Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Membranes (Basel) ; 12(3)2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35323764

RESUMO

The objectives of this study are to assess the performance of antiscalants in increasing the recovery (≥85%) of a reverse osmosis (RO) plant treating anaerobic groundwater (GW) in Kamerik (the Netherlands), and to identify scalants/foulant that may limit RO recovery. Five different commercially available antiscalants were compared on the basis of their manufacturer-recommended dose. Their ability to increase the recovery from 80% to a target of 85% was evaluated in pilot-scale measurements with anaerobic GW and in once-through lab-scale RO tests with synthetic (artificial) feedwater. A membrane autopsy was performed on the tail element(s) with decreased permeability. X-ray photoelectron spectroscopy (XPS) analysis indicated that calcium phosphate was the primary scalant causing permeability decline at 85% recovery and limiting RO recovery. The addition of antiscalant had no positive effect on RO operation and scaling prevention, since at 85% recovery, permeability of the last stage decreased with all five antiscalants, while no decrease in permeability was observed without the addition of antiscalant at 80% recovery. In addition, in lab-scale RO tests executed with synthetic feed water containing identical calcium and phosphate concentrations as the anaerobic GW, calcium phosphate scaling occurred both with and without antiscalant at 85% recovery, while at 80% recovery without antiscalant, calcium phosphate did not precipitate in the RO element. In brief, calcium phosphate appeared to be the main scalant limiting RO recovery, and antiscalants were unable to prevent calcium phosphate scaling or to achieve a recovery of 85% or higher.

2.
Water Res ; 161: 381-391, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31226537

RESUMO

Calcium phosphate scaling is one of the main limitations in effluent desalination using membranes. This may be overcome by tailoring membranes with lower rejection of the scalant ions. In this study, we systematically examined the use of negatively and positively charged membranes, rejecting ions mainly based on Donnan exclusion, as a low-scaling alternative to dielectric-exclusion-dominated polyamide NF membranes for effluent desalination. The two charged membranes exhibited a lower calcium and especially phosphate rejection than the polyamide membrane. Consequently, the calcium phosphate supersaturation and then the propensity to scaling of the charged membranes were much lower than the polyamide membrane. This also allowed filtering at a much higher recovery ratio with the charged membranes. It was also found that, despite the fact that the charged membranes had an opposite fixed charge, their scaling behavior was similar. Apparently, although these membranes showed opposite selectivity towards scalant ions (phosphate and calcium) in single salt solutions, the rejection pattern in mixed salt solutions resulted in similar saturation indices, much lower than for polyamide membrane. The scale formed on all three membranes was identified as amorphous calcium phosphate (ACP), although its saturation index was lower than its solubility factor. This was explained by concentration polarization which increases the saturation index in the solution adjacent to the membrane surface. Tests in absence of permeate flux showed a much slower precipitation that took a few days compared with filtration conditions (few hours). In addition, under these conditions, the effect of the scaling on the membrane permeability was generally reduced and the scale contained crystalline calcium phosphate products, different from ACP. The results indicate that the ion rejection and resulting polarization next to the membrane surface plays a crucial role in scaling. Thus, tuning ion selectivity of NF membranes towards scalant ions presents a promising alternative for scaling mitigation during effluent desalination.


Assuntos
Membranas Artificiais , Fosfatos , Filtração , Íons , Nylons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA