Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Biomedica ; 43(1): 51-60, 2023 03 30.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-37167461

RESUMO

There are many factors involved in the incidence of Alzheimer's disease that, in combination, impede or hinder normal neuronal functions. Little is currently known about calcium regulation before and during the disease. Internal instability of calcium levels is associated with increased vascular risk, a prevalent condition in a high number of individuals already compromised by Alzheimer's disease. This review provides a reevaluation of the molecular mechanism of the sarcoendoplasmic reticulum calcium ATPase (SERC-A) in the disease and discusses salient aspects of voltage-gated calcium channel function; in these way new alternatives could be open for its treatment. These regulation mechanisms are clinically relevant since the irregular functions of SERC+A has been implicated in pathologies of brain function.


Hay muchos factores implicados en la incidencia de la enfermedad de Alzheimer que, en combinación, terminan por impedir o dificultar las funciones neuronales normales. Actualmente, poco se conoce sobre la regulación del calcio, antes de la enfermedad y durante la misma. La inestabilidad interna de los niveles de calcio se asocia a un mayor riesgo vascular, condición prevalente en un gran número de individuos ya comprometidos por la enfermedad de Alzheimer. Esta revisión proporciona una reevaluación de los mecanismos moleculares de la ATPasa dependiente de Ca2+ del retículo sarcoendoplásmico (SERC-A) en la enfermedad y analiza los aspectos más destacados de la función de los canales de calcio dependientes de voltaje; de esta manera, se podrán abrir nuevas alternativas de tratamiento. Estos mecanismos de regulación son clínicamente relevantes, ya que se ha implicado la función irregular de SERC-A en diversas alteraciones de la función cerebral.


Assuntos
Doença de Alzheimer , beta-Histina , Humanos , Doença de Alzheimer/epidemiologia , Cálcio , Estudos Retrospectivos
2.
Biomédica (Bogotá) ; 43(1): 51-60, mar. 2023. graf
Artigo em Espanhol | LILACS | ID: biblio-1533919

RESUMO

Hay muchos factores implicados en la incidencia de la enfermedad de Alzheimer que, en combinación, terminan por impedir o dificultar las funciones neuronales normales. Actualmente, poco se conoce sobre la regulación del calcio, antes de la enfermedad y durante la misma. La inestabilidad interna de los niveles de calcio se asocia a un mayor riesgo vascular, condición prevalente en un gran número de individuos ya comprometidos por la enfermedad de Alzheimer. Esta revisión proporciona una reevaluación de los mecanismos moleculares de la ATPasa dependiente de Ca2+ del retículo sarcoendoplásmico (SERC-A) en la enfermedad y analiza los aspectos más destacados de la función de los canales de calcio dependientes de voltaje; de esta manera, se podrán abrir nuevas alternativas de tratamiento. Estos mecanismos de regulación son clínicamente relevantes, ya que se ha implicado la función irregular de SERC-A en diversas alteraciones de la función cerebral.


There are many factors involved in the incidence of Alzheimer's disease that, in combination, impede or hinder normal neuronal functions. Little is currently known about calcium regulation before and during the disease. Internal instability of calcium levels is associated with increased vascular risk, a prevalent condition in a high number of individuals already compromised by Alzheimer's disease. This review provides a reevaluation of the molecular mechanism of the sarcoendoplasmic reticulum calcium ATPase (SERC-A) in the disease and discusses salient aspects of voltage-gated calcium channel function; in these way new alternatives could be open for its treatment. These regulation mechanisms are clinically relevant since the irregular functions of SERC+A has been implicated in pathologies of brain function.


Assuntos
Distúrbios do Metabolismo do Cálcio , Doença de Alzheimer , Receptores de N-Metil-D-Aspartato , ATPases Transportadoras de Cálcio , Retículo Endoplasmático
3.
Circ Res ; 130(1): 27-44, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34814703

RESUMO

BACKGROUND: The sarcoplasmic reticulum (SR) Ca2+-ATPase 2 (SERCA2) mediates Ca2+ reuptake into SR and thereby promotes cardiomyocyte relaxation, whereas the ryanodine receptor (RYR) mediates Ca2+ release from SR and triggers contraction. Ca2+/CaMKII (CaM [calmodulin]-dependent protein kinase II) regulates activities of SERCA2 through phosphorylation of PLN (phospholamban) and RYR through direct phosphorylation. However, the mechanisms for CaMKIIδ anchoring to SERCA2-PLN and RYR and its regulation by local Ca2+ signals remain elusive. The objective of this study was to investigate CaMKIIδ anchoring and regulation at SERCA2-PLN and RYR. METHODS: A role for AKAP18δ (A-kinase anchoring protein 18δ) in CaMKIIδ anchoring and regulation was analyzed by bioinformatics, peptide arrays, cell-permeant peptide technology, immunoprecipitations, pull downs, transfections, immunoblotting, proximity ligation, FRET-based CaMKII activity and ELISA-based assays, whole cell and SR vesicle fluorescence imaging, high-resolution microscopy, adenovirus transduction, adenoassociated virus injection, structural modeling, surface plasmon resonance, and alpha screen technology. RESULTS: Our results show that AKAP18δ anchors and directly regulates CaMKIIδ activity at SERCA2-PLN and RYR, via 2 distinct AKAP18δ regions. An N-terminal region (AKAP18δ-N) inhibited CaMKIIδ through binding of a region homologous to the natural CaMKII inhibitor peptide and the Thr17-PLN region. AKAP18δ-N also bound CaM, introducing a second level of control. Conversely, AKAP18δ-C, which shares homology to neuronal CaMKIIα activator peptide (N2B-s), activated CaMKIIδ by lowering the apparent Ca2+ threshold for kinase activation and inducing CaM trapping. While AKAP18δ-C facilitated faster Ca2+ reuptake by SERCA2 and Ca2+ release through RYR, AKAP18δ-N had opposite effects. We propose a model where the 2 unique AKAP18δ regions fine-tune Ca2+-frequency-dependent activation of CaMKIIδ at SERCA2-PLN and RYR. CONCLUSIONS: AKAP18δ anchors and functionally regulates CaMKII activity at PLN-SERCA2 and RYR, indicating a crucial role of AKAP18δ in regulation of the heartbeat. To our knowledge, this is the first protein shown to enhance CaMKII activity in heart and also the first AKAP (A-kinase anchoring protein) reported to anchor a CaMKII isoform, defining AKAP18δ also as a CaM-KAP.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Animais , Sítios de Ligação , Sinalização do Cálcio , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/química , Células Cultivadas , Células HEK293 , Humanos , Miócitos Cardíacos/metabolismo , Ligação Proteica , Ratos , Ratos Wistar
4.
Circulation ; 144(15): 1227-1240, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34372689

RESUMO

BACKGROUND: Inflammation contributes to the pathogenesis of heart failure, but there is limited understanding of inflammation's potential benefits. Inflammatory cells secrete MYDGF (myeloid-derived growth factor) to promote tissue repair after acute myocardial infarction. We hypothesized that MYDGF has a role in cardiac adaptation to persistent pressure overload. METHODS: We defined the cellular sources and function of MYDGF in wild-type (WT), Mydgf-deficient (Mydgf-/-), and Mydgf bone marrow-chimeric or bone marrow-conditional transgenic mice with pressure overload-induced heart failure after transverse aortic constriction surgery. We measured MYDGF plasma concentrations by targeted liquid chromatography-mass spectrometry. We identified MYDGF signaling targets by phosphoproteomics and substrate-based kinase activity inference. We recorded Ca2+ transients and sarcomere contractions in isolated cardiomyocytes. Additionally, we explored the therapeutic potential of recombinant MYDGF. RESULTS: MYDGF protein abundance increased in the left ventricular myocardium and in blood plasma of pressure-overloaded mice. Patients with severe aortic stenosis also had elevated MYDGF plasma concentrations, which declined after transcatheter aortic valve implantation. Monocytes and macrophages emerged as the main MYDGF sources in the pressure-overloaded murine heart. While Mydgf-/- mice had no apparent phenotype at baseline, they developed more severe left ventricular hypertrophy and contractile dysfunction during pressure overload than WT mice. Conversely, conditional transgenic overexpression of MYDGF in bone marrow-derived inflammatory cells attenuated pressure overload-induced hypertrophy and dysfunction. Mechanistically, MYDGF inhibited G protein-coupled receptor agonist-induced hypertrophy and augmented SERCA2a (sarco/endoplasmic reticulum Ca2+-ATPase 2a) expression in cultured neonatal rat ventricular cardiomyocytes by enhancing PIM1 (Pim-1 proto-oncogene, serine/threonine kinase) expression and activity. Along this line, cardiomyocytes from pressure-overloaded Mydgf-/- mice displayed reduced PIM1 and SERCA2a expression, greater hypertrophy, and impaired Ca2+ cycling and sarcomere function compared with cardiomyocytes from pressure-overloaded WT mice. Transplanting Mydgf-/- mice with WT bone marrow cells augmented cardiac PIM1 and SERCA2a levels and ameliorated pressure overload-induced hypertrophy and dysfunction. Pressure-overloaded Mydgf-/- mice were similarly rescued by adenoviral Serca2a gene transfer. Treating pressure-overloaded WT mice subcutaneously with recombinant MYDGF enhanced SERCA2a expression, attenuated left ventricular hypertrophy and dysfunction, and improved survival. CONCLUSIONS: These findings establish a MYDGF-based adaptive crosstalk between inflammatory cells and cardiomyocytes that protects against pressure overload-induced heart failure.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Retículo Endoplasmático/fisiologia , Insuficiência Cardíaca/terapia , Interleucinas/uso terapêutico , Miócitos Cardíacos/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Interleucinas/farmacologia , Camundongos
5.
Biomolecules ; 11(7)2021 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-34356633

RESUMO

Intracellular Ca2+ signaling engendered by Ca2+ influx and mobilization in odontoblasts is critical for dentinogenesis induced by multiple stimuli at the dentin surface. Increased Ca2+ is exported by the Na+-Ca2+ exchanger (NCX) and plasma membrane Ca2+-ATPase (PMCA) to maintain Ca2+ homeostasis. We previously demonstrated a functional coupling between Ca2+ extrusion by NCX and its influx through transient receptor potential channels in odontoblasts. Although the presence of PMCA in odontoblasts has been previously described, steady-state levels of mRNA-encoding PMCA subtypes, pharmacological properties, and other cellular functions remain unclear. Thus, we investigated PMCA mRNA levels and their contribution to mineralization under physiological conditions. We also examined the role of PMCA in the Ca2+ extrusion pathway during hypotonic and alkaline stimulation-induced increases in intracellular free Ca2+ concentration ([Ca2+]i). We performed RT-PCR and mineralization assays in human odontoblasts. [Ca2+]i was measured using fura-2 fluorescence measurements in odontoblasts isolated from newborn Wistar rat incisor teeth and human odontoblasts. We detected mRNA encoding PMCA1-4 in human odontoblasts. The application of hypotonic or alkaline solutions transiently increased [Ca2+]i in odontoblasts in both rat and human odontoblasts. The Ca2+ extrusion efficiency during the hypotonic or alkaline solution-induced [Ca2+]i increase was decreased by PMCA inhibitors in both cell types. Alizarin red and von Kossa staining showed that PMCA inhibition suppressed mineralization. In addition, alkaline stimulation (not hypotonic stimulation) to human odontoblasts upregulated the mRNA levels of dentin matrix protein-1 (DMP-1) and dentin sialophosphoprotein (DSPP). The PMCA inhibitor did not affect DMP-1 or DSPP mRNA levels at pH 7.4-8.8 and under isotonic and hypotonic conditions, respectively. We also observed PMCA1 immunoreactivity using immunofluorescence analysis. These findings indicate that PMCA participates in maintaining [Ca2+]i homeostasis in odontoblasts by Ca2+ extrusion following [Ca2+]i elevation. In addition, PMCA participates in dentinogenesis by transporting Ca2+ to the mineralizing front (which is independent of non-collagenous dentin matrix protein secretion) under physiological and pathological conditions following mechanical stimulation by hydrodynamic force inside dentinal tubules, or direct alkaline stimulation by the application of high-pH dental materials.


Assuntos
Cálcio/metabolismo , Dentina/enzimologia , Odontoblastos/enzimologia , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Calcificação de Dente , Animais , Linhagem Celular , Humanos , Ratos , Ratos Wistar
6.
Vet Sci ; 7(4)2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33202832

RESUMO

Ca2+ regulation in equine muscle is important for horse performance, yet little is known about this species-specific regulation. We reported recently that horse encode unique gene and protein sequences for the sarcoplasmic reticulum (SR) Ca2+-transporting ATPase (SERCA) and the regulatory subunit sarcolipin (SLN). Here we quantified gene transcription and protein expression of SERCA and its inhibitory peptides in horse gluteus, as compared to commonly-studied rabbit skeletal muscle. RNA sequencing and protein immunoblotting determined that horse gluteus expresses the ATP2A1 gene (SERCA1) as the predominant SR Ca2+-ATPase isoform and the SLN gene as the most-abundant SERCA inhibitory peptide, as also found in rabbit skeletal muscle. Equine muscle expresses an insignificant level of phospholamban (PLN), another key SERCA inhibitory peptide expressed commonly in a variety of mammalian striated muscles. Surprisingly in horse, the RNA transcript ratio of SLN-to-ATP2A1 is an order of magnitude higher than in rabbit, while the corresponding protein expression ratio is an order of magnitude lower than in rabbit. Thus, SLN is not efficiently translated or maintained as a stable protein in horse muscle, suggesting a non-coding role for supra-abundant SLN mRNA. We propose that the lack of SLN and PLN inhibition of SERCA activity in equine muscle is an evolutionary adaptation that potentiates Ca2+ cycling and muscle contractility in a prey species domestically selected for speed.

7.
Anal Biochem ; 610: 113965, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32956693

RESUMO

We have analyzed protein expression and enzyme activity of the sarcoplasmic reticulum Ca2+-transporting ATPase (SERCA) in horse gluteal muscle. Horses exhibit a high incidence of recurrent exertional rhabdomyolysis, with myosolic Ca2+ proposed, but yet to be established, as the underlying cause. To better assess Ca2+ regulatory mechanisms, we developed an improved protocol for isolating sarcoplasmic reticulum (SR) vesicles from horse skeletal muscle, based on mechanical homogenization and optimized parameters for differential centrifugation. Immunoblotting identified the peak subcellular fraction containing the SERCA1 protein (fast-twitch isoform). Gel analysis using the Stains-all dye demonstrated that calsequestrin (CASQ) and phospholipids are highly enriched in the SERCA-containing subcellular fraction isolated from horse gluteus. Immunoblotting also demonstrated that these horse SR vesicles show low content of glycogen phosphorylase (GP), which is likely an abundant contaminating protein of traditional horse SR preps. The maximal Ca2+-activated ATPase activity (Vmax) of SERCA in horse SR vesicles isolated using this protocol is 5‒25-fold greater than previously-reported SERCA activity in SR preps from horse skeletal muscle. We propose that this new protocol for isolating SR vesicles will be useful for determining enzymatic parameters of horse SERCA with high fidelity, plus assessing regulatory effect of SERCA peptide subunit(s) expressed in horse muscle.


Assuntos
Vesículas Extracelulares/química , Músculo Esquelético/metabolismo , Animais , Cálcio/metabolismo , Centrifugação , Eletroforese em Gel de Ágar , Vesículas Extracelulares/metabolismo , Glicogênio Fosforilase/metabolismo , Cavalos , Isoformas de Proteínas/metabolismo , Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
8.
An. bras. dermatol ; 93(5): 749-751, Sept.-Oct. 2018. graf
Artigo em Inglês | LILACS | ID: biblio-949958

RESUMO

Abstract: We present a different and rare manifestation of Darier's disease, namely linear Darier's disease. Only a few cases have been described in the literature. The case report is a male patient, 60 years old, presenting brown to red papules and plaques with hyperkeratosis distributed on the abdomen, following Blaschko's lines, with 6 years' evolution. It was a difficult diagnosis until the dermatological workup and biopsy.


Assuntos
Humanos , Masculino , Pessoa de Meia-Idade , Doença de Darier/diagnóstico , Fotografação , Acitretina/administração & dosagem , Ceratolíticos/administração & dosagem , Doença de Darier/patologia , Doença de Darier/tratamento farmacológico , Ilustração Médica
9.
Circ Res ; 122(10): 1354-1368, 2018 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-29475982

RESUMO

RATIONALE: Ca2+ homeostasis-a critical determinant of cardiac contractile function-is critically regulated by SERCA2a (sarcoplasmic reticulum Ca2+-ATPase 2a). Our previous study has identified ZFAS1 as a new lncRNA biomarker of acute myocardial infarction (MI). OBJECTIVE: To evaluate the effects of ZFAS1 on SERCA2a and the associated Ca2+ homeostasis and cardiac contractile function in the setting of MI. METHODS AND RESULTS: ZFAS1 expression was robustly increased in cytoplasm and sarcoplasmic reticulum in a mouse model of MI and a cellular model of hypoxia. Knockdown of endogenous ZFAS1 by virus-mediated silencing shRNA partially abrogated the ischemia-induced contractile dysfunction. Overexpression of ZFAS1 in otherwise normal mice created similar impairment of cardiac function as that observed in MI mice. Moreover, at the cellular level, ZFAS1 overexpression weakened the contractility of cardiac muscles. At the subcellular level, ZFAS1 deleteriously altered the Ca2+ transient leading to intracellular Ca2+ overload in cardiomyocytes. At the molecular level, ZFAS1 was found to directly bind SERCA2a protein and to limit its activity, as well as to repress its expression. The effects of ZFAS1 were readily reversible on knockdown of this lncRNA. Notably, a sequence domain of ZFAS1 gene that is conserved across species mimicked the effects of the full-length ZFAS1. Mutation of this domain or application of an antisense fragment to this conserved region efficiently canceled out the deleterious actions of ZFAS1. ZFAS1 had no significant effects on other Ca2+-handling regulatory proteins. CONCLUSIONS: ZFAS1 is an endogenous SERCA2a inhibitor, acting by binding to SERCA2a protein to limit its intracellular level and inhibit its activity, and a contributor to the impairment of cardiac contractile function in MI. Therefore, anti-ZFAS1 might be considered as a new therapeutic strategy for preserving SERCA2a activity and cardiac function under pathological conditions of the heart.


Assuntos
Cálcio/metabolismo , Infarto do Miocárdio/genética , RNA Longo não Codificante/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/antagonistas & inibidores , Animais , Sinalização do Cálcio , Hipóxia Celular , Sequência Conservada , Citoplasma/metabolismo , Indução Enzimática , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Contração Miocárdica , Infarto do Miocárdio/etiologia , Infarto do Miocárdio/metabolismo , Isquemia Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Fatores de Transcrição NFATC/metabolismo , Oligonucleotídeos Antissenso/genética , Interferência de RNA , RNA Longo não Codificante/biossíntese , RNA Interferente Pequeno/genética , Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/fisiologia , Ativação Transcricional
10.
Diabetes Metab J ; 41(5): 327-336, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29086530

RESUMO

Obesity and diabetes has become a major epidemic across the globe. Controlling obesity has been a challenge since this would require either increased physical activity or reduced caloric intake; both are difficult to enforce. There has been renewed interest in exploiting pathways such as uncoupling protein 1 (UCP1)-mediated uncoupling in brown adipose tissue (BAT) and white adipose tissue to increase energy expenditure to control weight gain. However, relying on UCP1-based thermogenesis alone may not be sufficient to control obesity in humans. On the other hand, skeletal muscle is the largest organ and a major contributor to basal metabolic rate and increasing energy expenditure in muscle through nonshivering thermogenic mechanisms, which can substantially affect whole body metabolism and weight gain. In this review we will describe the role of Sarcolipin-mediated uncoupling of Sarcoplasmic Reticulum Calcium ATPase (SERCA) as a potential mechanism for increased energy expenditure both during cold and diet-induced thermogenesis.

11.
Hypertension ; 69(4): 625-632, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28223472

RESUMO

Reduced cardiomyocyte excitation-contraction coupling and downregulation of the SERCA2a (sarcoendoplasmic reticulum calcium ATPase 2a) is associated with heart failure. This has led to viral transgene upregulation of SERCA2a in cardiomyocytes as a treatment. We hypothesized that SERCA2a gene therapy expressed under a similar promiscuous cytomegalovirus promoter could also affect the cardiac sympathetic neural axis and promote sympathoexcitation. Stellate neurons were isolated from 90 to 120 g male, Sprague-Dawley, Wistar Kyoto, and spontaneously hypertensive rats. Neurons were infected with Ad-mCherry or Ad-mCherry-hATP2Aa (SERCA2a). Intracellular Ca2+ changes were measured using fura-2AM in response to KCl, caffeine, thapsigargin, and carbonylcyanide-p-trifluoromethoxyphenylhydrazine to mobilize intracellular Ca2+ stores. The effect of SERCA2a on neurotransmitter release was measured using [3H]-norepinephrine overflow from 340 to 360 g Sprague-Dawley rat atria in response to right stellate ganglia stimulation. Upregulation of SERCA2a resulted in greater neurotransmitter release in response to stellate stimulation compared with control (empty: 98.7±20.5 cpm, n=7; SERCA: 186.5±28.41 cpm, n=8; P<0.05). In isolated Sprague-Dawley rat stellate neurons, SERCA2a overexpression facilitated greater depolarization-induced Ca2+ transients (empty: 0.64±0.03 au, n=57; SERCA: 0.75±0.03 au, n=68; P<0.05), along with increased endoplasmic reticulum and mitochondria Ca2+ load. Similar results were observed in Wistar Kyoto and age-matched spontaneously hypertensive rats, despite no further increase in endoplasmic reticulum load being observed in the spontaneously hypertensive rat (spontaneously hypertensive rats: empty, 0.16±0.04 au, n=18; SERCA: 0.17±0.02 au, n=25). In conclusion, SERCA2a upregulation in cardiac sympathetic neurons resulted in increased neurotransmission and increased Ca2+ loading into intracellular stores. Whether the increased Ca2+ transient and neurotransmission after SERCA2A overexpression contributes to enhanced sympathoexcitation in heart failure patients remains to be determined.


Assuntos
Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica , Mitocôndrias/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Sistema Nervoso Simpático/metabolismo , Transmissão Sináptica/genética , Animais , Modelos Animais de Doenças , Retículo Endoplasmático/ultraestrutura , Coração/inervação , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Masculino , Microscopia Eletrônica de Transmissão , Mitocôndrias/ultraestrutura , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/ultraestrutura , Neurônios/metabolismo , Neurônios/ultraestrutura , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Ratos Sprague-Dawley , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/biossíntese , Sistema Nervoso Simpático/ultraestrutura
12.
Circ Heart Fail ; 10(2)2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28209764

RESUMO

BACKGROUND: Despite increased secondary cardiovascular events in patients with ischemic cardiomyopathy (ICM), the expression of innate cardiac protective molecules in the hearts of patients with ICM is incompletely characterized. Therefore, we used a nonbiased RNAseq approach to determine whether differences in cardiac protective molecules occur with ICM. METHODS AND RESULTS: RNAseq analysis of human control and ICM left ventricular samples demonstrated a significant decrease in KCNJ11 expression with ICM. KCNJ11 encodes the Kir6.2 subunit of the cardioprotective KATP channel. Using wild-type mice and kcnj11-deficient (kcnj11-null) mice, we examined the effect of kcnj11 expression on cardiac function during ischemia-reperfusion injury. Reactive oxygen species generation increased in kcnj11-null hearts above that found in wild-type mice hearts after ischemia-reperfusion injury. Continuous left ventricular pressure measurement during ischemia and reperfusion demonstrated a more compromised diastolic function in kcnj11-null compared with wild-type mice during reperfusion. Analysis of key calcium-regulating proteins revealed significant differences in kcnj11-null mice. Despite impaired relaxation, kcnj11-null hearts increased phospholamban Ser16 phosphorylation, a modification that results in the dissociation of phospholamban from sarcoendoplasmic reticulum Ca2+, thereby increasing sarcoendoplasmic reticulum Ca2+-mediated calcium reuptake. However, kcnj11-null mice also had increased 3-nitrotyrosine modification of the sarcoendoplasmic reticulum Ca2+-ATPase, a modification that irreversibly impairs sarcoendoplasmic reticulum Ca2+ function, thereby contributing to diastolic dysfunction. CONCLUSIONS: KCNJ11 expression is decreased in human ICM. Lack of kcnj11 expression increases peroxynitrite-mediated modification of the key calcium-handling protein sarcoendoplasmic reticulum Ca2+-ATPase after myocardial ischemia-reperfusion injury, contributing to impaired diastolic function. These data suggest a mechanism for ischemia-induced diastolic dysfunction in patients with ICM.


Assuntos
Cardiomiopatias/metabolismo , Infarto do Miocárdio/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miocárdio/metabolismo , Estresse Oxidativo , Canais de Potássio Corretores do Fluxo de Internalização/deficiência , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Adulto , Animais , Canais de Cálcio Tipo L/metabolismo , Sinalização do Cálcio , Proteínas de Ligação ao Cálcio/metabolismo , Cardiomiopatias/genética , Cardiomiopatias/fisiopatologia , Estudos de Casos e Controles , Modelos Animais de Doenças , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Infarto do Miocárdio/genética , Infarto do Miocárdio/fisiopatologia , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Fenótipo , Canais de Potássio Corretores do Fluxo de Internalização/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Tirosina/análogos & derivados , Tirosina/metabolismo , Disfunção Ventricular Esquerda/metabolismo , Disfunção Ventricular Esquerda/fisiopatologia , Função Ventricular Esquerda , Pressão Ventricular
13.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-123921

RESUMO

Obesity and diabetes has become a major epidemic across the globe. Controlling obesity has been a challenge since this would require either increased physical activity or reduced caloric intake; both are difficult to enforce. There has been renewed interest in exploiting pathways such as uncoupling protein 1 (UCP1)-mediated uncoupling in brown adipose tissue (BAT) and white adipose tissue to increase energy expenditure to control weight gain. However, relying on UCP1-based thermogenesis alone may not be sufficient to control obesity in humans. On the other hand, skeletal muscle is the largest organ and a major contributor to basal metabolic rate and increasing energy expenditure in muscle through nonshivering thermogenic mechanisms, which can substantially affect whole body metabolism and weight gain. In this review we will describe the role of Sarcolipin-mediated uncoupling of Sarcoplasmic Reticulum Calcium ATPase (SERCA) as a potential mechanism for increased energy expenditure both during cold and diet-induced thermogenesis.


Assuntos
Humanos , Tecido Adiposo Marrom , Tecido Adiposo Branco , Metabolismo Basal , Diabetes Mellitus , Ingestão de Energia , Metabolismo Energético , Mãos , Metabolismo , Atividade Motora , Músculo Esquelético , Obesidade , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático , Termogênese , Aumento de Peso
14.
Circulation ; 134(22): 1738-1748, 2016 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-27688314

RESUMO

BACKGROUND: Aberrant calcium signaling may contribute to arrhythmias and adverse remodeling in hypertrophic cardiomyopathy (HCM). Mutations in sarcomere genes may distinctly alter calcium handling pathways. METHODS: We analyzed gene expression, protein levels, and functional assays for calcium regulatory pathways in human HCM surgical samples with (n=25) and without (n=10) sarcomere mutations compared with control hearts (n=8). RESULTS: Gene expression and protein levels for calsequestrin, L-type calcium channel, sodium-calcium exchanger, phospholamban, calcineurin, and calcium/calmodulin-dependent protein kinase type II (CaMKII) were similar in HCM samples compared with controls. CaMKII protein abundance was increased only in sarcomere-mutation HCM (P<0.001). The CaMKII target pT17-phospholamban was 5.5-fold increased only in sarcomere-mutation HCM (P=0.01), as was autophosphorylated CaMKII (P<0.01), suggestive of constitutive activation. Calcineurin (PPP3CB) mRNA was not increased, nor was RCAN1 mRNA level, indicating a lack of calcineurin activation. Furthermore, myocyte enhancer factor 2 and nuclear factor of activated T cell transcription factor activity was not increased in HCM, suggesting that calcineurin pathway activation is not an upstream cause of increased CAMKII protein abundance or activation. SERCA2A mRNA transcript levels were reduced in HCM regardless of genotype, as was sarcoplasmic endoplasmic reticular calcium ATPase 2/phospholamban protein ratio (45% reduced; P=0.03). 45Ca sarcoplasmic endoplasmic reticular calcium ATPaseuptake assay showed reduced uptake velocity in HCM regardless of genotype (P=0.01). The cardiac ryanodine receptor was not altered in transcript, protein, or phosphorylated (pS2808, pS2814) protein abundance, and [3H]ryanodine binding was not different in HCM, consistent with no major modification of the ryanodine receptor. CONCLUSIONS: Human HCM demonstrates calcium mishandling through both genotype-specific and common pathways. Posttranslational activation of the CaMKII pathway is specific to sarcomere mutation-positive HCM, whereas sarcoplasmic endoplasmic reticular calcium ATPase 2 abundance and sarcoplasmic reticulum Ca uptake are depressed in both sarcomere mutation-positive and -negative HCM.


Assuntos
Sinalização do Cálcio/genética , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteínas de Transporte/biossíntese , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Estudos de Casos e Controles , Regulação para Baixo , Expressão Gênica , Genótipo , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Sarcômeros/genética , Sarcômeros/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/biossíntese , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
15.
Hum Hered ; 82(3-4): 140-146, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-29131013

RESUMO

OBJECTIVES: The PMCA gene family consists of 4 genes and at least 21 splice variants; among these, the Ca2+ ATPase 4 (PMCA4) gene encodes a plasma membrane protein abundantly expressed in several tissues, including the kidney, heart, and sperm. Knockout of PMCA4 causes infertility due to immotile sperm in mouse models. We therefore investigated variants in this gene for potential association with infertility in groups of Estonian (n = 191) and Latvian (n = 92) men with reduced sperm motility. METHODS: All exons, exon-intron boundaries, 5' and 3' untranslated regions, and the promoter region of the PMCA4 gene were analysed by direct sequencing for a group of Estonian infertile men. Genotyping of guanine and adenine alleles of rs147729934 was performed, using a custom-designed TaqMan® probe for a group of Latvian infertile men as well as additional groups from Latvia and several groups of people with proven ethnicity from the Baltic region. RESULTS: Although we did not identify any significant associations between variants in the gene and infertility, our results indicated that in all studied Latvian and Estonian groups the adenine allele of the variant rs147729934 was present at a higher frequency than expected. Analysis of additional samples indicated that the adenine allele of rs147729934 likely originated once in the modern-day Baltic or western Russia area, as the frequency of the minor adenine allele observed in this region is remarkably higher than that in the general European population. CONCLUSIONS: Our results revealed no significant difference in frequencies of genetic variants in PMCA4 gene between men with normal and those with reduced sperm motility. The adenine allele of the variant rs147729934 is potentially an informative tool for future population studies concerning ancient Baltic and Finno-Ugric history.

16.
Chongqing Medicine ; (36): 56-58,61, 2016.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-603898

RESUMO

Objective To investigate the association between polymorphisms of Ca2 + -ATPase isomer 2 gene (PMCA2) in plasma membrane and the development of sudden deafness .Methods Totally ,164 patients were investigated and hearing tests were conducted .According to the results of audiometry ,they were divided into two groups ,sensorineural hearing loss group(n= 82) and normal hearing group(n= 82) .Polymorphisms of two single nucleotide loci rs2289274 and rs6790640 in the PMCA2 gene were de-termined by polymerase chain reaction followed by allele specific amplication analysis .Results In the sudden deafness group ,fre-quencies of genotypes AA ,AG and GG in the rs2289274 locus were 55 .8% ,17 .4% and 26 .8% respectively ,while frequencies of al-leles A and G in the same locus were 64 .5% and 35 .5% respectively ;in the sensorineural hearing loss group ,were 26 .8% ,28 .0%and 45 .2% respectively ,while frequencies of alleles A and G were 41 .1% and 58 .9% .And ,in the sudden deafness group ,frequen-cies of genotypes CC ,CT and TT in the rs2289274 locus were18 .3% ,35 .4% and 46 .3% respectively ,while frequencies of alleles C and T in the same locus were 36 .3% and 63 .7% ;in the normal hearing group ,were 2 .4% ,63 .4% and 34 .1% respectively ,while frequencies of alleles C and T were34 .1% and 65 .9% ,respectively .Genotypes distribution of two sites and their allele frequencies of the two groups ,some differences of them had statistical significance(P< 0 .05) .Conclusion It is suggested that genetic polymor-phism of the rs2289274 and rs6790640 loci in the PMCA2 gene might be a susceptible factor for sudden deafness .

17.
Circ Res ; 114(1): 101-8, 2014 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-24065463

RESUMO

RATIONALE: The Calcium Up-Regulation by Percutaneous Administration of Gene Therapy In Cardiac Disease (CUPID 1) study was a phase 1/phase 2 first-in-human clinical gene therapy trial using an adeno-associated virus serotype 1 (AAV1) vector carrying the sarcoplasmic reticulum calcium ATPase gene (AAV1/SERCA2a) in patients with advanced heart failure. The study explored potential benefits of the therapy at 12 months, and results were previously reported. OBJECTIVE: To report long-term (3-year) clinical effects and transgene expression in the patients in CUPID 1. METHODS AND RESULTS: A total of 39 patients with advanced heart failure who were on stable, optimal heart failure therapy were randomized to receive intracoronary infusion of AAV1/SERCA2a in 1 of 3 doses (low-dose, 6×10(11) DNase-resistant particles; mid-dose, 3×10(12) DNase-resistant particles; and high-dose, 1×10(13) DNase-resistant particles) versus placebo. The following recurrent cardiovascular and terminal events were tracked for 3 years in all groups: myocardial infarction, worsening heart failure, heart failure-related hospitalization, ventricular assist device placement, cardiac transplantation, and death. The number of cardiovascular events, including death, was highest in the placebo group, high but delayed in the low- and mid-dose groups, and lowest in the high-dose group. Evidence of long-term transgene presence was also observed in high-dose patients. The risk of prespecified recurrent cardiovascular events was reduced by 82% in the high-dose versus placebo group (P=0.048). No safety concerns were noted during the 3-year follow-up. CONCLUSIONS: After a single intracoronary infusion of AAV1/SERCA2a in patients with advanced heart failure, positive signals of cardiovascular events persist for years.


Assuntos
Terapia Genética , Insuficiência Cardíaca/terapia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Adulto , Idoso , Dependovirus/genética , Método Duplo-Cego , Feminino , Vetores Genéticos/genética , Insuficiência Cardíaca/mortalidade , Insuficiência Cardíaca/fisiopatologia , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Tempo , Transgenes/genética , Resultado do Tratamento
18.
Tex Heart Inst J ; 40(3): 235-45, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23914011

RESUMO

The present study was undertaken to investigate, in an animal model, the relationship between sarcoplasmic reticulum Ca2+-ATPase (SERCA2a) activity, phospholamban phosphorylation, acylphosphatase activity, and hemodynamic changes that occur in the early phase of pressure overload. In 54 study-group pigs, weighing 40±5 kg each, an aortic stenosis was created with a band of umbilical tape tied around the aorta; 18 sham-operated pigs formed our control group. Eight animals (6 study and 2 control) were randomly assigned to each experimental time (0.5, 3, 6, 12, 24, 48, 72, 96, and 168 hr). All indices of left ventricular function declined significantly, with a peak at 6 hr and a return to baseline at 168 hr. At each observational time, SERCA2a activity, Ca2+ uptake, and acylphosphatase activity rose significantly, with a maximum increase at 6 hr. These changes indicated a higher expression of these proteins; conversely, phospholamban did not show significant changes in its concentration or in its phosphorylation status. Nuclear proto-oncogene c-fos expression rose at 6 hr. A strong inverse correlation was found when Ca2+-ATPase activity, Ca2+-ATPase expression, Ca2+ uptake, and acylphosphatase were compared with indices of systolic function. In our model of induced pressure overload, an initial phase of depressed myocardial contractility was accompanied by an increased sarcoplasmic reticulum function and by higher Ca2+-ATPase and Ca2+ uptake activities mediated by acylphosphatase. This new finding of Ca2+ homeostasis might indicate a compensatory mechanism for mechanical stress. Further studies are needed to confirm our findings.


Assuntos
Aorta/fisiopatologia , Hemodinâmica , Hipertrofia Ventricular Esquerda/fisiopatologia , Miocárdio/metabolismo , Disfunção Ventricular Esquerda/fisiopatologia , Função Ventricular Esquerda , Hidrolases Anidrido Ácido/metabolismo , Animais , Aorta/cirurgia , Biomarcadores/metabolismo , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Modelos Animais de Doenças , Homeostase , Hipertrofia Ventricular Esquerda/etiologia , Hipertrofia Ventricular Esquerda/metabolismo , Contração Miocárdica , Fosforilação , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Sus scrofa , Fatores de Tempo , Disfunção Ventricular Esquerda/etiologia , Disfunção Ventricular Esquerda/metabolismo , Acilfosfatase
19.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-839511

RESUMO

ATP2A2 is a member of ATP2As family, it encodes SERCA2b, a sarco (endo) plasmic reticulum calcium transport ATPases (SERCAs). As the main function of SERCA2b is to transport calcium from the cytosol to the sarco(endo) plasmic reticulum, it plays a vital role in numerous calcium-related signaling pathways involving control of tumor growth, differentiation, angiogenesis, metastasis and apoptosis. Recent studies have identified the accurate change of ATP2A2 expression in some tumors, which makes the first step in investigating how ATP2A2 participates in tumorigenesis and whether it can be taken as a new tumor marker and target for treatment. Here we made a comprehensive review on the role of ATP2A2 in tumorigenesis, and it is believed that the abnormal expression of ATP2A2 can damage the calcium homeostasis between cytosol and sarco (endo) plasmic reticulum, accelerating malignant proliferation, migration and angiogenesis of the tumor. Moreover, we also discussed the prospect of research and application of ATP2A2.

20.
Acta odontol. latinoam ; 25(1): 34-39, 2012. graf, tab
Artigo em Inglês | LILACS | ID: biblio-949674

RESUMO

Local anesthetics used in dentistry have myotoxic effects. Articaine, also known as carticaine, is one of the local anesthetics most widely used in clinical dentistry. The aim of this work was to describe its effect on the sarcoplasmic reticulum Ca-ATPase isolated from medial pterygoid muscle. Ca-ATPase enzymatic activity was determined by a colorimetric method and ATP-dependent calcium uptake with a radioisotopic technique. Articaine inhibited both Ca-ATPase activity and calcium uptake in a concentrationdependent manner. Both inhibitory effects became evident at articaine concentrations lower than those employed in clinical dentistry. Half-maximal inhibitory concentrations (Ki) were 15.1± 1.8 mM (n = 6) and 25.2 ± 1.6 mM (n = 6) for enzymatic activity and calcium uptake, respectively. Preincubation of sarcoplasmic reticulum membranes with articaine enhanced Ca-ATPase activity in the absence of calcium ionophore, suggesting an ionophoriclike effect of the local anesthetic. We conclude that the inhibitory effect of articaine on the sarcoplasmic reticulum Ca-ATPase isolated from medial pterygoid muscle is due to a direct interaction of the anesthetic with the enzyme and to the increased membrane permeability to calcium induced by this drug.


Los anestésicos locales de uso odontológico tienen efectos miotóxicos. La carticaína, también conocida como articaína, es uno de los anestésicos locales más usados en la clínica odontológica actual. El objetivo del trabajo fue describir el efecto de la carticaína sobre la Ca-ATPasa del retículo sarcoplásmico aislada del músculo pterigoideo interno. La actividad enzimática de la bomba de calcio se determinó por un método colorimétrico y se utilizó un método radioisotópico a fin de determinar la captación de calcio dependiente de ATP. La carticaína inhibió la actividad enzimática y la captación de calcio en función de su concentración. Ambos efectos se observaron a concentraciones de carticaína menores a las utilizadas en la clínica. Las concentraciones de carticaína necesarias para inhibir la actividad Ca-ATPásica y la captación de calcio a la mitad de su valor máximo (Ki) fueron 15.1 ± 1.8 mM (n = 6) y 25.2 ± 1.6 mM (n = 6) respectivamente. La preincubación con carticaína de las membranas de retículo sarcoplásmico del músculo pterigoideo interno, en ausencia de ionóforo de calcio, incrementó la actividad de la enzima, evidenciando un efecto ionofórico del anestésico local. Concluimos que el efecto inhibitorio de la carticaína sobre la Ca-ATPasa de retículo sarcoplásmico del músculo pterigoideo interno se debe a la acción directa del anestésico local sobre la enzima y al incremento de la permeabilidad de la membrana del retículo sarcoplásmico al calcio inducido por esta droga.


Assuntos
Animais , Masculino , Coelhos , Músculos Pterigoides/ultraestrutura , Retículo Sarcoplasmático/efeitos dos fármacos , Retículo Sarcoplasmático/metabolismo , Carticaína/farmacologia , Cálcio/metabolismo , Anestésicos Locais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...