Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.509
Filtrar
1.
Mol Phylogenet Evol ; 199: 108144, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38972494

RESUMO

Phylogenomic approaches have recently helped elucidate various insect relationships, but large-scale comprehensive analyses on relationships within sawflies and woodwasps are still lacking. Here, we infer the relationships and long-term biogeographic history of these hymenopteran groups using a large dataset of 354 UCE loci collected from 385 species that represent all major lineages. Early Hymenoptera started diversifying during the Early Triassic âˆ¼249 Ma and spread all over the ancient supercontinent Pangaea. We recovered Xyeloidea as a monophyletic sister group to other Hymenoptera and Pamphilioidea as sister to Unicalcarida. Within the diverse family Tenthredinidae, our taxonomically and geographically expanded taxon sampling highlights the non-monophyly of several traditionally defined subfamilies. In addition, the recent removal of Athalia and related genera from the Tenthredinidae into the separate family Athaliidae is supported. The deep historical biogeography of the group is characterised by independent dispersals and re-colonisations between the northern (Laurasia) and southern (Gondwana) palaeocontinents. The breakup of these landmasses led to ancient vicariance in several Gondwanan lineages, while interchange across the Northern Hemisphere has continued until the Recent. The little-studied African sawfly fauna is likewise a diverse mixture of groups with varying routes of colonization. Our results reveal interesting parallels in the evolution and biogeography of early hymenopterans and other ancient insect groups.

2.
Mol Ecol ; : e17446, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38946613

RESUMO

The Cenozoic topographic development of the Himalaya-Tibet orogen (HTO) substantially affected the paleoenvironment and biodiversity patterns of High Asia. However, concepts on the evolution and paleoenvironmental history of the HTO differ massively in timing, elevational increase and sequence of surface uplift of the different elements of the orogen. Using target enrichment of a large set of transcriptome-derived markers, ancestral range estimation and paleoclimatic niche modelling, we assess a recently proposed concept of a warm temperate paleo-Tibet in Asian spiny frogs of the tribe Paini and reconstruct their historical biogeography. That concept was previously developed in invertebrates. Because of their early evolutionary origin, low dispersal capacity, high degree of local endemism, and strict dependence on temperature and humidity, the cladogenesis of spiny frogs may echo the evolution of the HTO paleoenvironment. We show that diversification of main lineages occurred during the early to Mid-Miocene, while the evolution of alpine taxa started during the late Miocene/early Pliocene. Our distribution and niche modelling results indicate range shifts and niche stability that may explain the modern disjunct distributions of spiny frogs. They probably maintained their (sub)tropical or (warm)temperate preferences and moved out of the ancestral paleo-Tibetan area into the Himalaya as the climate shifted, as opposed to adapting in situ. Based on ancestral range estimation, we assume the existence of low-elevation, climatically suitable corridors across paleo-Tibet during the Miocene along the Kunlun, Qiangtang and/or Gangdese Shan. Our results contribute to a deeper understanding of the mechanisms and processes of faunal evolution in the HTO.

3.
Front Microbiol ; 15: 1418161, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38979541

RESUMO

Introduction: Understanding patterns and processes of microbial biogeography in soils is important for monitoring ecological responses to human activities, particularly in ecologically vulnerable areas such as the Qinghai-Xizang Plateau. Highland barley is the staple food of local people and has mainly been cultivated along the Yarlung Zangbo River valley in Xizang. Methods: Here we investigated soil bacterial communities from 33 sampling sites of highland barley farmland in this region and compared them to those from wild ecosystems including alpine tundra, meadow, forest, and swamp. Additionally, the effects of environmental factors on bacterial communities, as well as the relative importance of stochastic and deterministic processes in shaping the beta diversity of soil bacterial communities in alpine ecosystems were assessed. Results: In contrast to soils of wild ecosystems, these farmland samples harbored a highly homogeneous bacterial community without significant correlations with geographic, elevation, and edaphic distances. Discriminant bacterial taxa identified for farmland samples belong to Acidobacteria, with Acidobacteria Gp4 as the dominant clade. Although Acidobacteria were the most abundant members in all ecosystems, characterized bacterial taxa of meadow and forest were members of other phyla such as Proteobacteria and Verrucomicrobia. pH and organic matter were major edaphic attributes shaping these observed patterns across ecosystems. Null model analyses revealed that the deterministic assembly was dominant in bacterial communities in highland barley farmland and tundra soils, whereas stochastic assembly also contributed a large fraction to the assembly of bacterial communities in forest, meadow and swamp soils. Discussion: These findings provide an insight into the consequences of human activities and agricultural intensification on taxonomic homogenization of soil bacterial communities in the Qinghai-Xizang Plateau.

4.
Mol Ecol ; : e17444, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38984705

RESUMO

Speciation generates biodiversity and the mechanisms involved are thought to vary across the tree of life and across environments. For example, well-studied adaptive radiations are thought to be fuelled by divergent ecological selection, but additionally are influenced heavily by biogeographic, genomic and demographic factors. Mechanisms of non-adaptive radiations, producing ecologically cryptic taxa, have been less well-studied but should likewise be influenced by these latter factors. Comparing among contexts can help pinpoint universal mechanisms and outcomes, especially if we integrate biogeographic, ecological and evolutionary processes. We investigate population divergence in the swordtail cricket Laupala cerasina, a wide-spread endemic on Hawai'i Island and one of 38 ecologically cryptic Laupala species. The nine sampled populations show striking population genetic structure at small spatio-temporal scales. The rapid differentiation among populations and species of Laupala shows that neither a specific geographical context nor ecological opportunity are pre-requisites for rapid divergence. Spatio-temporal patterns in population divergence, population size change, and gene flow are aligned with the chronosequence of the four volcanoes on which L. cerasina occurs and reveal the composite effects of geological dynamics and Quaternary climate change on population dynamics. Spatio-temporal patterns in genetic variation along the genome reveal the interplay of genetic and genomic architecture in shaping population divergence. In early phases of divergence, we find elevated differentiation in genomic regions harbouring mating song loci. In later stages of divergence, we find a signature of linked selection that interacts with recombination rate variation. Comparing our findings with recent work on complementary systems supports the conclusion that mostly universal factors influence the speciation process.

5.
Syst Biol ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953551

RESUMO

Advances in genomics have greatly enhanced our understanding of mountain biodiversity, providing new insights into the complex and dynamic mechanisms that drive the formation of mountain biotas. These span from broad biogeographic patterns to population dynamics and adaptations to these environments. However, significant challenges remain in integrating large-scale and fine-scale findings to develop a comprehensive understanding of mountain biodiversity. One significant challenge is the lack of genomic data, particularly in historically understudied arid regions where reptiles are a particularly diverse vertebrate group. In the present study, we assembled a de novo genome-wide SNP dataset for the complete endemic reptile fauna of a mountain range (19 described species with more than 600 specimens sequenced), and integrated state-of-the-art biogeographic analyses at the population, species, and community level. Thus, we provide a holistic integration of how a whole endemic reptile community has originated, diversified and dispersed through a mountain system. Our results show that reptiles independently colonized the Hajar Mountains of southeastern Arabia 11 times. After colonization, species delimitation methods suggest high levels of within-mountain diversification, supporting up to 49 deep lineages. This diversity is strongly structured following local topography, with the highest peaks acting as a broad barrier to gene flow among the entire community. Interestingly, orogenic events do not seem key drivers of the biogeographic history of reptiles in this system. Instead, past climatic events seem to have had a major role in this community assemblage. We observe an increase of vicariant events from Late Pliocene onwards, coinciding with an unstable climatic period of rapid shifts between hyper-arid and semiarid conditions that led to the ongoing desertification of Arabia. We conclude that paleoclimate, and particularly extreme aridification, acted as a main driver of diversification in arid mountain systems which is tangled with the generation of highly adapted endemicity. Overall, our study does not only provide a valuable contribution to understanding the evolution of mountain biodiversity, but also offers a flexible and scalable approach that can be reproduced into any taxonomic group and at any discrete environment.

6.
Mol Phylogenet Evol ; : 108143, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38977042

RESUMO

Cyphophthalmi (the mite harvesters) are a group of Opiliones with broad interest due to their species being classic examples of short-range endemics and displaying model biogeographical patterns for poor dispersers. Cyphophthalmi phylogeny has received attention using morphology, Sanger-based sequencing data, or transcriptomics. Here we turn to a new type of data, ultraconserved elements (UCEs) and provide a first phylogeny for the entire suborder Cyphophthalmi using such data and including representatives from 36 of the 46 currently recognized genera. Phylogenetic analysis of four occupancy matrices (50%, 75%, 90% and 95%), for a total of 840, 567, 129, and 23 loci, respectively, yielded a well resolved phylogeny with monophyly of Pettalidae, Parasironidae, Stylocellidae and Troglosironidae. However, Neogoveidae appeared paraphyletic with respect to Ogoveidae in all datasets and to Troglosironidae in some, and the traditional Sironidae, which was monophyletic, now appeared paraphyletic with respect to the recently erected family Parasironidae. Our phylogenomic results using UCE data resolve the position of several problematic genera (e.g., Pettalus) and add support to other parts of the tree that received low support in Sanger-based phylogenies. Our work also stresses the possibility to add museum samples to phylogenies although methods for optimizing DNA yield from such small-bodied specimens needs further improvement. Finally, this backbone phylogeny demonstrates the feasibility of an all-species phylogeny using UCEs for Cyphophthalmi, and by extension, for all Opiliones.

7.
Sci Total Environ ; 946: 174429, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38960185

RESUMO

Understanding species distribution and the related driving processes is a fundamental issue in ecology. However, incomplete data on reef-building corals in the ecoregions of the South China Sea have hindered a comprehensive understanding of coral distribution patterns and their ecological drivers in the Northwest Pacific (NWP). This study investigated the coral species diversity and distribution patterns in the NWP by collecting species presence/absence data from the South China Sea and compiling an extensive species distribution database for the region, and explored their major environmental drivers. Our NWP coral database included 612 recorded coral species across 15 ecoregions. Of these, 536 coral species were recorded in the South China Sea Oceanic Islands after compilation, confirming the extraordinary coral species diversity in this ecoregion. Coral alpha diversity was found to decrease with increasing latitude in the whole NWP, while the influence of the Kuroshio Current on environmental conditions in its path results in a slower decline in species richness with latitude compared to regions within the South China Sea. Beta-diversity decomposition revealed that nestedness patterns mainly occurred between low and high latitude ecoregions, while communities within similar latitudes exhibited a turnover component, particularly pronounced at high latitudes. The impact of environmental factors on coral assemblage structure outweighed the effects of spatial distance. Temperature, especially winter temperature, and light intensity strongly influenced alpha diversity and beta diversity's nestedness component. Additionally, turbidity and winter temperature variations at high latitudes contributed to the turnover pattern observed among communities in the NWP. These findings elucidate the assembly processes and major environmental drivers shaping different coral communities in the NWP, highlighting the significant role of specific environmental filtering in coral distribution patterns and providing valuable insights for coral species conservation efforts.

8.
Environ Microbiome ; 19(1): 38, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858739

RESUMO

BACKGROUND: Coral-associated microbiomes vary greatly between colonies and localities with functional consequences on the host. However, the full extent of variability across the ranges of most coral species remains unknown, especially for corals living in deep waters which span greater ranges. Here, we characterized the microbiomes of four octocoral species from mesophotic and bathyal deep-sea habitats in the northern Gulf of Mexico, Muricea pendula, Swiftia exserta, Callogorgia delta, and Paramuricea biscaya, using 16S rRNA gene metabarcoding. We sampled extensively across their ranges to test for microbiome differentiation between and within species, examining the influence of environmental factors that vary with depth (53-2224 m) and geographic location (over 680 m) as well as the host coral's genotype using RAD-sequencing. RESULTS: Coral microbiomes were often dominated by amplicon sequence variants whose abundances varied across their hosts' ranges, including symbiotic taxa: corallicolids, Endozoicomonas, members of the Mollicutes, and the BD1-7 clade. Coral species, depth, and geographic location significantly affected diversity, microbial community composition, and the relative abundance of individual microbes. Depth was the strongest environmental factor determining microbiome structure within species, which influenced the abundance of most dominant symbiotic taxa. Differences in host genotype, bottom temperature, and surface primary productivity could explain a significant part of the microbiome variation associated with depth and geographic location. CONCLUSIONS: Altogether, this work demonstrates that the microbiomes of corals in deep waters vary substantially across their ranges in accordance with depth and other environmental conditions. It reveals that the influence of depth on the ecology of mesophotic and deep-sea corals extends to its effects on their microbiomes which may have functional consequences. This work also identifies the distributions of microbes including potential parasites which can be used to inform restoration plans in response to the Deepwater Horizon oil spill.

9.
Front Microbiol ; 15: 1407904, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38863746

RESUMO

Prokaryotes dominate global oceans and shape biogeochemical cycles, yet most taxa remain uncultured and uncharacterized as of today. Here we present the characterization of 26 novel marine bacterial strains from a large isolate collection obtained from Blanes Bay (NW Mediterranean) microcosm experiments made in the four seasons. Morphological, cultural, biochemical, physiological, nutritional, genomic, and phylogenomic analyses were used to characterize and phylogenetically place the novel isolates. The strains represent 23 novel bacterial species and six novel genera: three novel species pertaining to class Alphaproteobacteria (families Rhodobacteraceae and Sphingomonadaceae), six novel species and three new genera from class Gammaproteobacteria (families Algiphilaceae, Salinispheraceae, and Alteromonadaceae), 13 novel species and three novel genera from class Bacteroidia (family Flavobacteriaceae), and one new species from class Rhodothermia (family Rubricoccaceae). The bacteria described here have potentially relevant roles in the cycles of carbon (e.g., carbon fixation or energy production via proteorhodopsin), nitrogen (e.g., denitrification or use of urea), sulfur (oxidation of sulfur compounds), phosphorus (acquisition and use of different forms of phosphorus and remodeling of membrane phospholipids), and hydrogen (oxidation of hydrogen to obtain energy). We mapped the genomes of the presented strains to the Tara Oceans metagenomes to reveal that these strains were globally distributed, with those of the family Flavobacteriaceae being the most widespread and abundant, while Rhodothermia being the rarest and most localized. While molecular-only approaches are also important, our study stresses the importance of culturing as a powerful tool to further understand the functioning of marine bacterial communities.

10.
Am J Bot ; : e16356, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867412

RESUMO

PREMISE: The proportion of polyploid plants in a community increases with latitude, and different hypotheses have been proposed about which factors drive this pattern. Here, we aimed to understand the historical causes of the latitudinal polyploidy gradient using a combination of ancestral state reconstruction methods. Specifically, we assessed whether (1) polyploidization enables movement to higher latitudes (i.e., polyploidization precedes occurrences in higher latitudes) or (2) higher latitudes facilitate polyploidization (i.e., occurrence in higher latitudes precedes polyploidization). METHODS: We reconstructed the ploidy states and ancestral niches of 1032 angiosperm species at four paleoclimatic time slices ranging from 3.3 million years ago to the present, comprising taxa from four well-represented clades: Onagraceae, Primulaceae, Solanum (Solanaceae), and Pooideae (Poaceae). We used ancestral niche reconstruction models alongside a customized discrete character evolution model to allow reconstruction of states at specific time slices. Patterns of latitudinal movement were reconstructed and compared in relation to inferred ploidy shifts. RESULTS: No single hypothesis applied equally well across all analyzed clades. While significant differences in median latitudinal occurrence were detected in the largest clade, Poaceae, no significant differences were detected in latitudinal movement in any clade. CONCLUSIONS: Our preliminary study is the first to attempt to connect ploidy changes to continuous latitudinal movement, but we cannot favor one hypothesis over another. Given that patterns seem to be clade-specific, more clades must be analyzed in future studies for generalities to be drawn.

11.
Biodivers Data J ; 12: e124720, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38868392

RESUMO

Background: In Bulgaria, the superfamily Cercopoidea consists of 18 species in two families - Aphrophoridae and Cercopidae. Of these, 13 species of Aphrophoridae belong to the genera Philaenus, Neophilaenus, Aphrophora and Lepyronia and five species of Cercopidae are in Cercopis and Haematoloma. Over a period of 25 years of extensive research on the species of the superfamily in the country, a large amount of geo-referenced data has been collected on 17 of the species, which has significantly increased knowledge of their biogeography. New information: The paper presents a dataset of the materials of the superfamily Cercopoidea deposited in the Zoological Collection of the University of Sofia (BFUS). The specimens were collected from 888 localities in Bulgaria over a period of 25 years (1997 to 2022). The Cercopoidea collection comprises 8722 specimens grouped into 6670 collection objects.The text provides data for each species, including a distribution map, regional literature taxon names and identifiers from eight taxonomic infrastructures (GBIF, BOLD, OpenBiodiv, BHL, COL, Plazi, EOL and TaxonWorks). It also includes data from literature and new records, phenology and altitudinal distribution in Bulgaria, as well as known host plants. Live photographs are provided for all species. A nanopublication presents the establishment of a new host plant, Asphodelinelutea (L.) Rchb., for the species Philaenussignatus Melichar, 1896.

12.
Anim Microbiome ; 6(1): 32, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38872229

RESUMO

BACKGROUND: Biogeography has been linked to differences in gut microbiota in several animals. However, the existence of such a relationship in fish is not clear yet. So far, it seems to depend on the fish species studied. However, most studies of fish gut microbiotas are based on single populations. In this study, we investigated the gut microbiota of fish from three wild populations of the two-banded sea bream Diplodus vulgaris (Geoffroy Saint-Hilaire, 1817) to determine whether its diversity, structure and potential functionality reflect the geographic origin of the fish, at large and small geographical scale. Additionally, we explored the host- and environmental-related factors explaining this relationship. RESULTS: We showed that the taxonomy and potential functionality of the mucosa-associated gut microbiota of Diplodus vulgaris differ to varying degrees depending on the spatial scale considered. At large scale, we observed that both the taxonomical structure and the potential functionality of the fish microbiota differed significantly between populations. In contrast, the taxonomical diversity of the microbial community displayed a significant relationship with factors other than the geographic origin of the fish (i.e. sampling date). On the other hand, at small scale, the different composition and diversity of the microbiota differ according to the characteristics of the habitat occupied by the fish. Specifically, we identified the presence of Posidonia oceanica in the benthic habitat as predictor of both the microbiota composition and diversity. Lastly, we reported the enrichment of functions related to the metabolism of xenobiotics (i.e. drugs and 4-aminobenzoate) in a population and we indicated it as a potential target of future monitoring. CONCLUSIONS: With this study, we confirmed the importance of investigating the gut microbiota of wild fish species using multiple populations, taking into account the different habitats occupied by the individuals. Furthermore, we underscored the use of the biodegradation potential of the gut microbiota as an alternative means of monitoring emerging contaminants in Mediterranean fish.

13.
Ecol Evol ; 14(6): e11419, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38932963

RESUMO

Myotis originated during the Oligocene in Eurasia and has become one of the most diverse bat genera, with over 140 species. In the case of neotropical Myotis, there is a high degree of phenotypic conservatism. This means that the taxonomic and geographic limits of several species are not well understood, which constrains detailed studies on their ecology and evolution and how to effectively protect these species. Similar to other organisms, bats may respond to climate change by moving to different areas, adapting to new conditions, or going extinct. Ecological niche models have become established as an efficient and widely used method for interpolating (and sometimes extrapolating) species' distributions and offer an effective tool for identifying species conservation requirements and forecasting how global environmental changes may affect species distribution. How species respond to climate change is a key point for understanding their vulnerability and designing effective conservation strategies in the future. Thus, here, we assessed the impacts of climate change on the past and future distributions of two phylogenetically related species, Myotis ruber and Myotis keaysi. The results showed that the species are influenced by changes in temperature, and for M. ruber, precipitation also becomes important. Furthermore, M. ruber appears to have been more flexible to decreases in temperature that occurred in the past, which allowed it to expand its areas of environmental suitability, unlike M. keaysi, which decreased and concentrated these areas. However, despite a drastic decrease in the spatial area of environmental suitability of these species in the future, there are areas of potential climate stability that have been maintained since the Pleistocene, indicating where conservation efforts need to be concentrated in the future.

14.
Ecol Evol ; 14(6): e11540, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38932973

RESUMO

The equilibrium theory of island biogeography (ETIB) is a widely applied dynamic theory proposed in the 1960s to explain why islands have coherent differences in species richness. The development of the ETIB was temporarily challenged in the 1970s by the alternative static theory of ecological impoverishment (TEI). The TEI suggests that the number of species on an island is determined by its number of habitats or niches but, with no clear evidence relating species richness to the number of niches however, the TEI has been almost dismissed as a theory in favour of the original ETIB. Here, we show that the number of climatic niches on islands is an important predictor of the species richness of plants, herpetofauna and land birds. We therefore propose a model called the niche-based theory of island biogeography (NTIB), based on the MacroEcological Theory on the Arrangement of Life (METAL), which successfully integrates the number of niches sensu Hutchinson into ETIB. To account for greater species turnover at the beginning of colonisation, we include higher initial extinction rates. When we test our NTIB for resident land birds in the Krakatau Islands, it reveals a good correspondence with observed species richness, immigration and extinction rates. Provided the environmental regime remains unchanged, we estimate that the current species richness at equilibrium is ~45 species (range between 38.39 and 61.51). Our NTIB provides better prediction because it counts for changes in species richness with latitude, which is not considered in any theory of island biogeography.

15.
Biodivers Data J ; 12: e119660, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38933486

RESUMO

Fungi is a highly diverse group of eukaryotic organisms that live under an extremely wide range of environmental conditions. Nowadays, there is a fundamental focus on observing how biodiversity varies on different spatial scales, in addition to understanding the environmental factors which drive fungal biodiversity. Metabarcoding is a high-throughput DNA sequencing technology that has positively contributed to observing fungal communities in environments. While the DNA sequencing data generated from metabarcoding studies are available in public archives, this valuable data resource is not directly usable for fungal biodiversity investigation. Additionally, due to its fragmented storage and distributed nature, it is not immediately accessible through a single user interface. We developed the MycoDiversity DataBase User Interface (https://mycodiversity.liacs.nl) to provide direct access and retrieval of fungal data that was previously inaccessible in the public domain. The user interface provides multiple graphical views of the data components used to reveal fungal biodiversity. These components include reliable geo-location terms, the reference taxonomic scientific names associated with fungal species and the standard features describing the environment where they occur. Direct observation of the public DNA sequencing data in association with fungi is accessible through SQL search queries created by interactively manipulating topological maps and dynamic hierarchical tree views. The search results are presented in configurable data table views that can be downloaded for further use. With the MycoDiversity DataBase User Interface, we make fungal biodiversity data accessible, assisting researchers and other stakeholders in using metabarcoding studies for assessing fungal biodiversity.

16.
Curr Biol ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38925116

RESUMO

Foraging behavior frequently plays a major role in driving the geographic distribution of animals. Buzzing to extract protein-rich pollen from flowers is a key foraging behavior used by bee species across at least 83 genera (these genera comprise ∼58% of all bee species). Although buzzing is widely recognized to affect the ecology and evolution of bees and flowering plants (e.g., buzz-pollinated flowers), global patterns and drivers of buzzing bee biogeography remain unexplored. Here, we investigate the global species distribution patterns within each bee family and how patterns and drivers differ with respect to buzzing bee species. We found that both distributional patterns and drivers of richness typically differed for buzzing species compared with hotspots for all bee species and when grouped by family. A major predictor of the distribution, but not species richness overall for buzzing members of four of the five major bee families included in analyses (Andrenidae, Halictidae, Colletidae, and to a lesser extent, Apidae), was the richness of poricidal flowering plant species, which depend on buzzing bees for pollination. Because poricidal plant richness was highest in areas with low wind and high aridity, we discuss how global hotspots of buzzing bee biodiversity are likely influenced by both biogeographic factors and plant host availability. Although we explored global patterns with state-level data, higher-resolution work is needed to explore local-level drivers of patterns. From a global perspective, buzz-pollinated plants clearly play a greater role in the ecology and evolution of buzzing bees than previously predicted.

17.
Microorganisms ; 12(6)2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38930457

RESUMO

Burrowing animals are a critical driver of terrestrial ecosystem functioning, but we know little about their effects on soil microbiomes. Here, we evaluated the effect of burrowing animals on microbial assembly processes and co-occurrence patterns using soil microbiota from a group of habitats disturbed by Plateau pikas (Ochtona curzoniae). Pika disturbance had different impacts on bacterial and fungal communities. Fungal diversity generally increased with patch area, whereas bacterial diversity decreased. These strikingly different species-area relationships were closely associated with their community assembly mechanisms. The loss of bacterial diversity on larger patches was largely driven by deterministic processes, mainly due to the decline of nutrient supply (e.g., organic C, inorganic N). In contrast, fungal distribution was driven primarily by stochastic processes that dispersal limitation contributed to their higher fungal diversity on lager patches. A bacterial co-occurrence network exhibited a positive relationship of nodes and linkage numbers with patch area, and the fungal network presented a positive modularity-area relationship, suggesting that bacteria tended to form a closer association community under pika disturbance, while fungi tended to construct a higher modularity network. Our results suggest that pikas affects the microbial assembly process and co-occurrence patterns in alpine environments, thereby enhancing the current understanding of microbial biogeography under natural disturbances.

18.
Mol Phylogenet Evol ; 198: 108130, 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38889862

RESUMO

Unusually for oceanic islands, the granitic Seychelles host multiple lineages of endemic amphibians. This includes an ancient (likely ca. 60 million years) radiation of eight caecilian species, most of which occur on multiple islands.These caecilians have a complicated taxonomic history and their phylogenetic inter-species relationships have been difficult to resolve. Double-digest RAD sequencing (ddRADseq) has been applied extensively to phylogeography and increasingly to phylogenetics but its utility for resolving ancient divergences is less well established. To address this, we applied ddRADseq to generate a genome-wide SNP panel for phylogenomic analyses of the Seychelles caecilians, whose phylogeny has so far not been satisfactorily resolved with traditional DNA markers. Based on 129,154 SNPs, we resolved deep and shallow splits, with strong support. Our findings demonstrate the capability of genome-wide SNPs for evolutionary inference at multiple taxonomic levels and support the recently proposed synonymy of Grandisonia Taylor, 1968 with Hypogeophis Peters, 1879. We revealed three clades of Hypogeophis (large-, medium- and short-bodied) and identify a single origin of the diminutive, stocky-bodied and pointy-snouted phenotype.

19.
Artigo em Inglês | MEDLINE | ID: mdl-38888215

RESUMO

Since its coinage ca. 1850 AD by Philip Barker Webb, the biogeographical region of Macaronesia, consisting of the North Atlantic volcanic archipelagos of the Azores, Madeira with the tiny Selvagens, the Canaries and Cabo Verde, and for some authors different continental coastal strips, has been under dispute. Herein, after a brief introduction on the terminology and purpose of regionalism, we recover the origins of the Macaronesia name, concept and geographical adscription, as well as its biogeographical implications and how different authors have positioned themselves, using distinct terrestrial or marine floristic and/or faunistic taxa distributions and relationships for accepting or rejecting the existence of this biogeographical region. Four main issues related to Macaronesia are thoroughly discussed: (i) its independence from the Mediterranean phytogeographical region; (ii) discrepancies according to different taxa analysed; (iii) its geographical limits and the role of the continental enclave(s), and, (iv) the validity of the phytogeographical region level. We conclude that Macaronesia has its own identity and a sound phytogeographical foundation, and that this is mainly based on three different floristic components that are shared by the Macaronesian core (Madeira and the Canaries) and the outermost archipelagos (Azores and Cabo Verde). These floristic components are: (i) the Palaeotropical-Tethyan Geoflora, formerly much more widely distributed in Europe and North Africa and currently restricted to the three northern archipelagos (the Azores, Madeira and the Canaries); (ii) the African Rand Flora, still extant in the coastal margins of Africa and Arabia, and present in the southern archipelagos (Madeira, the Canaries and Cabo Verde), and (iii) the Macaronesian neoendemic floristic component, represented in all the archipelagos, a result of allopatric diversification promoted by isolation of Mediterranean ancestors that manage to colonize Central Macaronesia and, from there, the outer archipelagos. Finally, a differentiating floristic component recently colonized the different archipelagos from the nearest continental coast, providing them with different biogeographic flavours.

20.
Proc Biol Sci ; 291(2025): rspb20240844, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38889781

RESUMO

Biological invasions are among the threats to global biodiversity and social sustainability, especially on islands. Identifying the threshold of area at which non-native species begin to increase abruptly is crucial for early prevention strategies. The small-island effect (SIE) was proposed to quantify the nonlinear relationship between native species richness and area but has not yet been applied to non-native species and thus to predict the key breakpoints at which established non-native species start to increase rapidly. Based on an extensive global dataset, including 769 species of non-native birds, mammals, amphibians and reptiles established on 4277 islands across 54 archipelagos, we detected a high prevalence of SIEs across 66.7% of archipelagos. Approximately 50% of islands have reached the threshold area and thus may be undergoing a rapid increase in biological invasions. SIEs were more likely to occur in those archipelagos with more non-native species introduction events, more established historical non-native species, lower habitat diversity and larger archipelago area range. Our findings may have important implications not only for targeted surveillance of biological invasions on global islands but also for predicting the responses of both non-native and native species to ongoing habitat fragmentation under sustained land-use modification and climate change.


Assuntos
Biodiversidade , Espécies Introduzidas , Ilhas , Animais , Conservação dos Recursos Naturais , Ecossistema , Aves/fisiologia , Anfíbios/fisiologia , Mamíferos/fisiologia , Répteis/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...