Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Stem Cells Dev ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38661524

RESUMO

Age-related osteoporosis is characterized by an imbalance between osteogenic and adipogenic differentiation in bone mesenchymal stem cells (BMSCs). Forkhead box O 3 (FoxO3) transcription factor is involved in lifespan and cell differentiation. In this study, we explore whether FoxO3 regulates age-related bone loss and marrow fat accumulation. The expression levels of FoxO3 in BMSCs during aging were detected in vivo and in vitro. To explore the role of FoxO3 in osteogenic and adipogenic differentiation, primary BMSCs were isolated from young and aged mice. FoxO3 expression was modulated by adenoviral vector transfection. The role of FoxO3 in bone-fat balance was evaluated by alizarin red S staining, oil red O staining, quantitative reverse transcription-polymerase chain reaction, Western blot, and histological analysis. Age-related bone loss and fat deposit are associated with downregulation of FoxO3. Overexpression of FoxO3 alleviated age-related bone loss and marrow fat accumulation in aged mice. Mechanistically, FoxO3 reduced adipogenesis and enhanced osteogenesis of BMSCs via downregulation of PPAR-γ and Notch signaling, respectively. In conclusion, FoxO3 is an essential factor controlling the fate of BMSCs and is a potential target for the prevention of age-related osteoporosis.

2.
Front Bioeng Biotechnol ; 11: 1056707, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36873351

RESUMO

Background: The treatment of bone defects remains a clinical challenge. The effect of negative pressure wound therapy (NPWT) on osteogenesis in bone defects has been recognized; however, bone marrow fluid dynamics under negative pressure (NP) remain unknown. In this study, we aimed to examine the marrow fluid mechanics within trabeculae by computational fluid dynamics (CFD), and to verify osteogenic gene expression, osteogenic differentiation to investigate the osteogenic depth under NP. Methods: The human femoral head is scanned using micro-CT to segment the volume of interest (VOI) trabeculae. The VOI trabeculae CFD model simulating the bone marrow cavity is developed by combining the Hypermesh and ANSYS software. The effect of trabecular anisotropy is investigated, and bone regeneration effects are simulated under NP scales of -80, -120, -160, and -200 mmHg. The working distance (WD) is proposed to describe the suction depth of the NP. Finally, gene sequence analysis, cytological experiments including bone mesenchymal stem cells (BMSCs) proliferation and osteogenic differentiation are conducted after the BMSCs are cultured under the same NP scale. Results: The pressure, shear stress on trabeculae, and marrow fluid velocity decrease exponentially with an increase in WD. The hydromechanics of fluid at any WD inside the marrow cavity can be theoretically quantified. The NP scale significantly affects the fluid properties, especially those fluid close to the NP source; however, the effect of the NP scale become marginal as WD deepens. Anisotropy of trabecular structure coupled with the anisotropic hydrodynamic behavior of bone marrow; An NP of -120 mmHg demonstrates the majority of bone formation-related genes, as well as the most effective proliferation and osteogenic differentiation of BMSCs compared to the other NP scales. Conclusion: An NP of -120 mmHg may have the optimal activated ability to promote osteogenesis, but the effective WD may be limited to a certain depth. These findings help improve the understanding of fluid mechanisms behind NPWT in treating bone defects.

3.
Curr Pharm Des ; 29(9): 713-722, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36998133

RESUMO

INTRODUCTION: Diabetic osteoporosis (DOP) has gradually gained public attention. The clinical manifestations of DOP include bone mass loss, bone microstructural damage, and increased bone fragility.


Assuntos
Células-Tronco Mesenquimais , Osteoporose , Ratos , Animais , Osteogênese , Diferenciação Celular , Estresse Oxidativo , Osteoporose/tratamento farmacológico , Células Cultivadas , Glucose/farmacologia
4.
Mater Today Bio ; 16: 100382, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36033373

RESUMO

Large bone defects remain an unsolved clinical challenge because of the lack of effective vascularization in newly formed bone tissue. 3D bioprinting is a fabrication technology with the potential to create vascularized bone grafts with biological activity for repairing bone defects. In this study, vascular endothelial cells laden with thermosensitive bio-ink were bioprinted in situ on the inner surfaces of interconnected tubular channels of bone mesenchymal stem cell-laden 3D-bioprinted scaffolds. Endothelial cells exhibited a more uniform distribution and greater seeding efficiency throughout the channels. In vitro, the in situ bioprinted endothelial cells can form a vascular network through proliferation and migration. The in situ vascularized tissue-engineered bone also resulted in a coupling effect between angiogenesis and osteogenesis. Moreover, RNA sequencing analysis revealed that the expression of genes related to osteogenesis and angiogenesis is upregulated in biological processes. The in vivo 3D-bioprinted in situ vascularized scaffolds exhibited excellent performance in promoting new bone formation in rat calvarial critical-sized defect models. Consequently, in situ vascularized tissue-engineered bones constructed using 3D bioprinting technology have a potential of being used as bone grafts for repairing large bone defects, with a possible clinical application in the future.

5.
Ann Transl Med ; 10(8): 465, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35571435

RESUMO

Background: Bone nonunion is a special fracture complication that occurs in about 5% to 10% of cases. This type of fracture is difficult to heal, and causes great pain to patients and affects their quality of life. The mechanism of bone nonunion is not clear. In our study, we investigated the influence of Toll-like receptor (TLR)-3, TLR-4, and Wnt signaling pathways on the occurrence of bone nonunion. Methods: Firstly, we established a Sprague Dawley (SD) rat model of femoral nonunion, and detected the expression levels of TLR-3, TLR-4, ß-catenin, nemo-like kinase (NLK), c-Jun N-terminal kinase (JNK), and other proteins during model construction. For in vitro experiments, primary cultured bone mesenchymal stem cells (BMSCs) were divided into 4 groups: lipopolysaccharide (LPS, agonist of TLR-4) group, LPS + CLI095 (inhibitor of TLR-4) group, control group, and LPS + substance P (SP) group. The expression of ß-catenin, NLK, JNK, and ALP and the osteogenic differentiation ability of cells were detected during culture. Results: X-ray and hematoxylin and eosin (HE) staining results confirmed the successful modeling of bone nonunion. During the formation of the bone nonunion model, the expression of TLR-4 showed an upward trend. In vitro experiment results showed that inhibition of TLR-4 expression could enhance the proliferation and differentiation ability of BMSCs. The expression of ß-catenin, the core protein of the canonical Wnt signaling pathway, increased rapidly in the first 2 weeks of bone nonunion construction, and decreased after 2 weeks. Non-canonical Wnt signaling pathway proteins NLK and JNK had no change in the first 2 weeks, and showed an upward trend after 2 weeks. In vitro experiment results showed that the expression of ß-catenin was dominant in BMSCs with strong proliferation and differentiation ability, while the expression of NLK and JNK was dominant in BMSCs with weak proliferation and differentiation ability. These results suggest that the Wnt signaling pathway may regulate the occurrence of bone nonunion. Conclusions: TLR-4 inhibits the proliferation and differentiation of BMSCs, and the transformation of the canonical Wnt signaling pathway to the non-canonical Wnt signaling pathway may lead to bone nonunion. Our study may provide new insights into the treatment of bone nonunion.

6.
Bioengineered ; 13(5): 11933-11944, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35549815

RESUMO

Bone mesenchymal stem cells (BMSCs)-derived exosomes (Exos) play important roles in osteoporosis, while the regulation of microRNA (miR)-21-5p remains unclear. The BMSCs-derived exosomes were isolated from femoral bone marrow of trauma patients, which were then used to stimulate human osteoblasts (hFOB1.19 cells). The miR-21-5p mimic or inhibitor was transfected into BMSCs to overexpress or knockdown miR-21-5p. The functions of miR-21-5p in osteoporosis were assessed by cell counting kit-8 (CCK-8) assay, alkaline phosphatase (ALP) staining and alizarin red staining assays. We found that BMSCs-derived exosomes could enhance proliferation, osteoblastic differentiation and ALP activity of hFOB1.19 cells. BMSCs-derived exosomes with upregulated miR-21-5p could further enhance these protective impacts compared with that in BMSCs-derived exosomes, while BMSCs-derived exosomes with downregulated miR-21-5p reduced these cell phenotypes. MiR-21-5p could directly bind to the 3'-untranslated region (UTR) of Kruppel-like factor 3 (KLF3), and knockdown of KLF3 obviously attenuated these inhibitory effects of BMSCs-derived exosomes with downregulated miR-21-5p on osteoblastic differentiation and ALP activity of hFOB1.19 cells. In summary, BMSCs-derived exosomal miR-21-5p improved osteoporosis through regulating KLF3, providing a potential therapeutic strategy for osteoporosis.


Assuntos
Células-Tronco Mesenquimais , MicroRNAs , Osteoporose , Proliferação de Células/genética , Humanos , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Osteoblastos/metabolismo , Osteoporose/genética , Osteoporose/metabolismo , Fatores de Transcrição/metabolismo
7.
Mol Cell Biochem ; 476(12): 4277-4285, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34406574

RESUMO

Understanding the function and regulatory mechanism of miR-140-3p on the osteogenic differentiation of bone mesenchymal stem cells (BMSCs). Alizarin Red staining, Alkaline phosphatase (ALP) staining, and ALP activity were used to detect the ability osteogenic differentiation. miR-140-3p or Spred2 overexpression into BMSCs using lentiviral vectors and the result were analyzed by Reverse transcription quantitative polymerase chain reaction (RT-qPCR). The relation between miR-140-3p and Spred2 was examined by luciferase reporter assay. CCK8 assay was used to detect the proliferation of BMSCs. RT-qPCR and Western blot analysis were both used to detect altered gene and protein in osteogenic differentiation of BMSCs, respectively. The BMSCs which were induced for 21 days were analyzed by Alizarin Red staining, (ALP) staining and ALP activity. RT-qPCR analysis showed that overexpressed miR-140-3p promotes osteogenic differentiation. Western blots results indicated that the overexpression of Spred2 suppressed miR-140-3p. Luciferase reporter assay indicated that Spred2 can integrate with miR-140-3p directly. Meanwhile, the protein level of ALP, OCN, and Runx2, the markers of chondrogenesis, was increased when miR-140-3p increased or Spred2 overexpressed in the osteoinductive medium applied to the BMSCs. Our study demonstrated the association between miR-140-3p and Spred2 in osteogenic differentiation of BMSCs for the first time. Furthermore, our detections also revealed that Spred2-induced autophagic signaling accelerates the progress of osteogenic differentiation ability of BMSCs.


Assuntos
Células-Tronco Mesenquimais/citologia , MicroRNAs/genética , Osteogênese , Proteínas Repressoras/metabolismo , Animais , Autofagia/fisiologia , Diferenciação Celular/fisiologia , Células Cultivadas , Células-Tronco Mesenquimais/metabolismo , Ratos
8.
Artigo em Inglês | MEDLINE | ID: mdl-34296590

RESUMO

Disuse osteoporosis (DOP) is one of the major consequences of long space flights. DOP also occurs in patients with spinal cord injuries and prolonged bedridden states that can have a severe impact on human health. Bone marrow mesenchymal stem cells (BMSCs) are multipotent stromal cells that play an important role in bone homeostasis. Long non-coding RNAs (lncRNAs) are involved in regulating osteogenic differentiation of BMSCs, and their abnormal expression might lead to the formation of orthopedic diseases. However, the specific mechanism of DOP has not yet been elucidated. All sequencing data were obtained from Gene Expression Omnibus (GEO) datasets. The limma package of R was applied to identify DEmRNAs and DElncRNAs. Pearson correlation coefficients (PCC) between DElncRNADEmRNA expression levels were calculated. Functional annotation was performed for DEmRNAs coexpressed with DElncRNAs. In addition, the Cytohubba plug-in in Cytoscape was applied to determine the top 10 hub genes. Finally, connectivity map (CMap) analysis was used to identify potential therapeutic drugs for DOP. The gene expression data, GSE100930 and GSE17696, were retrieved from the GEO database. A total of 2,212 differentially expressed mRNAs (DEmRNAs) and 22 differentially expressed lncRNAs (DElncRNAs) were obtained. Gene ontology (GO) functional terms, Kyoto Encyclopedia of Genes, and Genomes (KEGG) pathway enrichment analysis reveal 30 significant GO terms and 13 significant pathways. A coding-non-coding gene co-expression (CNC) network was constructed to study the potential role of hub-DElncRNAs and their co-expressed DEmRNAs in DOP. The lncRNAs, GSNAS1, SNHG12, and EPB41LA4A-AS1, were significant in the CNC network and potential regulators of DOP development. Three bioactive compounds (scoulerine, kinetin riboside, dexanabinol) with potential therapeutic significance for DOP were obtained through the Connectivity Map (CMAP) analysis. Our study revealed a new mechanism for a lineage shift of bone marrow mesenchymal stem cells under microgravity, and linked the function of protein-coding mRNAs with ncRNAs, which may contribute to the development of new therapies for DOP.


Assuntos
Osteoporose , RNA Longo não Codificante , Biologia Computacional , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Osteogênese , Osteoporose/genética , RNA Longo não Codificante/genética
9.
Ann Transl Med ; 9(7): 531, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33987229

RESUMO

BACKGROUND: Though titanium (Ti) is widely used as dental materials in the clinic, effective methods to treat Ti for higher surface biological activity still lack. Through Surface mechanical attrition treatment (SMAT) technology we could endow Ti with gradient nanostructured surface (GNS Ti). To investigate the biocompatibility of GNS Ti for its further application in dental implant field, we study the effects of GNS Ti on cell responses in vitro and osseointegration of the implant with surrounding bone tissues in vivo. METHODS: In this study, GNS Ti was fabricated by SMAT. In vitro experiment, we co-cultured GNS Ti with bone mesenchymal stem cells (BMSCs), surface characterization was detected by transmission electron microscope (TEM). Adhesion, proliferation and differentiation of BMSCs were evaluated by scanning electron microscope (SEM), MTT, flow cytometry (FCM), alkaline phosphatase (ALP) and osteocalcin (OCN) tests. In vivo experiment, the GNS Ti was implanted into the rabbit mandible. Osteogenesis and osseointegration were evaluated by Micro CT, toluidine blue staining, and immunohistochemical staining at 4, 8, and 12 weeks postoperatively. RESULTS: Both results showed that compared with the coarse grained (CG) Ti, the GNS Ti stimulated the adhesion, proliferation, and differentiation of BMSCs and improved osteogenesis and osseointegration. CONCLUSIONS: This study indicates that gradient nanostructured Ti is a promising material for dental implant application.

10.
Theranostics ; 11(11): 5491-5510, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33859759

RESUMO

Rationale: Postmenopausal-induced bone loss is mainly caused by declining core transcription factors (TFs) of bone mesenchymal stem cells (BMSCs), but little is known about how miRNAs regulate chromatin structure remodeling of TFs gene to maintain BMSCs function in bone homeostasis. Methods: We examined the serum, salivary and bone samples from Pre- and Post-menopause women by paired analysis and confirmed canonical ceRNA role of MIR143HG and miR-143/145 complexes in cytoplasm and noncanonical role for SOX2 transcription in nucleus (FISH, qRT-PCR, immunostaining, Luciferase assays and ChIP). Moreover, we took advantage of transgenic mice under OVX-induced osteoporosis, studying the in vitro and in vivo effect of miR-143/145 deletion on BMSCs function and bone homeostasis. Last, using miRNA antagonism, antagomiR-143/145 were delivered into bone marrow to treat estrogen-deficient bone loss. Results: Here, we identified miR-143/145 as potential diagnostic candidates for postmenopausal osteoporosis, and miR-143/145 overexpression impaired BMSCs self-renewing and differentiation function. Mechanistically, we confirmed that cytoplasmic miR-143/145 and LncRNA MIR143HG, that controlled by ERß, cooperatively regulated pluripotency genes translation via canonical ceRNA pathway, and MIR143HG cooperates with miR­143 to nuclear translocation for co-activation of SOX2 transcription via opening promoter chromatin. Meanwhile, miR­143/145 were shuttled into osteoclasts in extracellular vesicles and triggered osteoclastic activity by targeting Cd226 and Srgap2. Furthermore, miR-143/145-/- mice or using chemically­modified antagomiR-143/145 significantly alleviated estrogen-deficient osteoporosis. Conclusions: Our findings reveal a canonical and noncanonical role of miR-143/145 in controlling BMSCs pluripotency and unfold their dual effect on bone formation and bone resorption, suggesting miR-143/145 as promising therapeutic targets for treating estrogen-deficient bone loss.


Assuntos
Doenças Ósseas Metabólicas/genética , Estrogênios/deficiência , Estrogênios/genética , MicroRNAs/genética , Osteoporose Pós-Menopausa/genética , Adulto , Idoso , Animais , Doenças Ósseas Metabólicas/metabolismo , Células da Medula Óssea/metabolismo , Reabsorção Óssea/genética , Osso e Ossos/metabolismo , Diferenciação Celular/genética , Células Cultivadas , Vesículas Extracelulares/genética , Feminino , Células HEK293 , Humanos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteogênese/genética , Osteoporose/genética , RNA Longo não Codificante/genética
11.
Phytother Res ; 35(5): 2639-2650, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33421256

RESUMO

Decrepitude and apoptosis of bone mesenchymal stem cells (BMSCs) induced by reactive oxygen species (ROS) lead to inhibited osteogenic differentiation, causing decreased bone density and osteoporosis. Quercetin, a bioactive component of Solanum muricatum extracts, promotes the osteogenic differentiation of BMSCs and ameliorates the symptoms of osteoporosis in vivo. However, the detailed mechanism underlying this process remains unclear. The study aims to reveal the regulatory mechanism of quercetin in BMSCs. Mouse BMSCs (mBMSCs) were isolated from the bone marrow and characterized by flow cytometry. QRT-PCR and western blot assays were performed to evaluate the expression levels of related genes and proteins. Alkaline phosphatase (ALP) staining and Oil Red O staining of lipids were used to estimate the osteogenesis and adipogenesis levels of mBMSCs, respectively. Quercetin treatment (2 and 5 µM) induced significant upregulation of antioxidant enzymes, SOD1 and SOD2, in mBMSCs. Quercetin promoted osteogenic differentiation and inhibited adipogenic differentiation of mBMSCs. Quercetin treatment enhanced the phosphorylation of AMPK protein and upregulated the expression of SIRT1, thus activating the AMPK/SIRT1 signaling pathway in mBMSCs. Quercetin promoted osteogenic differentiation and antioxidant responses of mBMSCs by activating the AMPK/SIRT1 signaling pathway.

12.
J Oral Rehabil ; 47 Suppl 1: 19-28, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31461788

RESUMO

Craniosynostosis, a severe craniofacial developmental disease, can only be treated with surgery currently. Recent studies have shown that proteoglycans are involved in the suture development. For the bone matrix protein, dentin matrix protein 1 (DMP1), glycosylation on the N-terminal of it could generate a functional proteoglycan form of DMP1 during osteogenesis. We identified that the proteoglycan form of DMP1 (DMP1-PG) is highly expressed in mineralisation front of suture. But, the potential role of DMP1-PG in suture fusion remain unclear. To investigate the role of DMP1-PG in cranial suture fusion and craniofacial bone development. By using a DMP1 glycosylation site mutation mouse model, DMP1-S89G mice, we compared the suture development in it with control mice. We compared the suture phenotypes, bone formation rate, expression levels of bone formation markers in vivo between DMP1-S89G mice and wild-type mice. Meanwhile, cell culture and organ culture were performed to detect the differences in cell differentiation and suture fusion in vitro. Finally, chondroitin sulphate (CHS), as functional component of DMP1-PG, was employed to test whether it could delay the premature suture fusion and the abnormal differentiation of bone mesenchymal stem cells (BMSCs) of DMP1-PG mice. DMP1-S89G mice had premature closure of suture and shorter skull size. Lack of DMP1-PG accelerated bone formation in cranial suture. DMP1-PG maintained the essential stemness of BMSCs in suture through blocking the premature differentiation of BMSCs to osteoblasts. Finally, chondroitin sulphate, a major component of DMP1-PG, successfully delayed the premature suture fusion by organ culture of skull in vitro. DMP1-PG could inhibit premature fusion of cranial suture and maintain the suture through regulating the osteogenic differentiation of BMSCs.


Assuntos
Suturas Cranianas , Osteogênese , Animais , Suturas Cranianas/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Glicosilação , Humanos , Camundongos , Osteoblastos/metabolismo , Crânio
13.
Mater Sci Eng C Mater Biol Appl ; 105: 110039, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31546422

RESUMO

Bone mesenchymal stem cells (BMSCs) have been widely applied in tissue engineering and regenerative medicine. However, small number of BMSCs and loss of stem cell characteristics after expansion in vitro limited clinical use of BMSCs. In the present study, osteoblasts were cultured to lay down extracellular matrix (ECM) and then the cells were removed (decellularization) to generate ECM coating substrates. The decellularization process was optimized to maximally remove cells and cellular components, along with integrated ECM retained which was demonstrated to be beneficial for BMSCs expansion in vitro. After decellularization, only less than 2% of residual DNA and cellular proteins were detected in TFFF-ECM (decellularized by triton X-100 (T) and three freeze/thaw cycles (FFF)), which was much less than that in TN-ECM generated by traditional decellularization method (triton X-100 (T) and NH4OH (N)). Meanwhile, ECM components and structure were preserved best after decellularization by TFFF method. More ECM proteins were detected, and structure proteins (fibronectin and collagen) exhibited as classic network fibers in TFFF-ECM. Functionally, all kinds of decellularized ECM (dECM) were demonstrated to promote BMSCs proliferation and osteogenic differentiation capacity, thus maintain the stemness of BMSCs. Importantly, cells cultured on TFFF-ECM grew faster than the cells on other kinds of dECM at early stage and TFFF-ECM was beneficial to preserve stemness of BMSCs with high expression of OCT4 and NANOG when cultured in vitro. Proteomic analysis showed the proteins in ECM functioned in multiple biological activities and signaling pathways, which contributed to stemness maintenance of BMSC. Thus, the mild decellularization process optimized in this study enhanced the effectiveness of dECM for BMSCs culture in vitro and maybe further applied to BMSCs based tissue repair.


Assuntos
Matriz Extracelular/química , Células-Tronco Mesenquimais/citologia , Animais , Biomarcadores/metabolismo , Calcificação Fisiológica , Linhagem Celular , Proliferação de Células , Células Cultivadas , Colágeno/metabolismo , DNA/metabolismo , Matriz Extracelular/ultraestrutura , Regulação da Expressão Gênica , Glicosaminoglicanos/metabolismo , Camundongos , Ratos Wistar
14.
Cell Tissue Bank ; 20(3): 389-401, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31270642

RESUMO

Bone marrow-derived mesenchymal stem cells (BMSCs) have the ability to differentiate into insulin-producing cells (IPCs). Bio-scaffolds derived from decellularized organs can act as a carrier for seed cells and may have broad applications in regenerative medicine. This study investigated the effect of native pancreatic stroma obtained from decellularized pancreas on the proliferation, migration and differentiation of BMSCs into IPCs, and explored the potential underlying molecular mechanism. The decellularized pancreas bio-scaffold was obtained by perfusion with Triton X-100/ammonium hydroxide, followed by digestion with a mixture of pepsin and hydrochloric acid to prepare the stroma solution. Islet-like cells were differentiated from BMSCs by a three-step induction method. The differences on the cytological behavior with or without stroma were evaluated by morphological observation, insulin release assay, qRT-PCR assay and western blot analysis. Our results showed that, stroma derived from decellularized pancreas could promote the proliferation and migration of BMSCs. Furthermore, the formation of IPCs could also be promoted, which possessed similar morphology to endogenous islets. During the induced differentiation process, the presence of stroma significantly increased the expression of insulin 1, insulin 2 and Pdx-1, as well as insulin release. This was accompanied by an increase in the phosphorylation of Akt and ERK in third stage cell clusters, which was prevented by the addition of the inhibitors PD98059 and LY294002, respectively. In summary, decellularized pancreatic stroma could promote the proliferation, migration and differentiation of BMSCs into IPCs, and this involved the activation of Akt and ERK signal pathways.


Assuntos
Insulina/biossíntese , Ilhotas Pancreáticas/citologia , Células-Tronco Mesenquimais/citologia , Pâncreas , Alicerces Teciduais , Animais , Técnicas de Cultura de Células , Diferenciação Celular , Movimento Celular , Proliferação de Células , Células Cultivadas , Cromonas/farmacologia , Flavonoides/farmacologia , Glucose/metabolismo , Proteínas de Homeodomínio/biossíntese , Morfolinas/farmacologia , Ratos , Ratos Sprague-Dawley , Medicina Regenerativa , Transdução de Sinais , Transativadores/biossíntese
15.
Connect Tissue Res ; 60(6): 544-554, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30938209

RESUMO

Aim: Mechanical strain plays a crucial role in bone formation and remodeling. Hypoxia-inducible factor (HIF)-1α and TWIST are upstream of master regulators of osteogenesis, including runt-related transcription factor 2 (RUNX2) and bone morphogenetic proteins (BMPs). This study investigated the effect of the HIF-1α-TWIST pathway on cyclic mechanical stretch-induced osteogenic differentiation of rat bone marrow mesenchymal stem cells (BMSCs) and the underlying mechanism. Materials and Methods: BMSCs were isolated from bone marrow derived from the femurs and humeri of Sprague-Dawley rats. Osteogenic differentiation of BMSCs was induced by applying cyclic mechanical stretch using the Flexcell Tension System. HIF-1α and TWIST were knocked down using recombinant lentiviral vectors. Osteogenic differentiation was evaluated by real-time qPCR, western blotting, and the alkaline phosphatase (ALP) activity assay. Results: Cyclic mechanical stretch increased ALP activity and expression of HIF-1α and TWIST in BMSCs. Knockdown of HIF-1α decreased TWIST expression in stretched BMSCs. Moreover, knockdown of HIF-1α or TWIST enhanced cyclic mechanical stretch-induced osteogenic differentiation of BMSCs. In addition, knockdown of TWIST increased expression of RUNX2 and BMP2 in stretched BMSCs. Conclusions: The HIF-1α-TWIST signaling pathway inhibits cyclic mechanical stretch-induced osteogenic differentiation of BMSCs. This finding may facilitate cell and tissue engineering for clinical applications.


Assuntos
Células da Medula Óssea/metabolismo , Diferenciação Celular , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Células-Tronco Mesenquimais/metabolismo , Osteogênese , Estresse Mecânico , Proteína 1 Relacionada a Twist/metabolismo , Animais , Células da Medula Óssea/citologia , Masculino , Células-Tronco Mesenquimais/citologia , Ratos , Ratos Sprague-Dawley
16.
J Cell Biochem ; 120(3): 2886-2896, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-29266342

RESUMO

Neurofibromatosis type I (NF1), which is caused by mutations in the NF1 gene, is a common autosomal dominant genetic disease leading to skeletal abnormalities. Both NF1 gene and mammalian target of rapamycin complex 1 (mTORC1) signaling are associated with the osteogenic differentiation of bone marrow stem cells (BMSCs). In this study, we hypothesized that mTORC1 signaling is involved in NF1-modulated osteoblast differentiation of BMSCs. Human BMSCs were cultured in an osteogenic induction medium. The expression of NF1 was either inhibited or overexpressed by transfecting NF1 with a specific small interfering RNA (siRNA) or pcDNA3.0 plasmid, respectively. In addition, an mTORC1 signaling inhibitor and agonist were used to investigate the effects of mTORC1 on NF1-modulated osteogenic differentiation of BMSCs. The results indicated that inhibiting the expression of NF1 with siRNA significantly decreased the mRNA levels of NF1, whereas overexpressing the expression of NF1 with pcDNA3.0 plasmid significantly increased the mRNA levels of NF1 at days 3, 7, 14 and 21 after culture. We observed reduced osteogenic differentiation and cell proliferation in the NF1-siRNA group and enhanced osteogenic differentiation and cell proliferation of BMSCs in the NF1-pcDNA3.0 group. The activity of mTORC1 signaling (p-mTORC1, p-S6K1, and p-4EBP1) was significantly upregulated in the NF1-siRNA group and significantly inhibited in the NF1-pcDNA3.0 group, 7 and 14 days after culture. The effects of NF1-siRNA and NF1-pcDNA3.0 on osteogenic differentiation of BMSCs and cell proliferation were reversed by mTORC1 inhibitor and agonist, respectively. In conclusion, NF1 modulates osteogenic differentiation and cell proliferation of human BMSCs and mTORC1 signaling is essential for this process.


Assuntos
Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Células-Tronco Mesenquimais/citologia , Neurofibromina 1/genética , Osteogênese , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/metabolismo , Morfolinas/farmacologia , Neurofibromina 1/antagonistas & inibidores , Neurofibromina 1/metabolismo , Pirimidinas/farmacologia , RNA Interferente Pequeno/farmacologia , Transdução de Sinais/efeitos dos fármacos
17.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-844005

RESUMO

Objective: To isolate, culture and identify rabbit bone mesenchymal stem cells (BMSCs) so as to explore the optimal conditions for lentiviral vector-mediated enhanced green fluorescent protein (eGFP) infection in rabbit BMSCs and screen stable transfected BMSCs in rabbits. Methods: BMSCs were obtained by whole bone marrow adherence method. The osteogenic, chondrogenic and adipogenic differentiation of BMSCs was made by alizarin red, toluidine blue and oil red O staining, respectively. The expressions of CD44 and CD90 were detected by immunofluorescence. The concentration of puromycin was used to screen the minimum lethal concentration of BMSCs; the lentiviral vector with multiplicity of infection (MOI) of 50, 100, 150 and 200 mediated eGFP BMSCs were infected; the fluorescence expression was observed under an inverted microscope, and the stable transformation system was screened with puromycin. Results: When MOI was 150, lentiviral vector-mediated eGFP infection of rabbit BMSCs was the most efficient. The optimum concentration of puromycin for stable transfection of rabbit BMSCs was 1.0 μg/mL. Conclusion: Rabbit BMSCs were successfully cultured in this experiment. The stem cells were labeled with lentivirus-mediated GFP and stable transfected rabbit BMSCs were screened. A simple and effective stem cell labeling method was established to label BMSCs in vivo.

18.
Journal of Medical Biomechanics ; (6): E440-E445, 2019.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-802479

RESUMO

Vibration represents a micro reciprocating motion of a particle or object along a line or arc relative to a reference position, while the effect of low-magnitude high-frequency vibration (LMHFV) on skeletal system cells is similar to the mechanical stimulation of muscle movement. Bone mesenchymal stem cells (BMSCs), which have been identified as force-sensitive cells, exist in the bone marrows and have the potential of multi-lineage differentiation. Their biological characteristics can change functionally according to the appropriate stimulation in vitro, in order to reach the optimal demand of the stimulation. LMHFV can promote the osteogenic differentiation of BMSCs, therefore, the research on its mechanism can contribute to the application of vibration in the treatment of diseases such as osteoporosis, fracture, osteogenesis imperfecta, obesity as well as the promotion of orthodontic tooth movement. This paper summarizes the recent progress about the effects of vibration on BMSCs stem cells in osteogenesis and the possible mechanisms, so as to provide research ideas and methods for studying the mechanical as well as biological changes of BMSCs under vibration stimulation.

19.
Journal of Medical Biomechanics ; (6): E668-E672, 2019.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-802410

RESUMO

Extracellular matrix is the main element to provide mechanical clues for cells. The response of stem cells to mechanical signals is mainly achieved through the cytoskeleton. After mechanical signal is transmitted, cytoskeleton can form contractile microfilaments that actively generate tension through reorganization induced by microenvironment changes. The mechanical signals can regulate gene expression through either coupling with the nuclear skeleton directly or being transformed by the second message. Recent studies have proven that cytoskeleton tension has a series of impact on lineage specification, proliferation, differentiation and apoptosis of bone mesenchymal stem cells (BMSCs). BMSCs are of great significance in bone reconstruction and clinical treatment. The possible mechanisms about mechanotransduction and its effects of cytoskeleton tension on osteogenesis of BMSCs after micro-environmental changes were summarized.

20.
Journal of Medical Biomechanics ; (6): E440-E445, 2019.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-802376

RESUMO

Vibration represents a micro reciprocating motion of a particle or object along a line or arc relative to a reference position, while the effect of low-magnitude high-frequency vibration (LMHFV) on skeletal system cells is similar to the mechanical stimulation of muscle movement. Bone mesenchymal stem cells (BMSCs), which have been identified as force-sensitive cells, exist in the bone marrows and have the potential of multi-lineage differentiation. Their biological characteristics can change functionally according to the appropriate stimulation in vitro, in order to reach the optimal demand of the stimulation. LMHFV can promote the osteogenic differentiation of BMSCs, therefore, the research on its mechanism can contribute to the application of vibration in the treatment of diseases such as osteoporosis, fracture, osteogenesis imperfecta, obesity as well as the promotion of orthodontic tooth movement. This paper summarizes the recent progress about the effects of vibration on BMSCs stem cells in osteogenesis and the possible mechanisms, so as to provide research ideas and methods for studying the mechanical as well as biological changes of BMSCs under vibration stimulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...