Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 272
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Pest Manag Sci ; 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39229824

RESUMO

BACKGROUND: The endocycle can generate cells referred to as 'polyploid'. Fizzy-related protein (Fzr) plays an important role in driving the mitosis-to-endocycle transition. The brown planthopper (BPH), Nilaparvata lugens (Stål), a serious insect pest, feeds exclusively on rice. However, polyploidy and its regulatory mechanisms are poorly understood in BPH. RESULTS: Here, we found that the ploidy levels of follicles H (FH) and accessory gland (AG) significantly increased with BPH age when examining the polyploidy of FH and AG of salivary glands. Fzr was identified as an important regulator for polyploidy in BPH salivary gland. Knockdown of Fzr resulted in a decrease in cell size and DNA content in nymph salivary glands. Fzr knockdown transcriptionally upregulated cyclin-dependent kinase 1 (CDK1), CDK2, cyclin A (CycA) and CycB, and downregulated CycD, CycE, Myc and mini-chromosome maintenance protein 2-7 (MCM2-7). Phenotypically, Fzr knockdown significantly suppressed salivary protein production, feeding and survival in BPH nymphs. CONCLUSION: Our results show that BPH salivary glands exhibit obvious polyploidy, and Fzr positively regulates the endocycle in nymph salivary gland. These findings provide clues for the study of the regulatory mechanisms of insect polyploidy. © 2024 Society of Chemical Industry.

2.
Plant Biotechnol J ; 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39340817

RESUMO

Terpene synthases (TPSs) are key enzymes in terpenoids synthesis of plants and play crucial roles in regulating plant defence against pests and diseases. Here, we report the functional characterization of OsTPS19 and OsTPS20, which were upregulated by the attack of brown planthopper (BPH). BPH female adults performed concentration-dependent behavioural responses to (S)-limonene showing preference behaviour at low concentrations and avoidance behaviour at high concentrations. Overexpression lines of OsTPS19 and OsTPS20, which emitted higher amounts of the monoterpene (S)-limonene, decreased the hatching rate of BPH eggs, reduced the lesion length of sheath blight caused by Rhizoctonia solani and bacterial blight caused by Xanthomonas oryzae. While knockout lines of OsTPS19 and OsTPS20, which emitted lower amounts of (S)-limonene, were more susceptible to these pathogens. Overexpression of OsTPS19 and OsTPS20 in rice plants had adverse effects on the incidence of BPH, rice blast, and sheath blight in the field and had no significant impacts on rice yield traits. OsTPS19 and OsTPS20 were found to be involved in fine-tuning the emission of (S)-limonene in rice plants and play an important role in defence against both BPH and rice pathogens.

3.
Sci Rep ; 14(1): 22455, 2024 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-39341852

RESUMO

The brown planthopper (BPH) is one of the most problematic pests affecting rice (Oryza sativa L.) yields in Asia. Breeding rice varieties containing resistance genes is the most economical and effective means of controlling BPH. In this study, the key factors in resistance to BPH were investigated between the high-resistance rice variety "R26" and the susceptible variety "TN1" using RNA-sequencing. We identified 9527 differentially expressed genes (DEGs) between the rice varieties under BPH-induced stress. Weighted time-course gene co-expression network analysis (WGCNA) indicated that the increased expression of genes is associated with plant hormones, MAPK signaling pathway and biosynthesis of other secondary metabolites, which were involved in disease resistance. A connection network identified a hub gene, OsREM4.1 (BGIOSGA024059), that may affect rice resistance to the BPH. Knocking out OsREM4.1 in rice can lead to a decrease in callose, making it less resistant to BPH. Overall, the expression of differentially expressed genes varies among rice varieties with different resistance in BPH invasion. Inaddition, R26 enhances resistance to BPH by upregulating genes and secondary metabolites related to stress resistance and plant immunity. In summary, our study provides valuable insights into the genome-wide expression profile of DEGs in rice under BPH invasion through high-throughput sequencing, and further suggests that R26 can be used to develop high resistance rice lines in BPH resistant breeding programs.


Assuntos
Resistência à Doença , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Hemípteros , Oryza , Doenças das Plantas , Transcriptoma , Oryza/genética , Oryza/parasitologia , Oryza/imunologia , Hemípteros/genética , Hemípteros/fisiologia , Animais , Resistência à Doença/genética , Perfilação da Expressão Gênica/métodos , Doenças das Plantas/parasitologia , Doenças das Plantas/genética , Proteínas de Plantas/genética
4.
Insects ; 15(9)2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39336620

RESUMO

In recent decades, research on developing and deploying resistant rice has accelerated due to the availability of modern molecular tools and, in particular, advances in marker-assisted selection. However, progress in understanding virulence adaptation has been relatively slow. This review tracks patterns in virulence adaptation to resistance genes (particularly Bph1, bph2, Bph3, and bph4) and examines the nature of virulence based on selection experiments, responses by virulent populations to differential rice varieties (i.e., varieties with different resistance genes), and breeding experiments that interpret the genetic mechanisms underlying adaptation. The review proposes that varietal resistance is best regarded as a combination of minor and major resistance traits against which planthoppers develop partial or complete virulence through heritable improvements that are reversable or through evolutionary adaptation, respectively. Agronomic practices, deployment patterns, and herbivore population pressures determine the rates of adaptation, and there is growing evidence that pesticide detoxification mechanisms can accelerate virulence adaptation. Research to delay adaptation has mainly focused on gene pyramiding (i.e., including ≥ two major genes in a variety) and multilines (i.e., including ≥ two resistant varieties in a field or landscape); however, these strategies have not been adequately tested and, if not managed properly, could inadvertently accelerate adaptation compared to sequential deployment. Several research gaps remain and considerable improvements in research methods are required to better understand and manage virulence adaptation.

5.
Insects ; 15(8)2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39194813

RESUMO

Several studies have reported higher damage from insect herbivores to hybrid compared to inbred (pure line) rice. We used a collection of 20 hybrid and 12 inbred genotypes from diverse origins to test the hypotheses that hybrid rice susceptibility is due to (a) the hybrid plant type and/or (b) rice phylogeny. We challenged the genotypes with Nilaparvata lugans (BPH), Sogatella furcifera (WBPH) and Scirpophaga incertulas (YSB) in greenhouse and screenhouse bioassays and monitored herbivores in field plots. We used single nucleotide polymorphic (SNP) markers to assess genetic similarities between the genotypes and found that the hybrids and inbreds formed two distinct clusters regardless of origin. In the screenhouse, hybrids were more susceptible than inbreds to YSB; however, resistant hybrids and susceptible inbreds were also apparent from both the screenhouse and field plots. Plant biomass was the best predictor of susceptibility to YSB. Plant origin had a greater effect than plant type on susceptibility to BPH and WBPH. WBPH was the most abundant planthopper in the field plots where numbers were highly correlated with planthopper fitness in the greenhouse bioassays. Our results provide evidence that high-yielding hybrids that are relatively resistant to herbivores can be achieved through careful breeding. The avoidance of susceptible genotypes during breeding should remain a key element of integrated rice pest management.

6.
Heliyon ; 10(15): e35514, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39166075

RESUMO

Infestation by various insect pests is the main constraint for growing rice where rice brown planthopper (Nilaparvata lugens Stål) can severely damage rice plants directly through feeding. Therefore, the study aims to detect rice brown planthoppers (BPH) and provide environment-friendly management tactics to mitigate the problem which caused by brown planthoppers. The BPH samples were collected from rice fields of different locations in the Patuakhali of Bangladesh for molecular identification. A molecularly single species of rice brown planthopper, Nilaparavata lugens was identified using mitochondrial cytochrome oxidase subunit I (mtCOI) universal marker. The nucleotide sequences of collected samples were compared with other nucleotide sequences from the GenBank database of NCBI, which make single clades in the phylogenetic tree at an insignificant distance. Moreover, brown planthopper management observations were recorded in laboratory conditions after providing an artificial diet with different treatments of plant-based insecticides Neem oil (1 %, 5 %, and 10 %), Castor oil (1 %, 5 %, and 10 %) where only 20 % sucrose solution was used as negative control and Abamectin (1 %, 5 % and 10 %) were also used as a positive control for comparing the efficacy of plant-based insecticides on rice brown planthoppers. The results showed the highest mortality (100 %) of rice brown planthoppers was recorded by Abamectin 10 %, followed by Abamectin 5 %. Neem 10 % performed better than Abamectin 1 % during 1st hour. Initial after exposure of 2nd hour for Abamectin 1 % revealed greater mortality (59 %) than Neem 10 %. Neem 5 % showed less effect on mortality in brown planthopper than Neem 10 % but was higher than Neem 1 % during 6 h of observation. The Castor oil of 10 % caused higher mortality than the Castor of 5 % but not up to the marks of Abamectin and different concentrations of Neem oil. Castor oil of 1 % and control have shown no mortality of brown planthopper for 6 h of observation.

7.
J Agric Food Chem ; 72(29): 16378-16389, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38980661

RESUMO

Rice (Oryza sativaL.) is a crucial staple food crop globally, facing significant challenges from various pests that affect crop productivity and quality. Conventional pesticide usage has limitations, necessitating the development of sustainable pest management strategies. This study focuses on the expression, purification, and functional characterization of Oryzacystatin II (OC-II), a protein derived from O. sativaL. Indica rice, with the intent to evaluate its potential as a bioinsecticide against rice pests. The OC-II gene was expressed and purified, and purification confirmed its molecular weight (∼12 kDa) and protein sequence through LC-MS/MS analysis and Western blotting. The IC50 value of OC-II was calculated as 0.06 µM, and the inhibition was identified as a competitive inhibition. The protein exhibited efficient control of both pests at the nymph and adult stages, with lower probing marks observed on treated plants. The inhibition of cathepsin B enzyme activity in insects further confirmed the bioactivity of the OC-II protein. Molecular docking and molecular dynamics simulations provided insights into the interaction between the OC-II protein and cathepsin enzymes reported in BPH and WBPH. Further investigations can focus on optimizing production methods and exploring the specificity and efficacy of the OC-II protein against other crop pests to enhance its practical applications.


Assuntos
Inseticidas , Simulação de Acoplamento Molecular , Oryza , Proteínas de Plantas , Oryza/genética , Oryza/química , Oryza/metabolismo , Animais , Inseticidas/química , Inseticidas/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Controle Biológico de Vetores
8.
Pest Manag Sci ; 80(10): 5364-5376, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39031631

RESUMO

BACKGROUND: N6-Methyladenosine (m6A) is a common messenger RNA (mRNA) modification that affects various physiological processes in stress responses. However, the role of m6A modifications in plants responses to herbivore stress remains unclear. RESULTS: Here, we found that an infestation of brown planthopper (Nilaparvata lugens) female adults enhanced the resistance of rice to N. lugens. The m6A methylome analysis of N. lugens-infested and uninfested rice samples was performed to explore the interaction between rice and N. lugens. The m6A methylation mainly occurred in genes that were actively expressed in rice following N. lugens infestation, while an analysis of the whole-genomic mRNA distribution of m6A showed that N. lugens infestation caused an overall decrease in the number of m6A methylation sites across the chromosomes. The m6A methylation of genes involved in the m6A modification machinery and several defense-related phytohormones (jasmonic acid and salicylic acid) pathways was increased in N. lugens-infested rice compared to that in uninfested rice. In contrast, m6A modification levels of growth-related phytohormone (auxin and gibberellin) biosynthesis-related genes were significantly attenuated during N. lugens infestation, accompanied by the down-regulated expression of these transcripts, indicating that rice growth was restricted during N. lugens attack to rapidly optimize resource allocation for plant defense. Integrative analysis of the differential patterns of m6A methylation and the corresponding transcripts showed a positive correlation between m6A methylation and transcriptional regulation. CONCLUSION: The m6A modification is an important strategy for regulating the expression of genes involved in rice defense and growth during rice-N. lugens interactions. These findings provide new ideas for formulating strategies to control herbivorous pests. © 2024 Society of Chemical Industry.


Assuntos
Adenosina , Hemípteros , Oryza , Transcriptoma , Animais , Hemípteros/genética , Hemípteros/crescimento & desenvolvimento , Hemípteros/metabolismo , Hemípteros/fisiologia , Oryza/genética , Oryza/parasitologia , Oryza/crescimento & desenvolvimento , Adenosina/análogos & derivados , Adenosina/metabolismo , Feminino , Perfilação da Expressão Gênica , Herbivoria , Defesa das Plantas contra Herbivoria/genética
9.
Curr Biol ; 34(13): 2990-2996.e4, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38870934

RESUMO

The feeding of piercing-sucking insect herbivores often elicits changes in their host plants that benefit the insect.1 In addition to thwarting a host's defense responses, these phloem-feeding insects may manipulate source-sink signaling so as to increase resources consumed.2,3 To date, the molecular mechanisms underlying herbivore-induced resource reallocation remain less investigated. Brown planthopper (BPH), an important rice pest, feeds on the phloem and oviposits into leaf sheaths. BPH herbivory increases sugar accumulations 5-fold in the phloem sap of leaf sheaths and concurrently induces the expression of two clade III SWEET genes, SWEET13 and SWEET14, in leaf tissues, but not in leaf sheaths of attacked rice plants. Mutations of both genes by genome editing attenuate resistance to BPH without alterations of known chemical and physical defense responses. Moreover, BPH-elicited sugar levels in the phloem sap were significantly reduced in sweet13/14 mutants, which is likely to attenuate BPH feeding behavior on sweet13/14 mutants. In one of the two field seasons tested, the sweet13/14 mutants showed comparable yield to wild types, and in the other season, the mutants demonstrated stronger BPH resistance. These preliminary results suggested that the mutations in these SWEET transporters could enhance BPH resistance without yield penalties. Given that sweet13/14 mutants also exhibit resistance to bacterial blight pathogen, Xanthomonas oryzae pv. oryzae, these SWEET genes could serve as excellent molecular targets for the breeding of resistant rice cultivars.


Assuntos
Hemípteros , Oryza , Hemípteros/fisiologia , Hemípteros/genética , Hemípteros/microbiologia , Oryza/metabolismo , Oryza/genética , Oryza/microbiologia , Animais , Herbivoria , Floema/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Comportamento Alimentar/fisiologia , Açúcares/metabolismo
10.
Insects ; 15(6)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38921131

RESUMO

Hybrid rice results from crossing a male-sterile line (the A line) with a pollen doner (the restorer or R line). In 3-line hybrid breeding systems, a fertile B line is also required to maintain A line populations. Heterosis is defined as a condition of traits whereby the hybrid exceeds the average of the parental lines. Heterobeltiosis is where the hybrid exceeds both parents. Hybrid rice may display heterosis/heterobeltiosis for growth, yield and resistance to herbivores, among other traits. In a greenhouse experiment, we assessed the frequency of heterosis for resistance to the brown planthopper (Nilaparvata lugans (BPH)), whitebacked planthopper (Sogatella furcifera (WBPH)) and yellow stemborer (Scirpophaga incertulas (YSB)) in eight hybrids under varying soil nitrogen conditions. We also assessed plant biomass losses due to herbivore feeding as an approximation of tolerance (the plant's capacity to compensate for damage). Nitrogen reduced resistance to all three herbivores but was also associated with tolerance to WBPH and YSB based on improved plant survival, growth and/or yields. Plant biomass losses per unit weight of WBPH also declined under high nitrogen conditions for a number of hybrids, and there were several cases of overcompensation in rice for attacks by this herbivore. There was one case of nitrogen-related tolerance to BPH (increased grain yield) for a hybrid line with relatively high resistance, likely due to quantitative traits. Heterosis and heterobeltiosis were not essential to produce relatively high herbivore resistance or tolerance across hybrids.

11.
Front Plant Sci ; 15: 1390603, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38911983

RESUMO

Rice, a critical staple on a global scale, faces escalating challenges in yield preservation due to the rising prevalence of abiotic and biotic stressors, exacerbated by frequent climatic fluctuations in recent years. Moreover, the scorching climate prevalent in the rice-growing regions of South China poses obstacles to the cultivation of good-quality, heavy-grain varieties. Addressing this dilemma requires the development of resilient varieties capable of withstanding multiple stress factors. To achieve this objective, our study employed the broad-spectrum blast-resistant line Digu, the brown planthopper (BPH)-resistant line ASD7, and the heavy-grain backbone restorer lines Fuhui838 (FH838) and Shuhui527 (SH527) as parental materials for hybridization and multiple crossings. The incorporation of molecular markers facilitated the rapid pyramiding of six target genes (Pi5, Pita, Pid2, Pid3, Bph2, and Wxb ). Through a comprehensive evaluation encompassing blast resistance, BPH resistance, cold tolerance, grain appearance, and quality, alongside agronomic trait selection, a promising restorer line, Guihui5501 (GH5501), was successfully developed. It demonstrated broad-spectrum resistance to blast, exhibiting a resistance frequency of 77.33% against 75 artificially inoculated isolates, moderate resistance to BPH (3.78 grade), strong cold tolerance during the seedling stage (1.80 grade), and characteristics of heavy grains (1,000-grain weight reaching 35.64 g) with good grain quality. The primary rice quality parameters for GH5501, with the exception of alkali spreading value, either met or exceeded the second-grade national standard for premium edible rice varieties, signifying a significant advancement in the production of good-quality heavy-grain varieties in the southern rice-growing regions. Utilizing GH5501, a hybrid combination named Nayou5501, characterized by high yield, good quality, and resistance to multiple stresses, was bred and received approval as a rice variety in Guangxi in 2021. Furthermore, genomic analysis with gene chips revealed that GH5501 possessed an additional 20 exceptional alleles, such as NRT1.1B for efficient nitrogen utilization, SKC1 for salt tolerance, and STV11 for resistance to rice stripe virus. Consequently, the restorer line GH5501 could serve as a valuable resource for the subsequent breeding of high-yielding, good-quality, and stress-tolerant hybrid rice varieties.

12.
Mol Breed ; 44(7): 45, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38911334

RESUMO

The brown planthopper (Nilaparvata lugens Stål, BPH) is the most destructive pest of rice (Oryza sativa L.). Utilizing resistant rice cultivars that harbor resistance gene/s is an effective strategy for integrated pest management. Due to the co-evolution of BPH and rice, a single resistance gene may fail because of changes in the virulent BPH population. Thus, it is urgent to explore and map novel BPH resistance genes in rice germplasm. Previously, an indica landrace from India, Paedai kalibungga (PK), demonstrated high resistance to BPH in both in Wuhan and Fuzhou, China. To map BPH resistance genes from PK, a BC1F2:3 population derived from crosses of PK and a susceptible parent, Zhenshan 97 (ZS97), was developed and evaluated for BPH resistance. A novel BPH resistance locus, BPH39, was mapped on the short arm of rice chromosome 6 using next-generation sequencing-based bulked segregant analysis (BSA-seq). BPH39 was validated using flanking markers within the locus. Furthermore, near-isogenic lines carrying BPH39 (NIL-BPH39) were developed in the ZS97 background. NIL-BPH39 exhibited the physiological mechanisms of antibiosis and preference toward BPH. BPH39 was finally delimited to an interval of 84 Kb ranging from 1.07 to 1.15 Mb. Six candidate genes were identified in this region. Two of them (LOC_Os06g02930 and LOC_Os06g03030) encode proteins with a similar short consensus repeat (SCR) domain, which displayed many variations leading to amino acid substitutions and showed higher expression levels in NIL-BPH39. Thus, these two genes are considered reliable candidate genes for BPH39. Additionally, transcriptome sequencing, DEGs analysis, and gene RT-qPCR verification preliminary revealed that BPH39 may be involved in the jasmonic acid (JA) signaling pathway, thus mediating the molecular mechanism of BPH resistance. This work will facilitate map-based cloning and marker-assisted selection for the locus in breeding programs targeting BPH resistance. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01485-6.

13.
Sci Rep ; 14(1): 11531, 2024 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773173

RESUMO

The biogeographical range shift of insect pests is primarily governed by temperature. However, the range shift of seasonal long-distance migratory insects may be very different from that of sedentary insects. Nilaparvata lugens (BPH), a serious rice pest, can only overwinter in tropical-to-subtropical regions, and some populations migrate seasonally to temperate zones with the aid of low-level jet stream air currents. This study utilized the CLIMEX model to project the overwintering area under the climate change scenarios of RCP2.6 and RCP8.5, both in 2030s and 2080s. The overwintering boundary is predicted to expand poleward and new overwintering areas are predicted in the mid-latitude regions of central-to-eastern China and mid-to-southern Australia. With climate change, the habitable areas remained similar, but suitability decreased substantially, especially in the near-equatorial regions, owing to increasing heat stress. The range shift is similar between RCP2.6-2030s, RCP2.6-2080s, and RCP8.5-2030s, but extreme changes are projected under RCP8.5-2080s with marginal areas increasing from 27.2 to 38.8% and very favorable areas dropping from 27.5 to 3.6% compared to the current climate. These findings indicate that climate change will drive range shifts in BPH and alter regional risks differently. Therefore, international monitoring programs are needed to effectively manage these emerging challenges.


Assuntos
Migração Animal , Mudança Climática , Hemípteros , Oryza , Animais , Oryza/parasitologia , Hemípteros/fisiologia , Migração Animal/fisiologia , Austrália , Estações do Ano , China , Temperatura
14.
Pest Manag Sci ; 80(9): 4386-4398, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38661024

RESUMO

BACKGROUND: Piriformospora indica is an endophytic fungus that can promote the growth and confer resistance against diverse stresses in host plants by root colonization. However, the effects of P. indica colonization on improving plant resistance to insect pests are still less explored. The brown planthopper (BPH) Nilaparvata lugens is a serious monophagous pest that causes extensive damage to rice plants. Here, we aimed to evaluate the effects of P. indica colonization on rice resistance against BPH. RESULTS: The colonization of P. indica in rice roots resisted damage from BPH. Age-stage, two-sex life table analyses showed that feeding on P. indica-colonized rice plants affected BPH's female adult longevity, oviposition period, fecundity, population parameters and population size. BPH female adults feeding on P. indica-colonized plants excreted less honeydew. P. indica colonization remarkably increased the duration of np, N2, and N3 waveform, as well as the occurrences of N1 and N2, and decreased the duration of N4-b for BPH on rice plants. Meanwhile, the weight of BPH on the colonized plants was significantly lower than the control. In addition, the feeding and oviposition preferences of BPH to P. indica-colonized plants were reduced. qRT-RCR analyses revealed that P. indica colonization induced the expressions of jasmonic acid (JA)- and salicylic acid (SA)-related genes in rice plants. CONCLUSION: P. indica colonization can reduce BPH performance on rice plants with potential inhibitory effects on population growth. Collectively, these results support the potential for endophytically colonized P. indica as an effective strategy to improve insect resistance of crops. © 2024 Society of Chemical Industry.


Assuntos
Basidiomycota , Hemípteros , Oryza , Animais , Hemípteros/fisiologia , Hemípteros/microbiologia , Oryza/microbiologia , Oryza/parasitologia , Basidiomycota/fisiologia , Feminino , Oviposição , Endófitos/fisiologia , Herbivoria , Raízes de Plantas/microbiologia , Defesa das Plantas contra Herbivoria , Masculino
15.
J Econ Entomol ; 117(3): 933-941, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38682556

RESUMO

The brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae) (BPH), is a major, regionally migratory pest of rice in Asia. Despite intensive migratory studies, the seasonal migratory pattern of this species in the year-round breeding region (i.e., Hainan Island) remains largely unknown. To understand the migration dynamics, we conducted relevant research based on BPH light trap catches on Hainan in 2017-2022. Results showed that the occurrence dynamics of BPH in Hainan oscillated in different years and seasons. Overall, there are 4 migration peak periods on Hainan, with outbound peak periods in April-May and August-September and inbound peak periods in June and October. Trajectory and wind fields showed that in August-September, Hainan had complex meteorological conditions, and the outbound paths of BPH were variable, mainly landing in southeastern Guangxi and southwestern Guangdong. In contrast, April-May was influenced by southeasterly winds, with a wider outbound range and a further distance, landing along northeastern Vietnam from west to east toward Guangxi and Guangdong areas with time. Wind-rain fields, trajectory, and hydrogen isotope showed that in June, southwesterly winds transported BPH northward from the Indochina peninsula, where it was hindered by rainfall in the Leizhou Peninsula area and the migrants will be "rained out" into Hainan. Identically, in October, the interactions between northeasterly winds and rainfall belts on the southwest shore of Hainan increased the opportunities for BPH to migrate southward to reach Hainan. Our results suggest that Hainan is not only an important source of BPH migrating from East Asia but also plays the role of a bridge.


Assuntos
Migração Animal , Hemípteros , Oryza , Estações do Ano , Animais , Hemípteros/fisiologia , China , Distribuição Animal
16.
Front Plant Sci ; 15: 1366515, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562566

RESUMO

Introduction: The brown planthopper (BPH) poses a significant threat to rice production in Asia. The use of resistant rice varieties has been effective in managing this pest. However, the adaptability of BPH to resistant rice varieties has led to the emergence of virulent populations, such as biotype Y BPH. YHY15 rice, which carries the BPH resistance gene Bph15, exhibits notable resistance to biotype 1 BPH but is susceptible to biotype Y BPH. Limited information exists regarding how resistant rice plants defend against BPH populations with varying levels of virulence. Methods: In this study, we integrated miRNA and mRNA expression profiling analyses to study the differential responses of YHY15 rice to both avirulent (biotype 1) and virulent (biotype Y) BPH. Results: YHY15 rice demonstrated a rapid response to biotype Y BPH infestation, with significant transcriptional changes occurring within 6 hours. The biotype Y-responsive genes were notably enriched in photosynthetic processes. Accordingly, biotype Y BPH infestation induced more intense transcriptional responses, affecting miRNA expression, defenserelated metabolic pathways, phytohormone signaling, and multiple transcription factors. Additionally, callose deposition was enhanced in biotype Y BPH-infested rice seedlings. Discussion: These findings provide comprehensive insights into the defense mechanisms of resistant rice plants against virulent BPH, and may potentially guide the development of insect-resistant rice varieties.

17.
Sci Total Environ ; 926: 172035, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38565349

RESUMO

Metabolic alternation is a typical characteristic of insecticide resistance in insects. However, mechanisms underlying metabolic alternation and how altered metabolism in turn affects insecticide resistance are largely unknown. Here, we report that nicotinamide levels are decreased in the imidacloprid-resistant strain of Nilaparvata lugens, may due to reduced abundance of the symbiotic bacteria Arsenophonus. Importantly, the low levels of nicotinamide promote imidacloprid resistance via metabolic detoxification alternation, including elevations in UDP-glycosyltransferase enzymatic activity and enhancements in UGT386B2-mediated metabolism capability. Mechanistically, nicotinamide suppresses transcriptional regulatory activities of cap 'n' collar isoform C (CncC) and its partner small muscle aponeurosis fibromatosis isoform K (MafK) by scavenging the reactive oxygen species (ROS) and blocking the DNA binding domain of MafK. In imidacloprid-resistant N. lugens, nicotinamide deficiency re-activates the ROS/CncC signaling pathway to provoke UGT386B2 overexpression, thereby promoting imidacloprid detoxification. Thus, nicotinamide metabolism represents a promising target to counteract imidacloprid resistance in N. lugens.


Assuntos
Hemípteros , Inseticidas , Animais , Inseticidas/toxicidade , Espécies Reativas de Oxigênio , Neonicotinoides , Nitrocompostos/toxicidade , Transdução de Sinais , Isoformas de Proteínas , Niacinamida
18.
Front Plant Sci ; 15: 1373081, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38576786

RESUMO

The brown planthopper (BPH) is the most destructive insect pest that threatens rice production globally. Developing rice varieties incorporating BPH-resistant genes has proven to be an effective control measure against BPH. In this study, we assessed the resistance of a core collection consisting of 502 rice germplasms by evaluating resistance scores, weight gain rates and honeydew excretions. A total of 117 rice varieties (23.31%) exhibited resistance to BPH. Genome-wide association studies (GWAS) were performed on both the entire panel of 502 rice varieties and its subspecies, and 6 loci were significantly associated with resistance scores (P value < 1.0e-8). Within these loci, we identified eight candidate genes encoding receptor-like protein kinase (RLK), nucleotide-binding and leucine-rich repeat (NB-LRR), or LRR proteins. Two loci had not been detected in previous study and were entirely novel. Furthermore, we evaluated the predictive ability of genomic selection for resistance to BPH. The results revealed that the highest prediction accuracy for BPH resistance reached 0.633. As expected, the prediction accuracy increased progressively with an increasing number of SNPs, and a total of 6.7K SNPs displayed comparable accuracy to 268K SNPs. Among various statistical models tested, the random forest model exhibited superior predictive accuracy. Moreover, increasing the size of training population improved prediction accuracy; however, there was no significant difference in prediction accuracy between a training population size of 737 and 1179. Additionally, when there existed close genetic relatedness between the training and validation populations, higher prediction accuracies were observed compared to scenarios when they were genetically distant. These findings provide valuable resistance candidate genes and germplasm resources and are crucial for the application of genomic selection for breeding durable BPH-resistant rice varieties.

19.
Insects ; 15(3)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38535360

RESUMO

Three-line hybrid rice is produced by crossing male sterile (A line) rice with a fertility-restorer (R line). Fertile lines (B lines) are also required to maintain A line seed for breeding programs. We used a range of hybrids and their parental lines to assess the frequency and nature of heterosis for resistance to the whitebacked planthopper (Sogatella furcifera), brown planthopper (Nilaparvata lugens) and yellow stemborer (Scirpophaga incertulas). Heterosis is defined as trait improvement above the average of the parental lines as a result of outbreeding. Based on the results from a greenhouse study that challenged hybrids and their parental lines with each herbivore species, we found that susceptibility to planthoppers was associated with one of the eight A lines tested, but resistance was improved by crossing with a relatively resistant restorer. Higher frequencies of heterosis for susceptibility in comparisons between hybrids and their B lines suggest that susceptibility was not related to the cytoplasmic genomes of the associated sterile A lines. Furthermore, because none of the parental lines possessed currently effective resistance genes, improved resistance against planthoppers was probably due to quantitative resistance. In a related field trial, hybrids had generally higher yields than their fertile parents and often produced larger grain; however, they were often more susceptible to stemborers, leaffolders (Cnaphalocrocis medinalis) and other caterpillars (Rivula atimeta). This was largely a consequence of hybrid heterosis for plant biomass and was strongly affected by crop duration. We make a series of recommendations to improve hybrid breeding to reduce the risks of herbivore damage.

20.
BMC Biol ; 22(1): 68, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38520013

RESUMO

BACKGROUND: The brown planthopper (BPH) is a kind of piercing-sucking insect specific to rice, with the damage tops the list of pathogens and insects in recent years. microRNAs (miRNAs) are pivotal regulators of plant-environment interactions, while the mechanism underlying their function against insects is largely unknown. RESULTS: Here, we confirmed that OsmiR319, an ancient and conserved miRNA, negatively regulated resistance to BPHs, with overexpression of OsmiR319 susceptible to BPH, while suppression of OsmiR319 resistant to BPH in comparison with wild type. Meanwhile, we identified several targets of OsmiR319 that may mediate BPH resistance. Among them, OsPCF5 was the most obviously induced by BPH feeding, and over expression of OsPCF5 was resistance to BPH. In addition, various biochemical assays verified that OsPCF5 interacted with several MYB proteins, such as OsMYB22, OsMYB30, and OsMYB30C.Genetically, we revealed that both OsMYB22 and OsMYB30C positively regulated BPH resistance. Genetic interaction analyses confirmed that OsMYB22 and OsMYB30C both function in the same genetic pathway with OsmiR319b to mediate BPH resistance. CONCLUSIONS: Altogether, we revealed that OsPCF5 regulates BPH resistance via association with several MYB proteins downstream of OsmiR319, these MYB proteins might function as regulators of BPH resistance through regulating the phenylpropane synthesis.


Assuntos
Hemípteros , MicroRNAs , Oryza , Animais , Oryza/fisiologia , Hemípteros/genética , MicroRNAs/genética , MicroRNAs/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA