Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 278
Filtrar
1.
Sci Rep ; 14(1): 23253, 2024 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-39370421

RESUMO

Road traffic is an important source of urban air pollutants. Due to increasingly strict controls of exhaust emissions from road traffic, their contribution to the total emissions has strongly decreased over time in high-income countries. In contrast, non-exhaust emissions from road vehicles are not yet legislated and now make up the major proportion of road traffic emissions in many countries. Brake wear, which occurs due to friction between brake linings and their rotating counterpart, is one of the main non-exhaust sources contributing to particle emissions. Since the focus of brake wear emission has largely been on particulate pollutants, little is currently known about gaseous emissions such as volatile organic compounds from braking and their fate in the atmosphere. This study investigates the oxidative ageing of gaseous brake wear emissions generated with a pin-on-disc tribometer, using an oxidation flow reactor. The results demonstrate, for the first time, that the photooxidation of gaseous brake wear emissions can lead to formation of secondary particulate matter, which could amplify the environmental impact of brake wear emissions.

2.
Sci Rep ; 14(1): 23204, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39369045

RESUMO

The demand for eco-friendly materials in automotive components has spurred research into natural fibers as sustainable alternatives for brake pads. This study examines the potential of date palm fibers, particularly the palm frond midrib (PFM), in brake pad composites. The effects of epoxy, PFM, and calcium carbonate on the composites' mechanical and tribological properties were analyzed. The optimal formulation (25% epoxy, 30% PFM, 35% calcium carbonate) exhibited superior properties, including a hardness of 87 HRB, wear rate of 1.5E-03 mg/mm, and COF of 0.73, surpassing commercial pads. Additionally, an inverse relationship between PFM/calcium carbonate content and compressibility was observed, with increased calcium carbonate enhancing wear resistance. This research underscores the potential of utilizing date palm resources in eco-friendly brake manufacturing, reducing the environmental and health impacts of traditional materials.

3.
Materials (Basel) ; 17(16)2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39203106

RESUMO

Brake friction material reinforced with coconut fiber and dypsis lutescens fiber was designed and prepared in this study. Specimens incorporating 0-8 wt.% of coconut fibers or dypsis lutescens fibers were fabricated. The effect of the content of these reinforcing fibers on the overall properties of brake friction materials was systematically investigated. The results indicate that the inclusion of reinforcing fibers in the formulation of brake friction materials can improve the physical properties and friction and wear properties of brake friction materials. The specimen incorporating 6 wt.% plant fiber obtained the optimal comprehensive performance with excellent fade resistance and recovery properties, and better wear resistance. In order to further investigate their performance, nine hybrid fiber brake friction materials were designed using the golden section method and orthogonal test method. The study indicated that the F-6 hybrid fiber-reinforced brake friction materials have better physical properties, thermal degradation resistance, recovery properties, and abrasion resistance than the single-fiber-reinforced brake friction materials. This study provides new concepts for the preparation of fiber-reinforced brake friction materials as well as formulation optimization.

4.
J Adv Res ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39117107

RESUMO

INTRODUCTION: P. pastoris is a common host for effective biosynthesis of heterologous proteins as well as small molecules. Accurate regulation of gene transcription and protein synthesis is necessary to coordinate synthetic gene circuits and optimize cellular energy distribution. Traditional methanol or other inducible promoters, natural or engineered, have defects in either fermentation safety or expression capacity. The utilization of chemical inducers typically adds complexity to the product purification process, but there is no other well-controlled protein synthesis system than promoters yet. OBJECTIVE: The study aimed to address the aforementioned challenges by constructing light-regulated gene transcription and protein translation systems with excellent expression capacity and light sensitivity. METHODS: Trans-acting factors were designed by linking the N. crassa blue-light sensor WC-1 with the activation domain of endogenous transcription factors. Light inducible or repressive promoters were then constructed through chimeric design of cis-elements (light-responsive elements, LREs) and endogenous promoters. Various configurations of trans-acting factor/LRE pairs, along with different LRE positions and copy numbers were tested for optimal promoter performance. In addition to transcription, a light-repressive translation system was constructed through the "rare codon brake" design. Rare codons were deliberately utilized to serve as brakes during protein synthesis, which were switched on and off through the light-regulated changes in the expression of the corresponding pLRE-tRNA. RESULTS: As demonstrated with GFP, the light-inducible promoter 4pLRE-cPAOX1 was 70 % stronger than the constitutive promoter PGAP, with L/D ratio = 77. The light-repressive promoter PGAP-pLRE was strictly suppressed by light, with expression capacity comparable with PGAP in darkness. As for the light-repressive translation system, the "triple brake" design successfully eliminated leakage and achieved light repression on protein synthesis without any impact on mRNA expression. CONCLUSION: The newly designed light-regulated transcription and translation systems offer innovative tools that optimize the application of P. pastoris in biotechnology and synthetic biology.

5.
Materials (Basel) ; 17(14)2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39063782

RESUMO

The results of research on the influence of the chemical composition of cast iron and its potential changes in the production cycle on the elastic properties and the correctness of numerical simulations of the natural frequency of ventilated brake discs are presented. The tests were carried out for three grades of gray cast iron with flake graphite with a eutectic saturation coefficient ranging from 0.88 to 1.01. A quantitative metallographic assessment of the pearlitic cast iron matrix and graphite precipitates was carried out, and the hardness and compressive/tensile strength of individual cast iron grades were determined, taking into account the limit contents of the alloying elements. Next, ultrasonic tests were performed, and the elastic properties of cast iron were determined. Based on the obtained data, a numerical modal analysis of brake discs was performed, the results of which were compared with the actual values of an FRF frequency analysis. The error of the computer simulations was estimated at approx. 1%, and it was found that the accuracy of the calculations of the first natural frequency did not depend on the dimensions (size) of the discs and the chemical composition of the cast iron from which they were cast. The functional relationships between the chemical composition of cast iron, its strength and elasticity and the first natural frequency of the disc vibrations were determined, and a database of the material parameters of the produced cast iron grades was developed. An implementation example showed the validation of the brake disc design with natural frequency prediction and demonstrated a high convergence of the experimental results with the simulated values. Using I-MR control cards, both the effectiveness of designing and predicting the natural vibrations of brake discs based on the implemented material database as well as the stability of the gray cast iron production and disc casting processes were confirmed.

6.
Inhal Toxicol ; 36(6): 391-405, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38952303

RESUMO

OBJECTIVES: To evaluate potential airborne asbestos exposures during brake maintenance and repair activities on a P&H overhead crane, and during subsequent handling of the mechanic's clothing. METHODS: Personal (n = 27) and area (n = 61) airborne fiber concentrations were measured during brake tests, removal, hand sanding, compressed air use, removal and reattachment of chrysotile-containing brake linings, and reinstallation of the brake linings. The mechanic's clothing was used to measure potential exposure during clothes handling. RESULTS: All brake linings contained between 19.9% to 52.4% chrysotile asbestos. No amphibole fibers were detected in any bulk or airborne samples. The average full-shift airborne chrysotile concentration was 0.035 f/cc (PCM-equivalent asbestos-specific fibers, or PCME). Average task-based personal air samples collected during brake maintenance, sanding, compressed air use, and brake lining removal tasks ranged from 0 to 0.48 f/cc (PCME). The calculated 30-minute time-weighted average (TWA) airborne chrysotile concentration associated with 5-15 minutes of clothes handling was 0-0.035 f/cc PCME. CONCLUSION: The results indicated that personal and area TWA fiber concentrations measured during all crane brake maintenance and clothes handling tasks were below the current OSHA 8-h TWA Permissible Exposure Limit for asbestos of 0.1 f/cc. Further, no airborne asbestos fibers were measured during routine brake maintenance tasks following the manufacturer's maintenance manual procedures. All short-term airborne chrysotile concentrations measured during non-routine tasks were below the current 30-minute OSHA excursion limit for asbestos of 1 f/cc. This study adds to the available data regarding chrysotile exposure potential during maintenance on overhead cranes.


Assuntos
Poluentes Ocupacionais do Ar , Asbestos Serpentinas , Exposição Ocupacional , Exposição Ocupacional/análise , Poluentes Ocupacionais do Ar/análise , Humanos , Asbestos Serpentinas/análise , Manutenção , Exposição por Inalação/análise , Monitoramento Ambiental/métodos , Automóveis , Amianto/análise
7.
Macromol Rapid Commun ; : e2400431, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39083265

RESUMO

In recent years, the automotive industry has made significant progress in integrating multifunctional sensors to improve vehicle performance, safety, and efficiency. As the number of integrated sensors keeps increasing, there is a growing interest in alternative energy sources. Specifically, self-powered sensor systems based on energy harvesting are drawing much attention, with a main focus on sustainability and reducing reliance on typical batteries. This paper demonstrates the use of triboelectric nanogenerators (TENGs) in a computer mouse for efficient energy harvesting and in automobile braking systems for safety applications using SrBi2Ta2O9 (SBTO) perovskite, blended PDMS composite operating in free-standing mode with an interdigitated patterned aluminum electrode. This self-powered sensor is capable of distinguishing between normal and abnormal braking patterns using digital signal processing techniques. It is noteworthy that the addition of 15% wt. of the SBTO in PDMS composite-based TENG delivered 13.5 V, 45 nA, and an output power of 0.98 µW. This new combination of energy harvesting and safety applications enables real-time monitoring and predictive maintenance in the automotive industry.

8.
Sensors (Basel) ; 24(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38931810

RESUMO

Bogie hunting instability is one of the common faults in railway vehicles. It not only affects ride comfort but also threatens operational safety. Due to the lower operating speed of metro vehicles, their bogie hunting stability is often overlooked. However, as wheel tread wear increases, metro vehicles with high conicity wheel-rail contact can also experience bogie hunting instability. In order to enhance the operational safety of metro vehicles, this paper conducts field tests and simulation calculations to study the bogie hunting instability behavior of metro vehicles and proposes corresponding solutions from the perspective of wheel-rail contact relationships. Acceleration and displacement sensors are installed on metro vehicles to collect data, which are processed in real time in 2 s intervals. The lateral acceleration of the frame is analyzed to determine if bogie hunting instability has occurred. Based on calculated safety indicators, it is determined whether deceleration is necessary to ensure the safety of vehicle operation. For metro vehicles in the later stages of wheel wear (after 300,000 km), the stability of their bogies should be monitored in real time. To improve the stability of metro vehicle bogies while ensuring the longevity of wheelsets, metro vehicle wheel treads should be reprofiled regularly, with a recommended reprofiling interval of 350,000 km.

9.
Heliyon ; 10(9): e30681, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38765112

RESUMO

In this study, microemulsion synthesized from chemically extracted Salvinia molesta oil with diesel was evaluated as fuel in stationary unmodified diesel engine. The microemulsions from S. molesta oil was prepared using the best combinations of 67% S. molesta oil, 15% ethanol, 13% water and 5% surfactant (span 80) and its properties were compared with that of diesel. The engine test conducted with M10, M20 and M30 blends and reported a brake thermal efficiency of 29.76% and brake specific fuel consumption of 0.3239 kg/kWh with M20. The emissions like NO and smoke reduced by 18.07% and 7.37%, respectively, with marginal increase in CO, CO2 and unburned hydrocarbon by 3.8%, 3.4% and 16.66% respectively, with M20 compared to diesel at maximum engine load of 3.73 kW. At lower engine loads with M10, M20 and M30 slightly lower CO2 emission than diesel. A drop in peak pressure and heat release rate was found to be 1.73% and 8.40%, correspondingly with M20, as that of diesel. Even though a slight reduction in brake thermal efficiency observed with M20 as compared to M10 and diesel by considering the lowest emissions of NO and smoke, it is feasible to use as promising fuel for unmodified diesel engines.

10.
Materials (Basel) ; 17(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38793403

RESUMO

The reduction of friction-induced noise is a crucial research area for enhancing vehicle comfort, and this paper proposes a method based on circular pit texture to achieve this goal. We conducted a long-term sliding friction test using a pin-on-disc friction and a wear test bench to verify the validity of this method. To compare the friction noise of different surfaces, texture units with varying line densities were machined on the surface of friction disk samples. The resulting friction-wear and noise characteristics of the samples were analyzed in conjunction with the microscopic morphology of the worn surfaces. The results indicate that surfaces with textures can delay the onset of squeal noise, and the pattern of its development differs from that of smooth surfaces. The noise reduction effect is most evident due to the proper distribution of textures that can form furrow-like wear marks at the wear interface. The finite element results demonstrate that this morphology can improve pressure distribution at the leading point and reduce the tendency of system instability.

11.
Materials (Basel) ; 17(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38793411

RESUMO

We studied a gradient anti-oxidation coating of C/C composite materials for aircraft brake discs with a simple process and low costs. The gradient coating consists of two layers, of which the inner layer is prepared with tetraethyl orthosilicate (Si (OC2H5)4), C2H5OH, H3PO4 and B4C, and the outer layer is prepared with Na2B4O7.10H2O, B2O3, and SiO2 powder. The experimental results show that after being oxidized at 700 °C for 15 h, the oxidation weight loss of the sample with the coating was only -0.17%. At the same time, after 50 thermal cycles in air at 900 °C, the sample's oxidation weight loss was only -0.06%. We conducted the 1:1 dynamic simulation test for aircraft brake discs, and the brake disc did not oxidize, thus meeting the requirements for aircraft use. In addition, the anti-oxidation mechanism of the coating was analyzed via scanning electron microscopy (SEM), X-ray diffraction (XRD), differential thermal analysis (DSC-TGA), and high-temperature in situ SEM.

12.
Sensors (Basel) ; 24(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38732849

RESUMO

Currently, the main solution for braking systems for underground electric trackless rubber-tired vehicles (UETRVs) is traditional hydraulic braking systems, which have the disadvantages of hydraulic pressure crawling, the risk of oil leakage and a high maintenance cost. An electro-mechanical-braking (EMB) system, as a type of novel brake-by-wire (BBW) system, can eliminate the above shortcomings and play a significant role in enhancing the intelligence level of the braking system in order to meet the motion control requirements of unmanned UETRVs. Among these requirements, the accurate control of clamping force is a key technology in controlling performance and the practical implementation of EMB systems. In order to achieve an adaptive clamping force control performance of an EMB system, an optimized fuzzy proportional-integral-differential (PID) controller is proposed, where the improved fuzzy algorithm is utilized to adaptively adjust the gain parameters of classic PID. In order to compensate for the deficiency of single-close-loop control and adjusting the brake gap automatically, a cascaded three-closed-loop control architecture with force/position switch technology is established, where a contact point detection method utilizing motor rotor angle displacement is proposed via experiments. The results of the simulation and experiments indicate that the clamping force response of the proposed multi-close-loop Variable Universe Fuzzy-PID (VUF-PID) controller is faster than the multi-closed-loop Fuzzy-PID and cascaded three-close-loop PID controllers. In addition, the chattering of braking force can be suppressed by 17%. This EMB system may rapidly and automatically finish the operation of the overall braking process, including gap elimination, clamping force tracking and gap recovery, which can obviously enhance the precision of the longitudinal motion control of UETRVs. It can thus serve as a BBW actuator of mine autonomous driving electric vehicles, especially in the stage of braking control.

13.
Sensors (Basel) ; 24(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38610341

RESUMO

It is urgent for automated electric transportation vehicles in coal mines to have the ability of self-adaptive tracking target constant deceleration to ensure stable and safe braking effects in long underground roadways. However, the current braking control system of underground electric trackless rubber-tired vehicles (UETRVs) still adopts multi-level constant braking torque control, which cannot achieve target deceleration closed-loop control. To overcome the disadvantages of lower safety and comfort, and the non-precise stopping distance, this article describes the architecture and working principle of constant deceleration braking systems with an electro-mechanical braking actuator. Then, a deceleration closed-loop control algorithm based on fuzzy neural network PID is proposed and simulated in Matlab/Simulink. Finally, an actual brake control unit (BCU) is built and tested in a real industrial field setting. The test illustrates the feasibility of this constant deceleration control algorithm, which can achieve constant decelerations within a very short time and maintain a constant value of -2.5 m/s2 within a deviation of ±0.1 m/s2, compared with the deviation of 0.11 m/s2 of fuzzy PID and the deviation of 0.13 m/s2 of classic PID. This BCU can provide electric and automated mine vehicles with active and smooth deceleration performance, which improves the level of electrification and automation for mine transport machinery.

14.
Proc Natl Acad Sci U S A ; 121(13): e2313897121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38466875

RESUMO

Although the last several decades have seen a dramatic reduction in emissions from vehicular exhaust, nonexhaust emissions (e.g., brake and tire wear) represent an increasingly significant class of traffic-related particulate pollution. Aerosol particles emitted from the wear of automotive brake pads contribute roughly half of the particle mass attributed to nonexhaust sources, while their relative contribution to urban air pollution overall will almost certainly grow coinciding with vehicle fleet electrification and the transition to alternative fuels. To better understand the implications of this growing prominence, a more thorough understanding of the physicochemical properties of brake wear particles (BWPs) is needed. Here, we investigate the electrical properties of BWPs as emitted from ceramic and semi-metallic brake pads. We show that up to 80% of BWPs emitted are electrically charged and that this fraction is strongly dependent on the specific brake pad material used. A dependence of the number of charges per particle on charge polarity and particle size is also demonstrated. We find that brake wear produces both positive and negative charged particles that can hold in excess of 30 elementary charges and show evidence that more negative charges are produced than positive. Our results will provide insights into the currently limited understanding of BWPs and their charging mechanisms, which potentially have significant implications on their atmospheric lifetimes and thus their relevance to climate and air quality. In addition, our study will inform future efforts to remove BWP emissions before entering the atmosphere by taking advantage of their electric charge.

15.
ACS Appl Mater Interfaces ; 16(7): 8974-8983, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38330503

RESUMO

Soft wearable robots have been gaining increasing popularity for enhancing human physical abilities and assisting people who have physical limitations. These robots typically use tendon-driven mechanisms (TDMs) to enable remote actuation to provide better usability with compact design. TDMs comprise an actuator, an end-effector, and a transmission system by using cables or tendons to transfer forces from the actuator to the end-effector. Tendons are typically routed by frictionless guiding tubes to minimize force losses, variations in the force direction, and the volume. To make soft wearable robots even smaller, brakes need to be compacted because brakes are irreplaceable to ensure safety and energy efficiency. This study presents a shape memory alloy-based reactive tubular (SMART) brake for designing a compact and portable TDM-based device. The SMART brake actively adjusts the friction force between the brake and tendon, making it easy to achieve the desired friction state, ranging from low-friction states for free movement to high-friction states for effective braking. The brake is designed in a tubular shape, serving multifunctions as both a brake and a guiding tube. The brake's performance and theoretical model were validated through experiments and demonstrated by two wearable devices. The brake could hold a significant brake force of 19.37 N/11 mm while weighing only 0.3 g. These findings have major implications for the future development of TDM-based devices and soft wearable robots, paving the way for enhanced system portability, safety, and energy efficiency.

16.
Br J Radiol ; 97(1156): 834-837, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38337059

RESUMO

OBJECTIVES: To assess if brake response times are altered pre and post CT-guided cervical spine nerve root injections. METHODS: Brake response times were assessed before and after CT-guided cervical spine nerve root injections in a cohort of patients. The average of 3 brake response times was recorded before and 30 min after injection. Statistical analysis was performed using GraphPad. A paired Student t-test was used to compare the times before and after the injections. RESULTS: Forty patients were included in this study. The mean age was 55 years. There were 17 male and 23 female patients. There was no significant difference in the mean pre and post CT-guided cervical spine nerve root injection brake response times; 0.94 s (range 0.4-1.2 s) and 0.93 s (range 0.5-1.25 s), respectively (P = .77). CONCLUSIONS: Brake response time did not significantly differ pre and 30 min post CT-guided cervical spine nerve root injections. ADVANCES IN KNOWLEDGE: To the authors' best knowledge, there are no current studies assessing brake response times post CT-guided cervical spine nerve root injections. While driving safety cannot be proven by a single metric, it is a useful study in demonstrating that this is not inhibited in a cohort of patients.


Assuntos
Radiculopatia , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Tempo de Reação , Raízes Nervosas Espinhais/diagnóstico por imagem , Vértebras Cervicais/diagnóstico por imagem , Tomografia Computadorizada por Raios X
17.
Heliyon ; 10(4): e26295, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38390066

RESUMO

A stretch of road in the province of EL HAJEB, located in the central-south region of Morocco, is classified among the roadways experiencing an accumulation of fatal traffic accidents, with a particular involvement of freight transport vehicles. Investigation reports elaborated for these fatal accidents specify that these accidents occurred when drivers lost control of their vehicles due to brake system failures, resulting in multiple fatalities. However, these investigation reports did not provide root causes of this phenomena. Scientific research efforts in this field are directed toward preventive solutions and proposing a comprehensive analytical approach. This study aims to elucidate the mechanisms behind these specific accident phenomena on the identified stretch in the city of EL HAJEB. To achieve the study's objective and identify the triggering or contributing factors of these failures, we employed a novel approach combining the TRIZ and Ishikawa tools. This is a systematic methodology for analyzing potential causes of accidents, allowing us to clarify the intricacies of the specific phenomena leading to accidents while systematizing the analysis process, thus contributing to enhancing the effectiveness of investigative teams. This article contributes to introducing a new analytical tool in the field of accident analysis.

18.
Sensors (Basel) ; 24(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38257556

RESUMO

The paper highlights the results of determining the strength of the brake pad of a freight wagon under uneven loading in operation. The main reasons for the uneven loading on the pad have been found. A mathematical tool for determining the strength of the pad unevenly loaded has been proposed. In the study, the pad is considered to be a rod system loaded with concentrated forces and bending moments. Sensors have been used in order to detect the load state of the brake pads. These sensors have been defined in the simulation software, and they have been placed on the working surface of the pad in the area of its interaction with the wheel. The operation of these sensors was simulated in the simulation software package. The results of the calculation have shown that the stresses in the pad are about 21.1 MPa; thus, they exceed the permissible values by 29%. Therefore, considering the uneven loading of the pad in operation, the strength of the pad is not ensured. To test the obtained results, the strength of the pad was determined using the finite element method. The Coulomb criterion was used for the calculation. It was found that the maximum stresses in the pad were about 19 MPa. These stresses were 21% higher than permissible values and occurred in the back of the pad. The study has proven that the uneven loading on the brake pad in operation can cause their destruction during braking. This may also cause traffic accidents with freight trains during their movement. The results of this study will contribute to the theoretical developments and recommendations aimed at improving the brake system of a freight wagon and rail traffic safety. It is considered that the tensometric sensors will be applied in future experimental tests for comparison and verification of the achieved results from the simulation computations.

19.
Traffic Inj Prev ; 25(2): 138-146, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38165203

RESUMO

OBJECTIVE: Rear-end crashes cost the most out of any crash type to the Compulsory Third Party insurance scheme of Queensland. Rear-end crashes are also one of the most common types of crashes, peaking as the most common type of crash in Queensland in 2019. This study investigated the environmental, driver, and vehicle characteristics associated with rear-end collisions in Queensland, Australia. METHODS: A totle of 367,230 crashes in the Queensland crash database between 2001 and 2021 were used to identify crash trends in Queensland, particularly related to rear-end crashes. For crashes between 2015 and 2021, additional information was gathered and allowed further analysis of factors contributing to rear-end crashes using the quasi-induced exposure method. Two binary classification tree models were used. Model 1 investigated the environmental characteristics that predicted a crash being a rear-end or not. Model 2 investigated the controller and vehicle characteristics that predict a rear-end crash-involved vehicle to be either the striking (at-fault) or struck (not-at-fault) vehicle. RESULTS: Model 1 indicated that rear-end crashes were overrepresented in urban areas and major cities and where speed limits exceeded 50 km/h. Model 2 indicated that occupants of struck vehicles (not at-fault) were more likely to be severely injured than the striking (at-fault) vehicles in rear-end crashes. License type and vehicle type also influenced the frequency and severity of rear-end crashes. CONCLUSION: Rear-end crashes can be unjust in that the not-at-fault party is typically more severely injured. Results from the current study suggest that keeping speed limits no higher than 50 km/h could help reduce the severity of rear-end crashes. Increased enforcement of safe following distances could also assist in preventing road trauma as a result of rear-end crashes.


Assuntos
Acidentes de Trânsito , Humanos , Queensland/epidemiologia , Austrália , Cidades , Bases de Dados Factuais
20.
Int J Mol Sci ; 25(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38256007

RESUMO

Currently, targeted alpha therapy (TAT) is a new therapy involving the administration of a therapeutic drug that combines a substance of α-emitting nuclides that kill cancer cells and a drug that selectively accumulates in cancer cells. It is known to be effective against cancers that are difficult to treat with existing methods, such as cancer cells that are widely spread throughout the whole body, and there are high expectations for its early clinical implementation. The nuclides for TAT, including 149Tb, 211At, 212/213Bi, 212Pb (for 212Bi), 223Ra, 225Ac, 226/227Th, and 230U, are known. However, some nuclides encounter problems with labeling methods and lack sufficient preclinical and clinical data. We labeled the compounds targeting prostate specific membrane antigen (PSMA) with 211At and 225Ac. PSMA is a molecule that has attracted attention as a theranostic target for prostate cancer, and several targeted radioligands have already shown therapeutic effects in patients. The results showed that 211At, which has a much shorter half-life, is no less cytotoxic than 225Ac. In 211At labeling, our group has also developed an original method (Shirakami Reaction). We have succeeded in obtaining a highly purified labeled product in a short timeframe using this method.


Assuntos
Antígeno Prostático Específico , Neoplasias da Próstata , Radioisótopos , Humanos , Masculino , Meia-Vida , Medicina Nuclear , Neoplasias da Próstata/tratamento farmacológico , Radioisótopos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA