RESUMO
Biosurfactants have been profiled as a sustainable replacement for chemical-based surfactants since these bio-based molecules have higher biodegradability. Few research papers have focused on assessing biosurfactant production to elucidate potential bottlenecks. This research aims to assess the techno-economic and environmental performance of surfactin production in a potential scale of 65m3, considering different product yields and involving the European energy crisis of 2021-2022. The conceptual design, simulation, techno-economic, and environmental assessments were done by applying process engineering concepts and software tools such as Aspen Plus v.9.0 and SimaPro v.8.3.3. The results demonstrated the high economic potential of surfactin production since the higher values in the market offset the low fermentation yields, low recovery efficiency, and high capital investment. The sensitivity analysis of the economic assessment elucidated a minimum surfactin selling price between 29 and 31 USD/kg of surfactin, while a minimum processing scale for economic feasibility between 4 and 5 kg/h is needed to reach an equilibrium point. The environmental performance must be improved since the carbon footprint was 43 kg CO2eq/kg of surfactin. The downstream processing and energy demand are the main bottlenecks since these aspects contribute to 63 and 25% of the total emissions. The fermentation process and downstream process are key factors for future optimization and research.
RESUMO
Several studies have searched for new antigens to produce pneumococcal vaccines that are more effective and could provide broader coverage, given the great number of serotypes causing pneumococcal diseases. One of the promising subunit vaccine candidates is untagged recombinant pneumococcal surface protein A (PspA4Pro), obtainable in high quantities using recombinant Escherichia coli as a microbial factory. However, lipopolysaccharides (LPS) present in E. coli cell extracts must be removed, in order to obtain the target protein at the required purity, which makes the downstream process more complex and expensive. Endotoxin-free E. coli strains, which synthesize a nontoxic mutant LPS, may offer a cost-effective alternative way to produce recombinant proteins for application as therapeutics. This paper presents an investigation of PspA4Pro production employing the endotoxin-free recombinant strain ClearColi® BL21(DE3) with different media (defined, auto-induction, and other complex media), temperatures (27, 32, and 37 °C), and inducers. In comparison to conventional E. coli cells in a defined medium, ClearColi presented similar PspA4Pro yields, with lower productivities. Complex medium formulations supplemented with salts favored PspA4Pro yields, titers, and ClearColi growth rates. Induction with isopropyl-ß-D-thiogalactopyranoside (0.5 mM) and lactose (2.5 g/L) together in a defined medium at 32 °C, which appeared to be a promising cultivation strategy, was reproduced in 5 L bioreactor culture, leading to a yield of 146.0 mg PspA4Pro/g dry cell weight. After purification, the cell extract generated from ClearColi led to 98% purity PspA4Pro, which maintained secondary structure and biological function. ClearColi is a potential host for industrial recombinant protein production. KEY POINTS: ⢠ClearColi can produce as much PspA4Pro as conventional E. coli BL21(DE3) cells. ⢠10.5 g PspA4Pro produced in ClearColi bioreactor culture using a defined medium. ⢠Functional PspA4Pro (98% of purity) was obtained in ClearColi bioreactor culture. Graphical abstract.
Assuntos
Reatores Biológicos , Escherichia coli , Proteínas de Bactérias/genética , Escherichia coli/genética , Proteínas Recombinantes/genéticaRESUMO
Several studies have searched for new antigens to produce pneumococcal vaccines that are more effective and could provide broader coverage, given the great number of serotypes causing pneumococcal diseases. One of the promising subunit vaccine candidates is untagged recombinant pneumococcal surface protein A (PspA4Pro), obtainable in high quantities using recombinant Escherichia coli as a microbial factory. However, lipopolysaccharides (LPS) present in E. coli cell extracts must be removed, in order to obtain the target protein at the required purity, which makes the downstream process more complex and expensive. Endotoxin-free E. coli strains, which synthesize a nontoxic mutant LPS, may offer a cost-effective alternative way to produce recombinant proteins for application as therapeutics. This paper presents an investigation of PspA4Pro production employing the endotoxin-free recombinant strain ClearColi® BL21(DE3) with different media (defined, auto-induction, and other complex media), temperatures (27, 32, and 37 °C), and inducers. In comparison to conventional E. coli cells in a defined medium, ClearColi presented similar PspA4Pro yields, with lower productivities. Complex medium formulations supplemented with salts favored PspA4Pro yields, titers, and ClearColi growth rates. Induction with isopropyl-β-D-thiogalactopyranoside (0.5 mM) and lactose (2.5 g/L) together in a defined medium at 32 °C, which appeared to be a promising cultivation strategy, was reproduced in 5 L bioreactor culture, leading to a yield of 146.0 mg PspA4Pro/g dry cell weight. After purification, the cell extract generated from ClearColi led to 98% purity PspA4Pro, which maintained secondary structure and biological function. ClearColi is a potential host for industrial recombinant protein production.
RESUMO
BACKGROUND: Nonribosomal peptide synthases (NRPS) can synthesize functionally diverse bioactive peptides by incorporating nonproteinogenic amino acids, offering a rich source of new drug leads. The bacterium Escherichia coli is a well-characterized production host and a promising candidate for the synthesis of nonribosomal peptides, but only limited bioprocess engineering has been reported for such molecules. We therefore developed a medium and optimized process parameters using the design of experiments (DoE) approach. RESULTS: We found that glycerol is not suitable as a carbon source for rhabdopeptide production, at least for the NRPS used for this study. Alternative carbon sources from the tricarboxylic acid cycle achieved much higher yields. DoE was used to optimize the pH and temperature in a stirred-tank reactor, revealing that optimal growth and optimal production required substantially different conditions. CONCLUSIONS: We developed a chemically defined adapted M9 medium matching the performance of complex medium (lysogeny broth) in terms of product concentration. The maximum yield in the reactor under optimized conditions was 126 mg L-1, representing a 31-fold increase compared to the first shaking-flask experiments with M9 medium and glycerol as the carbon source. Conditions that promoted cell growth tended to inhibit NRPS productivity. The challenge was therefore to find a compromise between these factors as the basis for further process development.
Assuntos
Peptídeo Sintases/metabolismo , Reatores Biológicos/microbiologia , Escherichia coli , Temperatura , Biotecnologia , Carbono/metabolismo , Modelos Estatísticos , Eletroforese em Gel de Poliacrilamida , Bioengenharia , Concentração de Íons de HidrogênioRESUMO
The impact of cultivation strategy on the cost of recombinant protein production is crucial for defining cost-effective bioreactor operation conditions. This paper presents a methodology to estimate and compare cost impacts related to utilities as well as medium composition, using simple design equations and accessible data. Data from batch bioreactor cultures were used as case study involving the production of pneumococcal surface protein A, a soluble recombinant protein, employing E. coli BL21(DE3). Cultivation strategies and corresponding process costs covered a wide range of operational conditions, including different media, inducers, and temperatures. The core expenses were related to the medium and cooling. When the price of peptone was above the threshold value of US$ 30/kg, defined medium became the best choice. IPTG and temperatures around 32⯰C led to shorter cultures and lower PspA4Pro production costs. The procedure offers a simple, accessible theoretical tool to identify cost-effective production strategies using bioreactors.
RESUMO
Soluble coffee offers the combined benefits of high added value and practicality for its consumers. The hydrolysis of coffee polysaccharides by the biochemical route, using enzymes, is an eco-friendly and sustainable way to improve the quality of this product, while contributing to the implementation of industrial processes that have lower energy requirements and can reduce environmental impacts. This work describes the production of hydrolytic enzymes by solid-state fermentation (SSF), cultivating filamentous fungi on waste from the coffee industry, followed by their application in the hydrolysis of waste coffee polysaccharides from soluble coffee processing. Different substrate compositions were studied, an ideal microorganism was selected, and the fermentation conditions were optimized. Cultivations for enzymes production were carried out in flasks and in a packed-bed bioreactor. Higher enzyme yield was achieved in the bioreactor, due to better aeration of the substrate. The best ß-mannanase production results were found for a substrate composed of a mixture of coffee waste and wheat bran (1:1 w/w), using Aspergillusniger F12. The enzymatic extract proved to be very stable for 24 h, at 50 °C, and was able to hydrolyze a considerable amount of the carbohydrates in the coffee. The addition of a commercial cellulase cocktail to the crude extract increased the hydrolysis yield by 56%. The production of ß-mannanase by SSF and its application in the hydrolysis of coffee polysaccharides showed promise for improving soluble coffee processing, offering an attractive way to assist in closing the loops in the coffee industry and creating a circular economy.
Assuntos
Aspergillus/enzimologia , Café/metabolismo , Indústria Alimentícia/métodos , Microbiologia Industrial/métodos , beta-Manosidase/metabolismo , Aspergillus/crescimento & desenvolvimento , Aspergillus/metabolismo , Fermentação , Hidrólise , Resíduos Industriais , Polissacarídeos/metabolismo , Eliminação de Resíduos/métodosRESUMO
The impact of cultivation strategy on the cost of recombinant protein production is crucial for defining cost-effective bioreactor operation conditions. This paper presents a methodology to estimate and compare cost impacts related to utilities as well as medium composition, using simple design equations and accessible data. Data from batch bioreactor cultures were used as case study involving the production of pneumococcal surface protein A, a soluble recombinant protein, employing E. coli BL21(DE3). Cultivation strategies and corresponding process costs covered a wide range of operational conditions, including different media, inducers, and temperatures. The core expenses were related to the medium and cooling. When the price of peptone was above the threshold value of US$ 30/kg, defined medium became the best choice. IPTG and temperatures around 32°C led to shorter cultures and lower PspA4Pro production costs. The procedure offers a simple, accessible theoretical tool to identify cost-effective production strategies using bioreactors.
RESUMO
Baby Hamster Kidney cells (BHK-21) are commonly used in research and the biopharmaceutical industry. This work aimed to model the kinetic performance in batch operation mode of BHK-21 cells cultured in two stirred tank configurations using different dissolved oxygen concentrations and pH control strategies. Viable and dead cell concentrations, as well as glucose, glutamine, lactate and ammonium concentrations, were monitored. Statistical multiple linear regression, logistic equation and multiplicative Monod kinetic models were fitted. Statistical models for viable cells concentration as a function of nutrient and metabolite concentrations were significant (R2 >0.91). Logistic model parameters: intrinsic growth rate, cell density level in the medium and time for reaching maximum cell concentrations were within 0.061-0.083 h-1, 1.85-5.39 x 109 cell L-1 and 52-90 h ranges, respectively. A Monod-type model was satisfactorily fitted to the experimental data. Relative errors were lower than 10% for six monitored state variables in most of the assessed experimental conditions. The three models developed in this work can be used in bioprocesses involving BHK-21 with good fitting.