Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 843
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38968558

RESUMO

Developing a neurovascular bone repair scaffold with an appropriate mechanical strength remains a challenge. Calcium phosphate (CaP) is similar to human bone, but its scaffolds are inherently brittle and inactive, which require recombination with active ions and polymers for bioactivity and suitable strength. This work discussed the synthesis of amorphous magnesium-calcium pyrophosphate (AMCP) and the subsequent development of a humidity-responsive AMCP/cassava starch (CS) scaffold. The scaffold demonstrated enhanced mechanical properties by strengthening the intermolecular hydrogen bonds and ionic bonds between AMCP and CS during the gelatinization and freeze-thawing processes. The release of active ions was rapid initially and stabilized into a long-term stable release after 3 days, which is well-matched with new bone growth. The release of pyrophosphate ions endowed the scaffold with antibacterial properties. At the cellular level, the released active ions simultaneously promoted the proliferation and mineralization of osteoblasts, the proliferation and migration of endothelial cells, and the proliferation of Schwann cells. At the animal level, the scaffold was demonstrated to promote vascular growth and peripheral nerve regeneration in a rat skull defect experiment, ultimately resulting in the significant and rapid repair of bone defects. The construction of the AMCP/CS scaffold offers practical suggestions and references for neurovascular bone repair.

2.
Int J Pharm ; 661: 124414, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38960344

RESUMO

Bulleyaconitine A (BLA) is a promising candidate for treating rheumatoid arthritis (RA) with diverse pharmacological activities, including anti-inflammatory, analgesic and bone repair. Herein, the long-acting bulleyaconitine A microspheres (BLA-MS) were developed to treat RA comprehensively by forming drug reservoirs in joint cavities. The BLA-MS were prepared by emulsion/solvent evaporation method. The particle size and distribution were assessed by SEM. The crystalline state was investigated by DSC and PXRD. The drug loading (DL), encapsulation efficiency (EE) and cumulative release in vitro were determined by HPLC. The DL and EE were 23.93 ± 0.38 % and 95.73 ± 1.56 % respectively, and the cumulative release was up to 69 days with a stable release curve. The pharmacodynamic results in collagen induced arthritis (CIA) rats showed a noticeable reduction in paw thickness (5.66 ± 0.32 mm), and the decreasing expression level of PGE2, TNF-α and IL-6 which diminished the infiltration of inflammatory cells, thereby alleviating the progression of erosion and repairing the damaged bones (BV/TV (Bone Volume / Total Volume): 81.97 %, BS/BV (Bone Surface / Bone Volume): 6.08 mm-1). In conclusion, intra-articular injection of BLA-MS should have a promising application in the treatment of RA and may achieve clinical transformation in the future.

3.
Adv Healthc Mater ; : e2401275, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38979868

RESUMO

Compromised osteogenesis and angiogenesis is the character of stem cell senescence, which brought difficulties for bone defects repairing in senescent microenvironment. As the most abundant bone-related miRNA, miRNA-21-5p plays a crucial role in inducing osteogenic and angiogenic differentiation. However, highly efficient miR-21-5p delivery still confronts challenges including poor cellular uptake and easy degradation. Herein, TDN-miR-21-5p nanocomplex is constructed based on DNA tetrahedral (TDN) and has great potential in promoting osteogenesis and alleviating senescence of senescent bone marrow stem cells (O-BMSCs), simultaneously enhancing angiogenic capacity of senescent endothelial progenitor cells (O-EPCs). Of note, the activation of AKT and Erk signaling pathway may direct regulatory mechanism of TDN-miR-21-5p mediated osteogenesis and senescence of O-BMSCs. Also, TDN-miR-21-5p can indirectly mediate osteogenesis and senescence of O-BMSCs through pro-angiogenic growth factors secreted from O-EPCs. In addition, gelatin methacryloyl (GelMA) hydrogels are mixed with TDN and TDN-miR-21-5p to fabricate delivery scaffolds. TDN-miR-21-5p@GelMA scaffold exhibits greater bone repair with increased expression of osteogenic- and angiogenic-related markers in senescent critical-size cranial defects in vivo. Collectively, TDN-miR-21-5p can alleviate senescence and induce osteogenesis and angiogenesis in senescent microenvironment, which provides a novel candidate strategy for senescent bone repair and widen clinical application of TDNs-based gene therapy.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38986535

RESUMO

Platelet-derived growth factor receptor α (PDGFRα) is often considered as a general marker of mesenchymal cells and fibroblasts, but also shows expression in a portion of osteoprogenitor cells. Within the skeleton, Pdgfrα+ mesenchymal cells have been identified in bone marrow and periosteum of long bones, where they play a crucial role in participating in fracture repair. A similar examination of Pdgfrα+ cells in calvarial bone healing has not been examined. Here, we utilize Pdgfrα-CreERTM;mT/mG reporter animals to examine the contribution of Pdgfrα+ mesenchymal cells to calvarial bone repair through histology and single-cell RNA sequencing (scRNA-Seq). Results showed that Pdgfrα+ mesenchymal cells are present in several cell clusters by scRNA-Seq, and by histology a dramatic increase in Pdgfrα+ cells populated the defect site at early timepoints to give rise to healed bone tissue overtime. Notably, diphtheria toxin-mediated ablation of Pdgfrα reporter+ cells resulted in significantly impaired calvarial bone healing. Our findings suggest that Pdgfrα-expressing cells within the calvarial niche play a critical role in the process of calvarial bone repair.

5.
Biotechnol J ; 19(7): e2300751, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38987220

RESUMO

The compatibility of bone graft substitutes (BGS) with mesenchymal stem cells (MSCs) is an important parameter to consider for their use in repairing bone defects as it eventually affects the clinical outcome. In the present study, a few commercially available BGS - ß-tricalcium phosphate (ß-TCP), calcium sulfate, gelatin sponge, and different forms of hydroxyapatite (HAP) were screened for their interactions with MSCs from adipose tissue (ADSCs). It was demonstrated that HAP block favorably supported ADSC viability, morphology, migration, and differentiation compared to other scaffolds. The results strongly suggest the importance of preclinical evaluation of bone scaffolds for their cellular compatibility. Furthermore, the bone regenerative potential of HAP block with ADSCs was evaluated in an ex vivo bone defect model developed using patient derived trabecular bone explants. The explants were cultured for 45 days in vitro and bone formation was assessed by expression of osteogenic genes, ALP secretion, and high resolution computed tomography. Our findings confirmed active bone repair process in ex vivo settings. Addition of ADSCs significantly accelerated the repair process and improved bone microarchitecture. This ex vivo bone defect model can emerge as a viable alternative to animal experimentation and also as a potent tool to evaluate patient specific bone therapeutics under controlled conditions.


Assuntos
Tecido Adiposo , Regeneração Óssea , Diferenciação Celular , Células-Tronco Mesenquimais , Engenharia Tecidual , Alicerces Teciduais , Humanos , Tecido Adiposo/citologia , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Células-Tronco Mesenquimais/citologia , Cabeça do Fêmur , Osteogênese , Células Cultivadas , Substitutos Ósseos/química , Durapatita/química , Fosfatos de Cálcio/química
6.
Carbohydr Polym ; 339: 122174, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38823938

RESUMO

Segmental bone defects can arise from trauma, infection, metabolic bone disorders, or tumor removal. Hydrogels have gained attention in the field of bone regeneration due to their unique hydrophilic properties and the ability to customize their physical and chemical characteristics to serve as scaffolds and carriers for growth factors. However, the limited mechanical strength of hydrogels and the rapid release of active substances have hindered their clinical utility and therapeutic effectiveness. With ongoing advancements in material science, the development of injectable and biofunctionalized hydrogels holds great promise for addressing the challenges associated with segmental bone defects. In this study, we incorporated lyophilized platelet-rich fibrin (LPRF), which contains a multitude of growth factors, into a genipin-crosslinked gelatin/hyaluronic acid (GLT/HA-0.5 % GP) hydrogel to create an injectable and biofunctionalized composite material. Our findings demonstrate that this biofunctionalized hydrogel possesses optimal attributes for bone tissue engineering. Furthermore, results obtained from rabbit model with segmental tibial bone defects, indicate that the treatment with this biofunctionalized hydrogel resulted in increased new bone formation, as confirmed by imaging and histological analysis. From a translational perspective, this biofunctionalized hydrogel provides innovative and bioinspired capabilities that have the potential to enhance bone repair and regeneration in future clinical applications.


Assuntos
Regeneração Óssea , Liofilização , Gelatina , Ácido Hialurônico , Hidrogéis , Iridoides , Fibrina Rica em Plaquetas , Animais , Iridoides/química , Iridoides/farmacologia , Gelatina/química , Coelhos , Hidrogéis/química , Hidrogéis/farmacologia , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Regeneração Óssea/efeitos dos fármacos , Fibrina Rica em Plaquetas/química , Engenharia Tecidual/métodos , Reagentes de Ligações Cruzadas/química , Alicerces Teciduais/química , Tíbia/efeitos dos fármacos , Tíbia/cirurgia
7.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 38(6): 755-762, 2024 Jun 15.
Artigo em Chinês | MEDLINE | ID: mdl-38918199

RESUMO

Objective: To investigate the physicochemical properties, osteogenic properties, and osteogenic ability in rabbit model of femoral condylar defect of acellular dermal matrix (ADM)/dicalcium phosphate (DCP) composite scaffold. Methods: ADM/DCP composite scaffolds were prepared by microfibril technique, and the acellular effect of ADM/DCP composite scaffolds was detected by DNA residue, fat content, and α-1,3-galactosyle (α-Gal) epitopes; the microstructure of scaffolds was characterized by field emission scanning electron microscopy and mercury porosimetry; X-ray diffraction was used to analyze the change of crystal form of scaffold; the solubility of scaffolds was used to detect the pH value and calcium ion content of the solution; the mineralization experiment in vitro was used to observe the surface mineralization. Twelve healthy male New Zealand white rabbits were selected to prepare the femoral condylar defect models, and the left and right defects were implanted with ADM/DCP composite scaffold (experimental group) and skeletal gold ® artificial bone repair material (control group), respectively. Gross observation was performed at 6 and 12 weeks after operation; Micro-CT was used to detect and quantitatively analyze the related indicators [bone volume (BV), bone volume/tissue volume (BV/TV), bone surface/bone volume (BS/BV), trabecular thickness (Tb.Th), trabecular number (Tb.N), trabecular separation (Tb.Sp), bone mineral density (BMD)], and HE staining and Masson staining were performed to observe the repair of bone defects and the maturation of bone matrix. Results: Gross observation showed that the ADM/DCP composite scaffold was a white spongy solid. Compared with ADM, ADM/DCP composite scaffolds showed a significant decrease in DNA residue, fat content, and α-Gal antigen content ( P<0.05). Field emission scanning electron microscopy showed that the ADM/DCP composite scaffold had a porous structure, and DCP particles were attached to the porcine dermal fibers. The porosity of the ADM/DCP composite scaffold was 76.32%±1.63% measured by mercury porosimetry. X-ray diffraction analysis showed that the crystalline phase of DCP in the ADM/DCP composite scaffolds remained intact. Mineralization results in vitro showed that the hydroxyapatite layer of ADM/DCP composite scaffolds was basically mature. The repair experiment of rabbit femoral condyle defect showed that the incision healed completely after operation without callus or osteophyte. Micro-CT showed that bone healing was complete and a large amount of new bone tissue was generated in the defect site of the two groups, and there was no difference in density between the defect site and the surrounding bone tissue, and the osteogenic properties of the two groups were equivalent. There was no significant difference in BV, BV/TV, BS/BV, Tb.Th, Tb.N, and BMD between the two groups ( P>0.05), except that the Tb.Sp in the experimental group was significantly higher than that in the control group ( P<0.05). At 6 and 12 weeks after operation, HE staining and Masson staining showed that the new bone and autogenous bone fused well in both groups, and the bone tissue tended to be mature. Conclusion: The ADM/DCP composite scaffold has good biocompatibility and osteogenic ability similar to the artificial bone material in repairing rabbit femoral condylar defects. It is a new scaffold material with potential in the field of bone repair.


Assuntos
Derme Acelular , Regeneração Óssea , Substitutos Ósseos , Fosfatos de Cálcio , Osteogênese , Engenharia Tecidual , Alicerces Teciduais , Animais , Coelhos , Fosfatos de Cálcio/química , Masculino , Alicerces Teciduais/química , Engenharia Tecidual/métodos , Substitutos Ósseos/química , Materiais Biocompatíveis/química , Fêmur/cirurgia , Microscopia Eletrônica de Varredura , Teste de Materiais
8.
Aging (Albany NY) ; 16(11): 9625-9648, 2024 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-38829771

RESUMO

Currently, the repair of large bone defects still faces numerous challenges, with the most crucial being the lack of large bone grafts with good osteogenic properties. In this study, a novel bone repair implant (degradable porous zinc scaffold/BF Exo composite implant) was developed by utilizing laser melting rapid prototyping 3D printing technology to fabricate a porous zinc scaffold, combining it under vacuum conditions with highly bioactive serum exosomes (BF EXO) and Poloxamer 407 thermosensitive hydrogel. The electron microscope revealed the presence of tea saucer-shaped exosomes with a double-layered membrane structure, ranging in diameter from 30-150 nm, with an average size of 86.3 nm and a concentration of 3.28E+09 particles/mL. In vitro experiments demonstrated that the zinc scaffold displayed no significant cytotoxicity, and loading exosomes enhanced the zinc scaffold's ability to promote osteogenic cell activity while inhibiting osteoclast activity. In vivo experiments on rabbits indicated that the hepatic and renal toxicity of the zinc scaffold decreased over time, and the loading of exosomes alleviated the hepatic and renal toxic effects of the zinc scaffold. Throughout various stages of repairing radial bone defects in rabbits, loading exosomes reinforced the zinc scaffold's capacity to enhance osteogenic cell activity, suppress osteoclast activity, and promote angiogenesis. This effect may be attributed to BF Exo's regulation of p38/STAT1 signaling. This study signifies that the combined treatment of degradable porous zinc scaffolds and BF Exo is an effective and biocompatible strategy for bone defect repair therapy.


Assuntos
Regeneração Óssea , Exossomos , Osteogênese , Impressão Tridimensional , Rádio (Anatomia) , Alicerces Teciduais , Zinco , Animais , Exossomos/metabolismo , Exossomos/transplante , Coelhos , Rádio (Anatomia)/cirurgia , Osteogênese/efeitos dos fármacos , Porosidade , Regeneração Óssea/efeitos dos fármacos , Masculino
9.
Biomaterials ; 311: 122650, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38889598

RESUMO

The dysfunction of bone mesenchymal stem cells (BMSCs), caused by the physical and chemical properties of the inflammatory and repair phases of bone regeneration, contributes to the failure of bone regeneration. To meet the spatiotemporal needs of BMSCs in different phases, designing biocompatible materials that respond to external stimuli, improve migration in the inflammatory phase, reduce apoptosis in the proliferative phase, and clear the hurdle in the differentiation phase of BMSCs is an effective strategy for multistage repair of bone defects. In this study, we designed a cascade-response functional composite hydrogel (Gel@Eb/HA) to regulate BMSCs dysfunction in vitro and in vivo. Gel@Eb/HA improved the migration of BMSCs by upregulating the expression of chemokine (C-C motif) ligand 5 (CCL5) during the inflammatory phase. Ultrasound (US) triggered the rapid release of Ebselen (Eb), eliminating the accumulation of reactive oxygen species (ROS) in BMSCs, and reversing apoptosis under oxidative stress. Continued US treatment accelerated the degradation of the materials, thereby providing Ca2+ for the osteogenic differentiation of BMSCs. Altogether, our study highlights the prospects of US-controlled intelligent system, that provides a novel strategy for addressing the complexities of multistage bone repair.

10.
Colloids Surf B Biointerfaces ; 241: 114047, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38897025

RESUMO

Polymer-based scaffolds with different degradability have been investigated to screen the matrix whose degradation rate is more closely matched with the bone regeneration rate. However, these comparisons are inclined to be compromised by the animal individual differences. In this study, we constructed an integrated scaffold model comprising four parts with different degradability and bioactivity to achieve an in situ comparison of bone regeneration ability of different scaffolds. Slow-degradable polycaprolactone (PCL), fast-degradable poly (lactic-co-glycolic acid) (PLGA), and silica-coated PCL and PLGA scaffolds were assembled into a round sheet to form a hydroxyapatite (HA)-free integrated scaffold. HA-doped PCL, PLGA, and silica-coated PCL and PLGA scaffolds were assembled to create an HA-incorporated integrated scaffold. The in vivo experimental results demonstrated that the local acid microenvironment caused by the rapid degradation of PLGA interfered with the osteogenic process promoted by PCL-based scaffolds in defect areas implanted with HA-free integrated scaffolds. Since the incorporation of HA alleviated the acidic microenvironment to some extent, each scaffold in HA-incorporated scaffolds exhibited its expected bone regeneration capacity. Consequently, it is feasible to construct an integrated structure for comparing the osteogenic effects of various scaffolds in situ, when there is no mutual interference between the materials. The strategy presented in this study inspired the structure design of biomaterials to enable in situ comparison of bone regeneration capacity of scaffolds.

11.
Front Bioeng Biotechnol ; 12: 1410230, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38854857

RESUMO

Background: Dental implants have become an increasingly popular option for replacing missing teeth, and the prevalence of peri-implantitis has also increased, which is expected to become a public health problem worldwide and cause high economic and health burdens. This scenario highlights the need for new therapeutic options to treat peri-implantitis. Methods: In this study, we proposed a novel sono-responsive antibacterial nanosystem co-loaded with metformin (Met) and bone morphogenetic protein-2 (BMP-2) to promote efficacy in treating peri-implantitis. We introduced the zeolitic imidazolate framework-8 (ZIF-8) as a carrier for hematoporphyrin monomethyl ether (HMME) to enhance the antibacterial effect of sonodynamic antibacterial therapy and tested its reactive oxygen species (ROS) production efficiency and bactericidal effect in vitro. Afterward, HMME-loaded ZIF-8, BMP-2-loaded polylactic acid-glycolic acid (PLGA), and Met were incorporated into gelatin methacryloyl (GelMA) hydrogels to form HMME@ZIF-8/Met/BMP-2@PLGA/GelMA composite hydrogels, and the biocompatibility of which was determined in vitro and in vivo. A bacterial-induced peri-implantitis model in the maxilla of rats was established to detect the effects of the composite hydrogels with adjunctive use of ultrasound on regulating inflammation and promoting bone tissue repair in vivo. Results: The results indicated that HMME@ZIF-8 with ultrasound stimulation demonstrated more better ROS production efficiency and antimicrobial efficacy. The composite hydrogels had good biocompatibility. Ultrasound-assisted application of the composite hydrogels reduced the release of the inflammatory factors IL-6 and TNF-α and reduced bone loss around the implant in rats with bacterial-induced peri-implantitis. Conclusion: Our observations suggest that HMME@ZIF-8 may be a new good sonosensitizer material for sonodynamic antibacterial therapy. The use of HMME@ZIF-8/Met/BMP-2@PLGA/GelMA composite hydrogels in combination with ultrasound can provide a novel option for treating peri-implantitis in the future.

12.
J Nanobiotechnology ; 22(1): 320, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38849820

RESUMO

Simultaneously modulating the inflammatory microenvironment and promoting local bone regeneration is one of the main challenges in treating bone defects. In recent years, osteoimmunology has revealed that the immune system plays an essential regulatory role in bone regeneration and that macrophages are critical components. In this work, a mussel-inspired immunomodulatory and osteoinductive dual-functional hydroxyapatite nano platform (Gold/hydroxyapatite nanocomposites functionalized with polydopamine - PDA@Au-HA) is developed to accelerate bone tissues regeneration by regulating the immune microenvironment. PDA coating endows nanomaterials with the ability to scavenge reactive oxygen species (ROS) and anti-inflammatory properties, and it also exhibits an immunomodulatory ability to inhibit M1 macrophage polarization and activate M2 macrophage secretion of osteogenesis-related cytokines. Most importantly, this nano platform promotes the polarization of M2 macrophages and regulates the crosstalk between macrophages and pre-osteoblast cells to achieve bone regeneration. Au-HA can synergistically promote vascularized bone regeneration through sustained release of Ca and P particles and gold nanoparticles (NPs). This nano platform has a synergistic effect of good compatibility, scavenging of ROS, and anti-inflammatory and immunomodulatory capability to accelerate the bone repair process. Thus, our research offers a possible therapeutic approach by exploring PDA@Au-HA nanocomposites as a bifunctional platform for tissue regeneration.


Assuntos
Bivalves , Regeneração Óssea , Durapatita , Ouro , Indóis , Macrófagos , Osteogênese , Regeneração Óssea/efeitos dos fármacos , Durapatita/química , Durapatita/farmacologia , Animais , Camundongos , Ouro/química , Ouro/farmacologia , Bivalves/química , Células RAW 264.7 , Macrófagos/efeitos dos fármacos , Indóis/química , Indóis/farmacologia , Osteogênese/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Polímeros/química , Polímeros/farmacologia , Nanocompostos/química , Nanopartículas Metálicas/química , Osteoblastos/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Fatores Imunológicos/farmacologia , Fatores Imunológicos/química , Citocinas/metabolismo
13.
Bone ; 186: 117177, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38942344

RESUMO

Tmem119 was identified as a bone anabolic factor in osteoblasts, however the roles of Tmem119 on bone repair have remained unknown. Therefore, we herein investigated the roles of Tmem119 on bone repair by examining the bone repair process after a femoral bone defect using Tmem119-deficient mice. In Tmem119-deficient mice, bone repair after a femoral bone defect was significantly delayed 10 and 14 days after bone injury in female and male mice with 3-dimensional micro-computed tomography analyses, respectively. The number of alkaline phosphatase-positive cells at the damaged sites was significantly decreased 7 days after bone injury in Tmem119-deficient mice, although the number of Osterix-positive cells was not significantly different 4 days after bone injury. The number of tartrate-resistant acid phosphatase-positive multinucleated cells as well as the number and luminal area of CD31-positive vessels at the damaged sites were not significantly different between Tmem119-deficient and wild-type mice. The present study first showed that Tmem119 deficiency delayed bone repair partly through a decrease in the osteoblastic bone formation of differentiated osteoblasts.


Assuntos
Fêmur , Proteínas de Membrana , Osteoblastos , Microtomografia por Raio-X , Animais , Proteínas de Membrana/deficiência , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Masculino , Osteoblastos/metabolismo , Feminino , Fêmur/diagnóstico por imagem , Fêmur/patologia , Fêmur/metabolismo , Camundongos , Osteogênese , Camundongos Knockout , Camundongos Endogâmicos C57BL , Regeneração Óssea
14.
Chin J Traumatol ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38734563

RESUMO

The Masquelet technique, also known as the induced membrane technique, is a surgical technique for repairing large bone defects based on the use of a membrane generated by a foreign body reaction for bone grafting. This technique is not only simple to perform, with few complications and quick recovery, but also has excellent clinical results. To better understand the mechanisms by which this technique promotes bone defect repair and the factors that require special attention in practice, we examined and summarized the relevant research advances in this technique by searching, reading, and analysing the literature. Literature show that the Masquelet technique may promote the repair of bone defects through the physical septum and molecular barrier, vascular network, enrichment of mesenchymal stem cells, and high expression of bone-related growth factors, and the repair process is affected by the properties of spacers, the timing of bone graft, mechanical environment, intramembrane filling materials, artificial membrane, and pharmaceutical/biological agents/physical stimulation.

15.
Adv Mater ; : e2402968, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38706203

RESUMO

Efferocytosis-mediated inflammatory reversal plays a crucial role in bone repairing process. However, in refractory bone defects, the macrophage continual efferocytosis may be suppressed due to the disrupted microenvironment homeostasis, particularly the loss of apoptotic signals and overactivation of intracellular oxidative stress. In this study, a polydopamine-coated short fiber matrix containing biomimetic "apoptotic signals" to reconstruct the microenvironment and reactivate macrophage continual efferocytosis for inflammatory reversal and bone defect repair is presented. The "apoptotic signals" (AM/CeO2) are prepared using CeO2 nanoenzymes with apoptotic neutrophil membrane coating for macrophage recognition and oxidative stress regulation. Additionally, a short fiber "biomimetic matrix" is utilized for loading AM/CeO2 signals via abundant adhesion sites involving π-π stacking and hydrogen bonding interactions. Ultimately, the implantable apoptosis-mimetic nanoenzyme/short-fiber matrixes (PFS@AM/CeO2), integrating apoptotic signals and biomimetic matrixes, are constructed to facilitate inflammatory reversal and reestablish the pro-efferocytosis microenvironment. In vitro and in vivo data indicate that the microenvironment biomimetic short fibers can activate macrophage continual efferocytosis, leading to the suppression of overactivated inflammation. The enhanced repair of rat femoral defect further demonstrates the osteogenic potential of the pro-efferocytosis strategy. It is believed that the regulation of macrophage efferocytosis through microenvironment biomimetic materials can provide a new perspective for tissue repair.

16.
Cureus ; 16(4): e57785, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38721174

RESUMO

INTRODUCTION: Reducing the healing period after surgical placement of dental implants can facilitate the loading of dental prostheses. AIM: The aim is to compare the osteogenic potential of unmodified titanium disks with titanium disks that were surface-modified or hydrogel-coated. MATERIALS AND METHODOLOGY: One hundred eight titanium disks (Ø6 × 2-mm) were divided into three groups: (1) unmodified titanium as control (Ti-C); (2) sandblasted and acid-etched (Ti-SLA), and (3) coated with tamarind kernel polysaccharide hydrogel grafted with acrylic acid (Ti-TKP-AA). The osteogenic potential and cytotoxic effect of various groups of titanium were compared using human osteoblasts Saos-2. The surface topography of the titanium disks and morphology of osteoblasts grown on disks were investigated by scanning electron microscopy (n = 3). Cell attachment to the disks and actin expression intensity were investigated by confocal imaging (n = 3). Cytotoxicity was quantified by cell viability assay (n = 9). Osteoblast maturation was determined by alkaline phosphatase assay (n = 9). Cell mineralization was quantified by Alizarin red staining (n = 9). One-way analysis of variance followed by Tukey's multiple comparisons test was used for intergroup comparisons (α= 0.05). RESULTS: The surface modifications on Ti-SLA and Ti-TKP-AA support better morphology and proliferation of osteoblasts than Ti-C (P< 0.001) and significantly higher levels of actin cytoskeleton accumulation (P< 0.0001). Ti-TKP-AA showed a significantly higher maturation rate than Ti-C (P< 0.001). Ti-TKP-AA showed > twofold increased mineralization than Ti-C and Ti-SLA (P< 0.001). CONCLUSIONS: TKP-AA hydrogel-coated titanium promotes faster osteoblast proliferation, maturation, and mineralization than SLA-treated or untreated titanium. These advantages can be explored for achieving early osseointegration and prosthetic loading of titanium dental implants.

17.
Molecules ; 29(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38731540

RESUMO

Deferoxamine, an iron chelator used to treat diseases caused by excess iron, has had a Food and Drug Administration-approved status for many years. A large number of studies have confirmed that deferoxamine can reduce inflammatory response and promote angiogenesis. Blood vessels play a crucial role in sustaining vital life by facilitating the delivery of immune cells, oxygen, and nutrients, as well as eliminating waste products generated during cellular metabolism. Dysfunction in blood vessels may contribute significantly to the development of life-threatening diseases. Anti-angiogenesis therapy and pro-angiogenesis/angiogenesis strategies have been frequently recommended for various diseases. Herein, we describe the mechanism by which deferoxamine promotes angiogenesis and summarize its application in chronic wounds, bone repair, and diseases of the respiratory system. Furthermore, we discuss the drug delivery system of deferoxamine for treating various diseases, providing constructive ideas and inspiration for the development of new treatment strategies.


Assuntos
Desferroxamina , Neovascularização Fisiológica , Desferroxamina/farmacologia , Desferroxamina/uso terapêutico , Humanos , Animais , Neovascularização Fisiológica/efeitos dos fármacos , Regeneração/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Angiogênese
18.
Polymers (Basel) ; 16(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38732732

RESUMO

Nano-hydroxyapatite (n-HA) is the main inorganic component of natural bone, which has been widely used as a reinforcing filler for polymers in bone materials, and it can promote cell adhesion, proliferation, and differentiation. It can also produce interactions between cells and material surfaces through selective protein adsorption and has therefore always been a research hotspot in orthopedic materials. However, n-HA nano-particles are inherently easy to agglomerate and difficult to disperse evenly in the polymer. In addition, there are differences in trace elements between n-HA nano-particles and biological apatite, so the biological activity needs to be improved, and the slow degradation in vivo, which has seriously hindered the application of n-HA in bone fields, is unacceptable. Therefore, the modification of n-HA has been extensively reported in the literature. This article reviewed the physical modification and various chemical modification methods of n-HA in recent years, as well as their modification effects. In particular, various chemical modification methods and their modification effects were reviewed in detail. Finally, a summary and suggestions for the modification of n-HA were proposed, which would provide significant reference for achieving high-performance n-HA in biomedical applications.

19.
Cells ; 13(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38727312

RESUMO

We investigated the impact of mesenchymal stem cell (MSC) therapy on treating bilateral human hip osteonecrosis, analyzing 908 cases. This study assesses factors such as tissue source and cell count, comparing core decompression with various cell therapies. This research emphasizes bone repair according to pre-treatment conditions and the specificities of cell therapy in osteonecrosis repair, indicating a potential for improved bone repair strategies in hips without femoral head collapse. This study utilized a single-center retrospective analysis to investigate the efficacy of cellular approaches in the bone repair of osteonecrosis. It examined the impact on bone repair of tissue source (autologous bone marrow concentrate, allogeneic expanded, autologous expanded), cell quantity (from none in core decompression alone to millions in cell therapy), and osteonecrosis stage and volume. Excluding hips with femoral head collapse, it focused on patients who had bilateral hip osteonecrosis, both pre-operative and post-operative MRIs, and a follow-up of over five years. The analysis divided these patients into seven groups based on match control treatment variations in bilateral hip osteonecrosis, primarily investigating the outcomes between core decompression, washing effect, and different tissue sources of MSCs. Younger patients (<30 years) demonstrated significantly better repair volumes, particularly in stage II lesions, than older counterparts. Additionally, bone repair volume increased with the number of implanted MSCs up to 1,000,000, beyond which no additional benefits were observed. No significant difference was observed in repair outcomes between different sources of MSCs (BMAC, allogenic, or expanded cells). The study also highlighted that a 'washing effect' was beneficial, particularly for larger-volume osteonecrosis when combined with core decompression. Partial bone repair was the more frequent event observed, while total bone repair of osteonecrosis was rare. The volume and stage of osteonecrosis, alongside the number of injected cells, significantly affected treatment outcomes. In summary, this study provides comprehensive insights into the effectiveness and variables influencing the use of mesenchymal stem cells in treating human hip osteonecrosis. It emphasizes the potential of cell therapy while acknowledging the complexity and variability of results based on factors such as age, cell count, and disease stage.


Assuntos
Necrose da Cabeça do Fêmur , Transplante de Células-Tronco Mesenquimais , Humanos , Transplante de Células-Tronco Mesenquimais/métodos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Necrose da Cabeça do Fêmur/terapia , Necrose da Cabeça do Fêmur/patologia , Estudos Retrospectivos , Células-Tronco Mesenquimais/citologia , Contagem de Células , Adulto Jovem , Idoso , Resultado do Tratamento , Adolescente , Imageamento por Ressonância Magnética
20.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732057

RESUMO

Implant therapy is a common treatment option in dentistry and orthopedics, but its application is often associated with an increased risk of microbial contamination of the implant surfaces that cause bone tissue impairment. This study aims to develop two silver-enriched platelet-rich plasma (PRP) multifunctional scaffolds active at the same time in preventing implant-associated infections and stimulating bone regeneration. Commercial silver lactate (L) and newly synthesized silver deoxycholate:ß-Cyclodextrin (B), were studied in vitro. Initially, the antimicrobial activity of the two silver soluble forms and the PRP enriched with the two silver forms has been studied on microbial planktonic cells. At the same time, the biocompatibility of silver-enriched PRPs has been assessed by an MTT test on human primary osteoblasts (hOBs). Afterwards, an investigation was conducted to evaluate the activity of selected concentrations and forms of silver-enriched PRPs in inhibiting microbial biofilm formation and stimulating hOB differentiation. PRP-L (0.3 µg/mm2) and PRP-B (0.2 µg/mm2) counteract Staphylococcus aureus, Staphylococcus epidermidis and Candida albicans planktonic cell growth and biofilm formation, preserving hOB viability without interfering with their differentiation capability. Overall, the results obtained suggest that L- and B-enriched PRPs represent a promising preventive strategy against biofilm-related implant infections and demonstrate a new silver formulation that, together with increasing fibrin binding protecting silver in truncated cone-shaped cyclic oligosaccharides, achieved comparable inhibitory results on prokaryotic cells at a lower concentration.


Assuntos
Biofilmes , Osteoblastos , Plasma Rico em Plaquetas , Prata , Humanos , Biofilmes/efeitos dos fármacos , Prata/química , Prata/farmacologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/citologia , Staphylococcus aureus/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Infecções Relacionadas à Prótese/prevenção & controle , Infecções Relacionadas à Prótese/microbiologia , Staphylococcus epidermidis/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...