RESUMO
OBJECTIVE: To evaluate the antimicrobial activity of a silver nanoparticles/carboxymethyl-cellulose (AgNPs/CMC) composite on in vitro and dentine disc heterogeneous biofilms. DESIGN: AgNPs/CMC composite effect on normal human gingival fibroblast cells (HGF) viability was determined by the MTT reduction assay. In addition, we evaluated the antimicrobial effect of AgNPs/CMC composite on Candida albicans, Enterococcus faecalis, and Fusobacterium nucleatum growth in vitro and heterogeneous biofilms, as well as dentine disc biofilms. RESULTS: Quasi-spherical AgNPs/CMC composites, with a mean 22.3â¯nm particle-size were synthesized. They were not toxic to HGF cells at concentrations tested that were antimicrobial, however they caused significant cytotoxicity (89 %, pâ¯<⯠0.05) at concentrations > 15 µg/mL. In vitro, they inhibited up to 67 %, 66 %, and 96 % C. albicans, E. faecalis, and F. nucleatum growth at concentrations ranging from 1.2 µg/mL to 9.6 µg/mL, as compared with untreated control. We also demonstrated significant (pâ¯<⯠0.05) 58 % biofilm reduction by 4.8 µg/mL AgNPs/CMC composite on human dentine discs. CONCLUSION: AgNPs/CMC composite showed anti biofilm activity on monocultures, heterogenous cultures, and dentine discs, resulting a potentially effective alternative to prevent and eliminate infections after endodontic treatment.
Assuntos
Anti-Infecciosos/farmacologia , Biofilmes/efeitos dos fármacos , Dentina/microbiologia , Nanopartículas Metálicas , Prata/farmacologia , Carboximetilcelulose Sódica/química , Células Cultivadas , Fibroblastos/efeitos dos fármacos , Gengiva/citologia , Humanos , Testes de Sensibilidade MicrobianaRESUMO
Low-density polyethylene composites containing different sizes of calcium oxide (CaO) nanoparticles were obtained by melt mixing. The CaO nanoparticles were synthesized by either the sol-gel or sonication methods, obtaining two different sizes: ca. 55 nm and 25 nm. These nanoparticles were used either as-synthesized or were modified organically on the surface with oleic acid (Mod-CaO), at concentrations of 3, 5, and 10 wt% in the polymer. The Mod-CaO nanoparticles of 25 nm can act as nucleating agents, increasing the polymer's crystallinity. The Young's Modulus increased with the Mod-CaO nanoparticles, rendering higher reinforcement effects with an increase as high as 36%. The reduction in Escherichia coli bacteria in the nanocomposites increased with the amount of CaO nanoparticles, the size reduction, and the surface modification. The highest antimicrobial behavior was found in the composites with a Mod-CaO of 25 nm, presenting a reduction of 99.99%. This strong antimicrobial effect can be associated with the release of the Ca2+ from the composites, as studied for the composite with 10 wt% nanoparticles. The ion release was dependent on the size of the nanoparticles and their surface modification. These findings show that CaO nanoparticles are an excellent alternative as an antimicrobial filler in polymer nanocomposites to be applied for food packaging or medical devices.
RESUMO
Zeolite/nanoparticle composites are synthesized and used as additive for waterborne formulations in replacement of traditional isothiazolinone-based biocides. Silver nanoparticles dispersed onto micrometer-sized crystals of A-type zeolite were prepared by thermal treatment or chemical reduction methods applied to the Ag-exchanged zeolite. The antifungal efficiency against Trichoderma sp. of waterborne outdoor coatings containing the supported silver nanoparticles, measured in terms of inhibition halo development, shows similar results to those obtained by using traditional organic biocides, the type, size and size distribution of the nanoparticles being the main factors affecting the biocidal action of the prepared coatings.
Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Nanopartículas Metálicas/química , Prata/química , Zeolitas/química , Escherichia coli/efeitos dos fármacosRESUMO
BACKGROUND: Brazil produces approximately 40 000 tons of Brazil nuts annually, which is commonly contaminated with fungi and mycotoxins. Gaseous allyl isothiocyanate (AITC) was used to inhibit the growth of Aspergillus parasiticus and its production of aflatoxins (AFs) in Brazil nuts. RESULTS: Nuts were inoculated with 104 spores g-1 of A. parasiticus and placed in airtight glass jars with controlled relative humidity (RH = 95 or 85%). Samples were treated with 0, 0.5, 1.0 or 2.5 µL L-1 of gaseous AITC and analyzed after 30 days to determine the fungal population and AFs content. Samples were also submitted to sensory evaluation. AITC at 2.5 µL L-1 could completely inhibit the fungal growth and AFs production in both the RH tested. AITC at 0.5 and 1 µL L-1 did not affect the microbial growth at RH = 95%, but 1 µL L-1 reduced the production of AFs by â¼50%. All AITC treatments reduced the fungal population and AFs to undetectable levels at RH = 85%. None of the concentrations altered sensory characteristics of Brazil nuts. CONCLUSION: Gaseous AITC could be used as an alternative to inhibit the growth of A. parasiticus during storage and transport of Brazil nuts. © 2017 Society of Chemical Industry.
Assuntos
Aflatoxinas/metabolismo , Aspergillus/efeitos dos fármacos , Bertholletia/microbiologia , Conservação de Alimentos , Conservantes de Alimentos/farmacologia , Isotiocianatos/farmacologiaRESUMO
Background: Bacterial responses to biocide exposure and its effects on survival and persistence remain to be studied in greater detail. Aim: To analyse the viability and survival of environmental isolates from household and hospital settings after biocide exposure. Methods: The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of chlorhexidine (CHxG), benzalkonium chloride (BAC) and triclosan (TC) were determined in isolates of Pseudomonas aeruginosa, Acinetobacter baumannii complex and Escherichia coli collected from hospital and house- holds environments. Viability was monitored after exposure and removal of biocides using agar cultures and flow cytometry. Findings: P. aeruginosa isolates showed greater tolerance for all biocides tested whereas A. baumannii complex and E. coli were less tolerant. When compared with reference strains, biocide tolerance was up to 8 to 13-fold higher for TC and BAC respectively. Flow cytometry showed that biocide exposure may induce viable but non-growing states in P. aeruginosa and E. coli isolates before becoming fully replicative. Changes in the susceptibility profile in one isolate of A. baumannii complex were observed after biocide exposure. Discussion: Bacteria isolates from hospital and households were able to recover after biocide exposure at bactericidal concentrations favouring persistence and spread of biocide-tolerant strains. This study reinforces that cleaning compliance should be monitored by non-culture based tests. Novel formulations in cleaning and disinfection protocols should be revisited in hospitals harbouring P. aeruginosa and A. baumannii multidrug resistant isolates.
Introducción: El efecto de la exposición a biocidas en las poblaciones bacterianas, su viabilidad y persistencia requieren de estudios detallados. Objetivo: analizar la viabilidad y persistencia de bacterias de ambientes hospitalarios y domésticos posterior a la exposición a biocidas. Materiales y Métodos: En un estudio experimental in vitro se determinó la concentración inhibitoria mínima (CIM) y la concentración bactericida (CBM) para chlorhexidina (CHxG), cloruro de benzalconio (BAC) y triclcosan (TC) en aislados de Pseudomonas aeruginosa (10), el complejo Acinetobacter baumannii (5) y Escherichia coli (5) obtenidos de ambientes hospitalarios y domésticos. La viabilidad y susceptibilidad bacteriana después de la exposición y remoción del biocida fue evaluada por citometria de flujo y cultivo. Resultados: Independiente de su procedencia P. aeruginosa presentó mayor tolerancia a todos los biocidas. El complejo A. baumannii y E. coli fueron hasta 8 a 13 veces más tolerantes a BAC y TC que las cepas de referencia. Se observó que la exposición a biocidas altamente efectivos induce formas viables no replicativas en P. aeruginosa y E. coli. Un aislado del complejo A baumannii presentó cambios en el perfil de susceptibilidad posterior a la exposición. Discusión: Aislados tanto de ambiente hospitalario como de la comunidad pueden recuperarse después de la exposición a concentraciones bactericidas de los biocidas favoreciendo la persistencia y diseminación de bacterias no replicativas. Por lo anterior métodos alternativos al cultivo deben utilizarse en el seguimiento de protocolos de limpieza y desinfección. Los tiempos de recuperación de la viabilidad bacteriana deben tenerse en cuenta en la formulación de protocolos para erradicar y/o controlar cepas hospitalarias de P. aeruginosa o A. baumannii multirresistentes.