Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.491
Filtrar
1.
Braz J Microbiol ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954221

RESUMO

Microorganisms are known to be a promising source of biopigments because they are easy to obtain, can be produced on a commercial scale, and are environmentally friendly. Therefore, the aim of this work was to characterize a brown pigment (BP) produced by HM053 in NFbHPN-lactate medium. The BP was extracted from the pellet (BPP) or supernatant (BPS), in the presence (BPPTrp, BPSTrp) or absence (BPPw, BPSw) of tryptophan (Trp). The UV-vis results were similar among all BP samples and compared with commercial melanin used as a standard, and the maximum absorption was observed around 200-220 nm. FTIR spectra showed that BP and commercial melanin had slight differences, with a small band between 3000-2840 cm- 1, related to C-H in the CH2 and CH3 aliphatic groups, which is not observed in the commercial melanin. Between BPP and BPS showed a different structure with bands in the region 1230-1070 cm- 1 related to groups C-O. The thermogravimetric curves for BPSw and BPSTrp showed similar behavior, with 4 stages of mass loss. The similarity between BPPw and BPPTrp with 2 stages of mass loss was also observed. Scanning electron microscopy results showed morphological differences between BPP and BPS, where BPP had a physical structure more homogeneous and a regular flat surface, while the BPS physical structure did not seem homogeneous and the surface was uneven with some spherical structures as commercial melanin.

2.
Trends Plant Sci ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38955584

RESUMO

14-3-3 proteins, ubiquitously present in eukaryotic cells, are regulatory proteins involved in a plethora of cellular processes. In plants, they have been studied in the context of metabolism, development, and stress responses. Recent studies have highlighted the pivotal role of 14-3-3 proteins in regulating plant immunity. The ability of 14-3-3 proteins to modulate immune responses is primarily attributed to their function as interaction hubs, mediating protein-protein interactions and thereby regulating the activity and overall function of their binding partners. Here, we shed light on how 14-3-3 proteins contribute to plant defense mechanisms, the implications of their interactions with components of plant immunity cascades, and the potential for leveraging this knowledge for crop improvement strategies.

3.
Cell Rep Methods ; : 100803, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38959888

RESUMO

High-sensitivity nanoflow liquid chromatography (nLC) is seldom employed in untargeted metabolomics because current sample preparation techniques are inefficient at preventing nanocapillary column performance degradation. Here, we describe an nLC-based tandem mass spectrometry workflow that enables seamless joint analysis and integration of metabolomics (including lipidomics) and proteomics from the same samples without instrument duplication. This workflow is based on a robust solid-phase micro-extraction step for routine sample cleanup and bioactive molecule enrichment. Our method, termed proteomic and nanoflow metabolomic analysis (PANAMA), improves compound resolution and detection sensitivity without compromising the depth of coverage as compared with existing widely used analytical procedures. Notably, PANAMA can be applied to a broad array of specimens, including biofluids, cell lines, and tissue samples. It generates high-quality, information-rich metabolite-protein datasets while bypassing the need for specialized instrumentation.

4.
J Appl Microbiol ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38960411

RESUMO

AIM: We investigated whether there was interspecies and intraspecies variation in spore germination of twelve strains of arbuscular mycorrhizal fungi when co-entrapped with the diazotrophic plant growth promoting bacteria, Azospirillum brasilense Sp7 in alginate hydrogel beads. METHODS AND RESULTS: Twelve Rhizophagus irregularis, Rhizophagus intraradices, and Funneliformis mosseae strains were separately combined with a live culture of Azospirillum brasilense Sp7. Each fungal-bacterial consortia was supplemented with sodium alginate to a 2% concentration (v/v) and cross-linked in calcium chloride (2% w/v) to form biodegradable hydrogel beads. 100 beads from each combination (total of 1,200) were fixed in solidified modified Strullu and Romand media. Beads were observed for successful spore germination and bacterial growth over 14 days. In all cases, successful growth of A. brasilense was observed. For arbuscular mycorrhizal fungi, interspecies variation in spore germination was observed, with R. intraradices having the highest germination rate (64.3%), followed by R. irregularis (45.5%) and F. mosseae (40.3%). However, a difference in intraspecies germination was only observed among strains of R. irregularis and F. mosseae. Despite having varying levels of germination, even the strains with the lowest potential were still able to establish with the plant host Brachypodium distachyon in a model system. CONCLUSIONS: Arbuscular mycorrhizal spore germination varied across strains when co-entrapped with a diazotrophic plant-growth promoting bacteria. This demonstrates that hydrogel beads containing a mixed consortium hold potential as a sustainable biofertilizer and that compatibility tests remain an important building block when aiming to create a hydrogel biofertilizer that encases a diversity of bacteria and fungi. Moving forward, further studies should be conducted to test the efficacy of these hydrogel biofertilizers on different crops across varying climatic conditions in order to optimize their potential.

5.
Appl Microbiol Biotechnol ; 108(1): 401, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951176

RESUMO

Haloarchaea are extremophilic microorganisms belonging to the Archaea domain that require high salt concentrations to be alive, thus inhabiting ecosystems like salty ponds, salty marshes, or extremely salty lagoons. They are more abundantly and widely distributed worldwide than initially expected. Most of them are grouped into two families: Halobacteriaceae and Haloferacaceae. The extreme conditions under which haloarchaea survive contribute to their metabolic and molecular adaptations, thus making them good candidates for the design of bioremediation strategies to treat brines, salty water, and saline soils contaminated with toxic compounds such as nitrate, nitrite, oxychlorates such as perchlorate and chlorate, heavy metals, hydrocarbons, and aromatic compounds. New advances in understanding haloarchaea physiology, metabolism, biochemistry, and molecular biology suggest that biochemical pathways related to nitrogen and carbon, metals, hydrocarbons, or aromatic compounds can be used for bioremediation proposals. This review analyses the novelty of the most recent results showing the capability of some haloarchaeal species to assimilate, modify, or degrade toxic compounds for most living beings. Several examples of the role of these microorganisms in the treatment of polluted brine or salty soils are also discussed in connection with circular economy-based processes. KEY POINTS: • Haloarchaea are extremophilic microorganisms showing genuine metabolism • Haloarchaea can metabolise compounds that are highly toxic to most living beings • These metabolic capabilities are useful for designing soil and water bioremediation strategies.


Assuntos
Biodegradação Ambiental , Archaea/metabolismo , Halobacteriaceae/metabolismo , Halobacteriaceae/genética , Metais Pesados/metabolismo , Poluentes do Solo/metabolismo , Microbiologia do Solo
6.
Heliyon ; 10(11): e32376, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38961907

RESUMO

Exosomes are naturally present extracellular vesicles (EVs) released into the surrounding body fluids upon the fusion of polycystic and plasma membranes. They facilitate intercellular communication by transporting DNA, mRNA, microRNA, long non-coding RNA, circular RNA, proteins, lipids, and nucleic acids. They contribute to the onset and progression of Central Nervous System (CNS) tumors. In addition, they can be used as biomarkers of tumor proliferation, migration, and blood vessel formation, thereby affecting the Tumor Microenvironment (TME). This paper reviews the recent advancements in the diagnosis and treatment of exosomes in various CNS tumors, the promise and challenges of exosomes as natural carriers of CNS tumors, and the therapeutic prospects of exosomes in CNS tumors. Furthermore, we hope this research can contribute to the development of more targeted and effective treatments for central nervous system tumors.

7.
Front Plant Sci ; 15: 1434778, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962242

RESUMO

Bulk commodity row crop production in the United States is frequently subject to narrow profit margins, often complicated by weather, supply chains, trade, and other factors. Farmers seeking to increase profits and hedge against market volatility often seek to diversify their operations, including producing more lucrative or productive crop varieties. Recombinant plants producing animal or other non-native proteins (commonly referred to as plant molecular farming) present a value-added opportunity for row crop farmers. However, these crops must be produced under robust identity preserved systems to prevent comingling with bulk commodities to maintain the value for farmers, mitigate against market disruptions, and minimize any potential food, feed, or environmental risks.

8.
Phytopathology ; 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970807

RESUMO

Wheat powdery mildew (WPM) is one of the most devasting diseases that affects wheat yield worldwide. Few efforts have been done to control such a serious disease. Looking for an effective way to control WPM is urgently needed. Biological control is an effective way in controlling plant diseases worldwide. In this study, the efficiency of three different Trichoderma spp. in controlling WPM at seedling growth stage was tested using 35 highly diverse wheat genotypes. Highly significant differences were found in WPM resistance among the four treatments confirming the efficiency of Trichoderma in controlling WPM. Out of the three species, Trichoderma asperellum T34 (T34) was the most effective species in controlling WPM as it reduced the symptoms with a percentage of 50.56%. A set of 196 wheat genotypes was used to identify the genetic control of the WPM induced resistance by T34. A total of 39, 27, and 18 gene models were identified to contain the significant markers under Pm, T34, and the improvement in powdery mildew resistance due to T34 (T34_improvement) conditions. Furthermore, no gene model was common between T34 and Pm suggesting the presence of completely different genetic systems controlling the resistance under T34 and Pm. The functional annotation and biological process pathways of the detected gene models confirm their association with the normal and induced resistance. This study, for the first time, confirm the efficiency of T34 in controlling WPM and provide a deep understanding of the genetic control of induced and normal resistance to WPM.

9.
Phytopathology ; 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970808

RESUMO

Powdery scab is an important potato disease caused by the soilborne pathogen Spongospora subterranea f. sp. subterranea. Currently, reliable chemical control and resistant cultivars for powdery scab are unavailable. As an alternative control strategy, we propose a novel approach involving the effective delivery of a phytocytokine to plant roots by the rhizobacterium Bacillus subtilis. The modified strain is designed to secrete the plant elicitor peptide StPep1. In our experiments employing a hairy root system, we observed a significant reduction in powdery scab pathogen infection when directly applying the StPep1 peptide. Furthermore, our pot assay, which involved pretreating potato roots with StPep1-secreting B. subtilis, demonstrated a substantial decrease in disease symptoms, including reduced root galling and fewer tuber skin scabs. These findings underscore the potential of engineered bacteria as a promising strategy for safeguarding plants against powdery scab.

10.
Front Bioeng Biotechnol ; 12: 1412927, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38974658

RESUMO

Introduction: CRISPR gene editing, while highly efficient in creating desired mutations, also has the potential to cause off-target mutations. This risk is especially high in clonally propagated plants, where editing reagents may remain in the genome for long periods of time or in perpetuity. We studied a diverse population of Populus and Eucalyptus trees that had CRISPR/Cas9-containing transgenes that targeted one or two types of floral development genes, homologs of LEAFY and AGAMOUS. Methods: Using a targeted sequence approach, we studied approximately 20,000 genomic sites with degenerate sequence homology of up to five base pairs relative to guide RNA (gRNA) target sites. We analyzed those sites in 96 individual tree samples that represented 37 independent insertion events containing one or multiples of six unique gRNAs. Results: We found low rates of off-target mutations, with rates of 1.2 × 10-9 in poplar and 3.1 × 10-10 in eucalypts, respectively, comparable to that expected due to sexual reproduction. The rates of mutation were highly idiosyncratic among sites and not predicted by sequence similarity to the target sites; a subset of two gRNAs showed off-target editing of four unique genomic sites with up to five mismatches relative to the true target sites, reaching fixation in some gene insertion events and clonal ramets. The location of off-target mutations relative to the PAM site were essentially identical to that seen with on-target CRISPR mutations. Discussion: The low rates observed support many other studies in plants that suggest that the rates of off-target mutagenesis from CRISPR/Cas9 transgenes are negligible; our study extends this conclusion to trees and other long-lived plants where CRISPR/Cas9 transgenes were present in the genome for approximately four years.

11.
aBIOTECH ; 5(2): 209-213, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38974868

RESUMO

Current systems to screen for transgenic soybeans (Glycine max) involve laborious molecular assays or the expression of fluorescent markers that are difficult to see in soybean plants. Therefore, a visual system for early screening of transgenic plants would increase the efficiency of crop improvement by genome editing. The RUBY reporter system, which consists of three genes encoding betalain biosynthetic enzymes, leading to the accumulation of purple pigment in transgenic tissue, has been employed in some plants and dikaryon fungi. Here, we assessed the RUBY reporter for visual verification during soybean transformation. We show that RUBY can be expressed in soybean, allowing for visual confirmation of transgenic events without the need for specialized equipment. Plants with visible accumulation of purple pigment in any tissue were successfully transformed, confirming the accuracy of the RUBY system as a visual indicator. We also assessed the genetic stability of the transgene across generations, which can be performed very early, using the cotyledons of the progeny. Transgene-free seedlings have a distinct green color, facilitating the selection of genome-edited but transgene-free soybean seedlings for harvest. Using the RUBY system, we quickly identified a transgene-free Gmwaxy mutant in the T1 generation. This system thus provides an efficient and convenient tool for soybean genome editing.

12.
Heliyon ; 10(12): e32546, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38975228

RESUMO

Understanding the molecular and physical complexity of the tissue microenvironment (TiME) in the context of its spatiotemporal organization has remained an enduring challenge. Recent advances in engineering and data science are now promising the ability to study the structure, functions, and dynamics of the TiME in unprecedented detail; however, many advances still occur in silos that rarely integrate information to study the TiME in its full detail. This review provides an integrative overview of the engineering principles underlying chemical, optical, electrical, mechanical, and computational science to probe, sense, model, and fabricate the TiME. In individual sections, we first summarize the underlying principles, capabilities, and scope of emerging technologies, the breakthrough discoveries enabled by each technology and recent, promising innovations. We provide perspectives on the potential of these advances in answering critical questions about the TiME and its role in various disease and developmental processes. Finally, we present an integrative view that appreciates the major scientific and educational aspects in the study of the TiME.

13.
iScience ; 27(6): 110062, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38947499

RESUMO

As a research infrastructure with a mission to provide services for bioinformatics, ELIXIR aims to identify and inform its target audiences. Here, we present a survey on a community of researchers studying the environment with omics approaches in Greece, one of the youngest member countries of ELIXIR. Personal interviews followed by quantitative and qualitative analysis were employed to document interactions and practices of the community and to perform a gap analysis for the transition toward multiomics and systems biology. Environmental omics in Greece mostly concerns production of data, in large majority on microbes and non-model organisms. Our survey highlighted (1) the popularity and suitability of targeted hands-on training events; (2) data quality and management issues as important elements for the transition to multiomics, and (3) lack of knowledge and misconceptions regarding interoperability, metadata standards, and pre-registration. The publicly available collected answers represent a valuable resource in view of future strategic planning.

14.
iScience ; 27(6): 109998, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38947508

RESUMO

Deciphering how different behaviors and ultrasonic vocalizations (USVs) of rats interact can yield insights into the neural basis of social interaction. However, the behavior-vocalization interplay of rats remains elusive because of the challenges of relating the two communication media in complex social contexts. Here, we propose a machine learning-based analysis system (ARBUR) that can cluster without bias both non-step (continuous) and step USVs, hierarchically detect eight types of behavior of two freely behaving rats with high accuracy, and locate the vocal rat in 3-D space. ARBUR reveals that rats communicate via distinct USVs during different behaviors. Moreover, we show that ARBUR can indicate findings that are long neglected by former manual analysis, especially regarding the non-continuous USVs during easy-to-confuse social behaviors. This work could help mechanistically understand the behavior-vocalization interplay of rats and highlights the potential of machine learning algorithms in automatic animal behavioral and acoustic analysis.

15.
STAR Protoc ; 5(3): 103091, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38943645

RESUMO

Tumor acidosis is one of the hallmarks indicating the initiation and progression of various cancers. Here, we present a protocol for preparing a hyperpolarized (HP) 13C-bicarbonate tissue pH MRI imaging contrast agent to detect aggressive tumors. We describe the steps for the formulation and polarization of a precursor molecule 13C-glycerol carbonate (13C-GLC), the post-dissolution reaction, and converting HP 13C-GLC to an injectable HP 13C-bicarbonate solution. We then detail procedures for MRI data acquisition to generate tumor pH maps for assessing tumor aggressiveness. For complete details on the use and execution of this protocol, please refer to Mu et al.1.

16.
Biomedicines ; 12(6)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38927558

RESUMO

Right dominant arrhythmogenic cardiomyopathy, commonly known as Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC), represents a formidable challenge in cardiovascular medicine, as conventional therapies are commonly ineffective in impeding disease progression and the development of end-stage heart failure. Recombinant adeno-associated virus (AAV)-mediated gene therapy presents a promising avenue for targeted therapeutic interventions, potentially revolutionising treatment approaches for ARVC patients. Encouraging results from preclinical studies have sparked optimism about the possibility of curing specific subtypes of ARVC in the near future. This narrative review delves into the dynamic landscape of genetic therapy for ARVC, elucidating its underlying mechanisms and developmental stages, and providing updates on forthcoming trials. Additionally, it examines the hurdles and complexities impeding the successful translation of ARVC genetic therapies into clinical practice. Despite notable scientific advancements, the journey towards implementing genetic therapies for ARVC patients in real-world clinical settings is still in its early phases.

17.
Int J Biol Macromol ; 274(Pt 2): 133312, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38914406

RESUMO

Recently, polysaccharide-based hydrogels crosslinked with the trivalent iron cation have attracted interest due to their remarkable properties that include high mechanical stability, stimuli-responsiveness, and enhanced absorptivity. In this study, a Fe3+ crosslinked hydrogel was prepared using the biocompatible extracellular polysaccharide (EPS) secreted by the marine bacterium Alteromonas macleodii Mo169. Hydrogels with mechanical strengths (G') ranging from 0.3 kPa to 44.5 kPa were obtained as a result of the combination of different Fe3+ (0.05-9.95 g L-1) and EPS (0.3-1.7 %) concentrations. All the hydrogels had a water content above 98 %. Three different hydrogels, named HA, HB, and HC, were chosen for further characterization. With strength values (G') of 3.2, 28.9, and 44.5 kPa, respectively, these hydrogels might meet the strength requirements for several specific applications. Their mechanical resistance increased as higher Fe3+ and polymer concentrations were used in their preparation (the compressive hardness increased from 8.7 to 192.1 kPa for hydrogel HA and HC, respectively). In addition, a tighter mesh was noticed for HC, which was correlated to its lower swelling ratio value compared to HA and HB. Overall, this preliminary study highlighted the potential of these hydrogels for tissue engineering, drug delivery, or wound healing applications.

18.
Curr Issues Mol Biol ; 46(6): 6169-6185, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38921039

RESUMO

The protandric shrimp Hippolyte inermis is the only known marine invertebrate whose sex determination is strongly influenced by the composition of its food. In H. inermis, a sex reversal is triggered by the ingestion of diatoms of the genus Cocconeis associated with leaves of the seagrass Posidonia oceanica. These diatoms contain compounds that promote programmed cell death (PCD) in H. inermis and also in human cancer cells. Transcriptomic analyses suggested that ferroptosis is the primary trigger of the shrimp's sex reversal, leading to the rapid destruction of the androgen gland (AG) followed by a chain of apoptotic events transforming the testes into ovaries. Here, we propose a molecular approach to detect the effects of compounds stimulating the PCD. An RNA extraction method, suitable for young shrimp post-larvae (five days after metamorphosis; PL5 stage), was established. In addition, six genes involved in apoptosis, four involved in ferroptosis, and seven involved in the AG switch were mined from the transcriptome, and their expression levels were followed using real-time qPCR in PL5 fed on Cocconeis spp., compared to PL5 fed on a basic control feed. Our molecular approach, which detected early signals of sex reversal, represents a powerful instrument for investigating physiological progression and patterns of PCD in marine invertebrates. It exemplifies the physiological changes that may start a few days after the settlement of post-larvae and determine the life destiny of an individual.

19.
Commun Integr Biol ; 17(1): 2369782, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38919836

RESUMO

The Dead Sea is unique compared to other extreme halophilic habitats. Its salinity exceeds 34%, and it is getting saltier. The Dead Sea environment is characterized by a dominance of divalent cations, with magnesium chloride (MgCl2) levels approaching the predicted 2.3 M upper limit for life, an acidic pH of 6.0, and high levels of absorbed ultraviolet radiation. Consequently, only organisms adapted to such a polyextreme environment can survive in the surface, sinkholes, sediments, muds, and underwater springs of the Dead Sea. Metagenomic sequence analysis and amino acid profiling indicated that the Dead Sea is predominantly composed of halophiles that have various adaptation mechanisms and produce metabolites that can be utilized for biotechnological purposes. A variety of products have been obtained from halophilic microorganisms isolated from the Dead Sea, such as antimicrobials, bioplastics, biofuels, extremozymes, retinal proteins, colored pigments, exopolysaccharides, and compatible solutes. These resources find applications in agriculture, food, biofuel production, industry, and bioremediation for the detoxification of wastewater and soil. Utilizing halophiles as a bioprocessing platform offers advantages such as reduced energy consumption, decreased freshwater demand, minimized capital investment, and continuous production.

20.
Open Life Sci ; 19(1): 20220856, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38911927

RESUMO

Recent advancements in protein/enzyme engineering have enabled the production of a diverse array of high-value compounds in microbial systems with the potential for industrial applications. The goal of this review is to articulate some of the most recent protein engineering advances in bacteria, yeast, and other microbial systems to produce valuable substances. These high-value substances include α-farnesene, vitamin B12, fumaric acid, linalool, glucaric acid, carminic acid, mycosporine-like amino acids, patchoulol, orcinol glucoside, d-lactic acid, keratinase, α-glucanotransferases, ß-glucosidase, seleno-methylselenocysteine, fatty acids, high-efficiency ß-glucosidase enzymes, cellulase, ß-carotene, physcion, and glucoamylase. Additionally, recent advances in enzyme engineering for enhancing thermostability will be discussed. These findings have the potential to revolutionize various industries, including biotechnology, food, pharmaceuticals, and biofuels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...