a comprehensive systematic review and bibliometric analysis covering the period from 2009 to 2024, focusing on the restoration of wastewater through biochar catalysis. The production, activation, and functionalization techniques employed for biochar are thoroughly examined. In addition, the application of advanced technologies such as advanced oxidation processes (AOPs), catalytic reduction reactions, and biochemically driven processes based on biochar are discussed, with a focus on elucidating the underlying mechanisms and how surface functionalities influence the catalytic performance of biochar. Furthermore, the potential drawbacks of utilizing biochar are also brought to light. To emphasize the progress being made in this research field and provide valuable insights for future researchers, a scientometric analysis was conducted using CiteSpace and VOSviewer software on 595 articles. Hopefully, this review will enhance understanding of the catalytic performance and mechanisms pertaining to biochar-based catalysts in pollutant treatment while providing a perspective and guidelines for future research and development efforts in this area.

13.
Environ Geochem Health ; 46(8): 289, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970698

RESUMO

Low molecular weight organic acids (LMWOAs) are important soil components and play a key role in regulating the geochemical behavior of heavy metal(loid)s. Biochar (BC) is a commonly used amendment that could change LMWOAs in soil. Here, four LMWOAs of oxalic acid (OA), tartaric acid (TA), malic acid (MA), and citric acid (CA) were evaluated for their roles in changing Cd and SB desorption behavior in contaminated soil with (S1-BC) or without BC (S1) produced from Paulownia biowaste. The results showed that OA, TA, MA, and CA reduced soil pH with rising concentrations, and biochar partially offset the pH reduction by LMWOAs. The LMWOAs reduced Cd desorption from the soil at low concentrations but increased Cd desorption at high concentrations, and CA was the most powerful in this regard. The LMWOAs had a similar effect on Sb desorption, and CA was the most effective species of LMWOAs. Adding BC to the soil affects Cd and Sb dynamics by reducing the Cd desorption but increasing Sb desorption from the soil and increasing the distribution coefficient (Kd) values of Cd but lowering the Kd values of Sb. This study helped understand the effects of LMWOAs on the geochemical behavior of Cd and Sb in the presence of biochar, as well as the potential risks of biochar amendment in enhancing Sb desorption from contaminated soil.


Assuntos
Carvão Vegetal , Metais Pesados , Poluentes do Solo , Solo , Carvão Vegetal/química , Poluentes do Solo/química , Metais Pesados/química , Solo/química , Peso Molecular , Concentração de Íons de Hidrogênio , Cádmio/química , Tartaratos/química , Malatos/química , Ácido Cítrico/química , Recuperação e Remediação Ambiental/métodos , Ácido Oxálico/química , Adsorção , Oryza/química
14.
J Environ Manage ; 366: 121653, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38971065

RESUMO

Biochar has been recognized as a promising practice for ameliorating degraded soils, yet the consensus on its effects remains largely unknown due to the variability among biochar, soil and plant. This study therefore presents a meta-analysis synthesizing 92 publications containing 987 paired data to scrutinize biochar effects on salt-affected soil properties and plant productivity. Additionally, a random meta-forest approach was employed to identify the key factors of biochar on salt-affected soil and plant productivity. Results showed that biochar led to significant reductions in electrical conductivity (EC), bulk density (BD) and pH by 7.4%, 4.7% and 1.2% compared to the unamended soil, respectively. Soil organic carbon (by 55.1%) and total nitrogen (by 31.3%) increased significantly with biochar addition. Moreover, biochar overall enhanced plant productivity by 31.5%, and more pronounced increases in forage/medicinal with higher salt tolerance than others. The results also identified that the soil salinity and biochar application rate were the most important co-regulators for EC and PP changes. The structural equation model further showed that soil salinity (P < 0.001), biochar pH (P < 0.001) and biochar specific surface area (P < 0.01) had a significant negative effect on soil EC, but it was positively impacted by biochar pyrolysis temperature (P < 0.05). Furthermore, plant productivity was positively affected by biochar pH (P < 0.001) and biochar feedstock (P < 0.01), while negatively influenced by biochar pyrolysis temperature (P < 0.01). This study highlights that woody biochar with 7.6 < pH < 9.0 and pyrolyzed at 400-600 °C under 30-70 t ha-1 application rate in moderately saline coarse soils is a recommendable pattern to enhance forage/medicinal productivity while reducing soil salinity. In conclusion, biochar offers promising avenues for ameliorating degradable soils, but it is imperative to explore largescale applications and field performance across different biochar, soil, and plant types.

15.
Environ Res ; 259: 119513, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38950815

RESUMO

To investigate the effect of stalk type on the metallization degrees in FeCl3-derived magnetic biochar (MBC), MBC was synthesized via an impregnation-pyrolysis method using six different stalks. The Fe0 content in MBC significantly influenced its magnetic properties and ostensibly governed its catalytic capabilities. Analysis of the interaction between stalks and FeCl3 revealed that the variation in metallization degrees, resulting from FeCl2 decomposition (6.1%) and stalk-mediated reduction (20.7%), was directly responsible for the observed differences in MBC metallization. The presence of oxygen-containing functional groups and fixed carbon appeared to promote metallization in MBC induced by reduction. A series of statistical analyses indicated that the cellulose, lignin, and hemicellulose content of the stalks were key factors contributing to differences in MBC metallization degrees. Further exploration revealed that hemicellulose and cellulose were more effective than lignin in enhancing metallization through FeCl2 decomposition and reduction. Constructing stalk models demonstrated that the variance in the content of these three biomass components across the six stalk types could lead to differences in the metallization degree attributable to reduction and FeCl2 decomposition, thereby affecting the overall metallization degree of MBC. A prediction model for MBC metallization degree was developed based on these findings. Moreover, the elevated Si content in some stalks facilitated the formation of Fe2(SiO4), which subsequently impeded the reduction process. This study provides a theoretical foundation for the informed selection of stalk feedstocks in the production of FeCl3-derived MBC.

16.
Bioresour Bioprocess ; 11(1): 65, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38960979

RESUMO

Integrating innovation and environmental responsibility has become important in pursuing sustainable industrial practices in the contemporary world. These twin imperatives have stimulated research into developing methods that optimize industrial processes, enhancing efficiency and effectiveness while mitigating undesirable ecological impacts. This objective is exemplified by the emergence of biochar derived from the thermo-chemical transformation of biomass. This review examines biochar production methods and their potential applications across various aspects of the iron and steel industries (ISI). The technical, economic, and sustainable implications of integrating biochar into the ISI were explored. Slow pyrolysis and hydrothermal carbonization are the most efficient methods for higher biochar yield (25-90%). Biochar has several advantages- higher heating value (30-32 MJ/kg), more porosity (58.22%), and significantly larger surface area (113 m2/g) compared to coal and coke. However, the presence of biochar often reduces fluidity in a coal-biochar mixture. The findings highlighted that biochar production and implementation in ISI often come with higher costs, primarily due to the higher expense of substitute fuels compared to traditional fossil fuels. The economic viability and societal desirability of biochar are highly uncertain and vary significantly based on factors such as location, feedstock type, production scale, and biochar pricing, among others. Furthermore, biomass and biochar supply chain is another important factor which determines its large scale implementation. Despite these challenges, there are opportunities to reduce emissions from BF-BOF operations by utilizing biochar technologies. Overall, the present study explored integrating diverse biochar production methods into the ISI aiming to contribute to the ongoing research on sustainable manufacturing practices, underscoring their significance in shaping a more environmentally conscious future.

17.
J Hazard Mater ; 476: 135139, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38981230

RESUMO

Neonicotinoids pose significant environmental risks due to their widespread use, persistence, and challenges in elimination. This study explores the effectiveness of Fe/Mn biochar in enhancing the removal efficiency of neonicotinoids in recirculating constructed wetlands (RCWs). Results demonstrated that incorporating Fe/Mn biochar into RCWs significantly improved the removal of COD, NH4+-N, TN, TP, imidacloprid (IMI), and acetamiprid (ACE). However, the simultaneous presence of IMI and ACE in the RCWs hindered the elimination of NH4+-N, TN, and TP from wastewater. The enhanced removal of nutrients and pollutants by Fe/Mn biochar was attributed to its promotion of carbon, nitrogen, and phosphorus cycling in RCWs, along with its facilitation of the adsorption and biodegradation of IMI and ACE. Metagenomics analysis demonstrated that Fe/Mn biochar altered the structure and diversity of microbial communities in RCWs. A total of 17 biodegradation genes (BDGs) and two pesticide degradation genes (PDGs) were identified within RCWs, with Fe/Mn biochar significantly increasing the abundance of BDGs such as cytochrome P450. The potential host genera for these BDGs/PDGs were identified as Betaproteobacteria, Acidobacteria, Nitrospiraceae, Gemmatimonadetes, and Bacillus. This study offers valuable insights into how Fe/Mn biochar enhances pesticide removal and its potential application in constructed wetland systems for treating pesticide-contaminated wastewater.

18.
J Pharm Biomed Anal ; 249: 116336, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38981249

RESUMO

In this study, a new magnetic solid phase extraction based on magnetic composite modified with biochar obtained from pumpkin peel was developed for the enrichment and extraction of Naproxen in lake water, tablet and urine samples. The effects of main parameters such as pH, extraction time, amount of adsorbent and sample volume, which affect magnetic solid phase extraction, were investigated. Under optimal conditions, intraday and interday precision values for naproxen were below 5.9, with accuracy (relative error) better than 7.0 %. The detection limit and preliminary concentration factor were 12 ng/mL and 10, respectively. The method proposed here can be used for routine analysis of naproxen in lake water, urine and tablets.

19.
Small ; : e2404254, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38984755

RESUMO

Single-atom catalysts (SACs), combining the advantages of multiphase and homogeneous catalysis, have been increasingly investigated in various catalytic applications. Carbon-based SACs have attracted much attention due to their large specific surface area, high porosity, particular electronic structure, and excellent stability. As a cheap and readily available carbon material, biochar has begun to be used as an alternative to carbon nanotubes, graphene, and other such expensive carbon matrices to prepare SACs. However, a review of biochar-based SACs for environmental pollutant removal and energy conversion and storage is lacking. This review focuses on strategies for synthesizing biochar-based SACs, such as pre-treatment of organisms with metal salts, insertion of metal elements into biochar, or pyrolysis of metal-rich biomass, which are more simplistic ways of synthesizing SACs. Meanwhile, this paper attempts to 1) demonstrate their applications in environmental remediation based on advanced oxidation technology and energy conversion and storage based on electrocatalysis; 2) reveal the catalytic oxidation mechanism in different catalytic systems; 3) discuss the stability of biochar-based SACs; and 4) present the future developments and challenges regarding biochar-based SACs.

20.
Ecotoxicol Environ Saf ; 282: 116698, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38991309

RESUMO

Heavy metal poisoning of soil from oil spills causes serious environmental problems worldwide. Various causes and effects of heavy metal pollution in the soil environment are discussed in this article. In addition, this study explores new approaches to cleaning up soil that has been contaminated with heavy metals as a result of oil spills. Furthermore, it provides a thorough analysis of recent developments in remediation methods, such as novel nano-based approaches, chemical amendments, bioremediation, and phytoremediation. The objective of this review is to provide a comprehensive overview of the removal of heavy metals from oil-contaminated soils. This review emphasizes on the integration of various approaches and the development of hybrid approaches that combine various remediation techniques in a synergistic way to improve sustainability and efficacy. The study places a strong emphasis on each remediation strategy that can be applied in the real-world circumstances while critically evaluating its effectiveness, drawbacks, and environmental repercussions. Additionally, it discusses the processes that reduce heavy metal toxicity and improve soil health, taking into account elements like interactions between plants and microbes, bioavailability, and pollutant uptake pathways. Furthermore, the current study suggests that more research and development is needed in this area, particularly to overcome current barriers, improve our understanding of underlying mechanisms, and investigate cutting-edge ideas that have the potential to completely transform the heavy metal clean up industry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...