RESUMO
Helminth infections, which affect approximately 1.5 billion individuals worldwide (mainly children), are common in low- and middle-income tropical countries and can lead to various diseases. One crucial factor affecting the occurrence of these diseases is the reduced diversity of the gut microbiome due to antibiotic use. This reduced diversity compromises immune health in hosts and alters host gene expression through epigenetic mechanisms. Helminth infections may produce complex biochemical signatures that could serve as therapeutic targets. Such therapies include next-generation probiotics, live biotherapeutic products, and biochemical drug approaches. Probiotics can bind ferric hydroxide, reducing the iron that is available to opportunistic microorganisms. They also produce short-chain fatty acids associated with immune response modulation, oral tolerance facilitation, and inflammation reduction. In this review, we examine the potential link between these effects and epigenetic changes in immune response-related genes by analyzing methyltransferase-related genes within probiotic strains discussed in the literature. The identified genes were only correlated with methylation in bacterial genes. Various metabolic interactions among hosts, helminth parasites, and intestinal microbiomes can impact the immune system, potentially aiding or hindering worm expulsion through chemical signaling. Implementing a comprehensive strategy using probiotics may reduce the impact of drug-resistant helminth strains.
Assuntos
Países em Desenvolvimento , Microbioma Gastrointestinal , Helmintíase , Probióticos , Probióticos/uso terapêutico , Probióticos/administração & dosagem , Helmintíase/imunologia , Helmintíase/prevenção & controle , Humanos , Animais , Microbioma Gastrointestinal/fisiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacosRESUMO
Lactobacilli are the predominant microorganisms of the healthy human vagina. A novel alternative for the prevention and treatment of female urogenital tract infections (UGTI) is the inclusion of these microorganisms as active pharmaceutical ingredients in probiotic formulas, and more recently in female hygienic products. Probiotics are defined as "live microorganisms that, when administered in adequate amounts, confer a health benefit on the host." A list of requirements must be considered during the development of probiotic product/formula for the female urogenital tract (UGT). This review aims to resume the requirements, probiotic characteristics, and clinical trial applied to determine the effect of probiotic and potentially probiotic strains on different woman's physiological and pathological conditions, and in preterm birth prevention. A revision of female hygienic products available in the world market is included, together with novel studies applying nanotechnology for Lactobacillus incorporation in hygienic products. Further studies and well-designed clinical trials are urgently required to complement the current knowledge and applications of probiotics in the female UGT. The use of probiotic formulas and products will improve and restore the ecological equilibrium of the UGT microbiome to prevent and treat UGTI in women under different conditions.
Assuntos
Produtos de Higiene Feminina/microbiologia , Lactobacillus , Microbiota , Probióticos/uso terapêutico , Vagina/microbiologia , Candidíase Vulvovaginal/terapia , Portador Sadio/terapia , Cesárea , Parto Obstétrico , Feminino , Genitália Feminina/microbiologia , Humanos , Nanotecnologia , Nascimento Prematuro/microbiologia , Nascimento Prematuro/prevenção & controle , Infecções Estreptocócicas/terapia , Streptococcus agalactiae , Vaginite por Trichomonas/terapia , Sistema Urinário/microbiologia , Vaginose Bacteriana/terapiaRESUMO
The development of biotherapeutics requires continuous improvement in analytical methodologies for the assessment of their quality attributes. A subset of biotherapeutics is designed to interact with specific antigens that are exposed on the membranes of target cells or circulating in a soluble form, and effector functions are achieved via recognition of their Fc region by effector cells that induce mechanisms such as antibody-dependent cell-mediated cytotoxicity (ADCC). Thus, ADCC induction is a critical quality attribute (CQA) that must be evaluated to ensure biotherapeutic efficacy. Induction of ADCC can be evaluated by employing effector cells from different sources, such as peripheral blood mononuclear cells (PBMC) and genetically modified cell lines (e.g., transfected NKs or Jurkat cells), and different approaches can be used for detection and results interpretation depending on the type of effector cells used. In this regard, validation of the assays is relevant to ensure the reliability of the results according to the intended purpose. Herein, we show the standardization and validation of ADCC assays to test the potency of three biotherapeutic proteins using primary NK cells obtained from fresh blood as effector cells and detecting cell death by flow cytometry. The advantage of using primary NKs instead of modified cells is that the response is closer to that occurring in vivo since cytotoxicity is evaluated in a direct manner. Our results indicate that in all cases, the assays exhibited a characteristic sigmoidal dose/response curve complying with accurate, precise and specific parameters. Thereby, the validated ADCC assay is an appropriate alternative to evaluate the biological activities of these type of biotherapeutics.
Assuntos
Adalimumab/farmacologia , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Antineoplásicos Imunológicos/farmacologia , Linfoma de Burkitt/tratamento farmacológico , Separação Celular/métodos , Etanercepte/farmacologia , Citometria de Fluxo , Células Matadoras Naturais/efeitos dos fármacos , Rituximab/farmacologia , Animais , Linfoma de Burkitt/imunologia , Linfoma de Burkitt/patologia , Células CHO , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cricetulus , Relação Dose-Resposta a Droga , Humanos , Células Matadoras Naturais/imunologia , Cultura Primária de Células , Reprodutibilidade dos TestesRESUMO
Biotherapeutic products which are derived from living organisms using recombinant DNA technology significantly contribute to the progress in the treatment of life-threatening and chronic diseases. The worldwide sale of biological drugs in 2016 was near US $263,700 million. In Latin America, where monoclonal antibodies market was worth US $7000 million, being Mexico the second largest market. Approval is one of the key aspects which influences the market of medicinal products, thus it is responsibility of the regulatory authority to establish a regulatory framework that ensure safety and efficacy of the products, and it is responsibility of the applicants to provide a high quality dossier in accordance with the registration requirements of the country. The applicants submitting registration requests in Mexico need to be aware of the requirements. Similar to many other countries, Mexico has adopted the Common Technical Document (CTD) structure for organizing dossier of the medicinal product for submission into main modules (i.e., quality, non-clinical, and clinical). This facilitates the submission process of medicinal products following a logical sequence aligned to the International Council on Harmonisation (ICH) guidelines. Moreover, this structure improves the transparency and clarity of the dossier in process of evaluation of medicinal products. In Mexico, the Ministry of Health has published a regulation, NOM-257-SSA1-2014, which established the general requirements to be followed by applicants to complete the registration of biotherapeutics. This regulation stipulates that the evaluation process is supported by a regulatory framework involving Good Manufacturing Practices, labeling, stability, clinical trials, biocomparability studies, pharmacovigilance, and a technical evaluation performed by a multidisciplinary team of experts in biotherapeutics development. Additionally, the Mexican regulatory agency, COFEPRIS, has published specific guidelines to facilitate the application process. Despite the availability of this information, the scope is limited to regulatory and administrative purposes, rather than technical-scientific supporting knowledge. The aim of this article is to provide concise information to improve and promote communication between industry and regulatory agencies. Herein, we describe the current process of COFEPRIS in regulating biotherapeutics in Mexico. This process explains the basis for the organization and structure of the technical-scientific information of biotherapeutics required for registration application.