Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 373
Filtrar
1.
Cancer Cell Int ; 24(1): 206, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867242

RESUMO

BACKGROUND: Human liver cancer stem-like cells (HLCSLCs) are widely acknowledged as significant factors in the recurrence and eradication of hepatocellular carcinoma (HCC). The sustenance of HLCSLCs' stemness is hypothesized to be intricately linked to the epigenetic process of DNA methylation modification of genes associated with anticancer properties. The present study aimed to elucidate the stemness-maintaining mechanism of HLCSLCs and provide a novel idea for the clearance of HLCSLCs. METHODS: The clinical relevance of DNMT1 and SOCS1 in hepatocellular carcinoma (HCC) patients was evaluated through the GEO and TCGA databases. Cellular immunofluorescence assay, methylation-specific PCR, chromatin immunoprecipitation were conducted to explore the expression of DNMT1 and SOCS1 and the regulatory relationship between them in HLCSLCs. Spheroid formation, soft agar colony formation, expression of stemness-associated molecules, and tumorigenicity of xenograft in nude mice were used to evaluate the stemness of HLCSLCs. RESULTS: The current analysis revealed a significant upregulation of DNMT1 and downregulation of SOCS1 in HCC tumor tissues compared to adjacent normal liver tissues. Furthermore, patients exhibiting an elevated DNMT1 expression or a reduced SOCS1 expression had low survival. This study illustrated the pronounced expression and activity of DNMT1 in HLCSLCs, which effectively targeted the promoter region of SOCS1 and induced hypermethylation, consequently suppressing the expression of SOCS1. Notably, the stemness of HLCSLCs was reduced upon treatment with DNMT1 inhibitors in a concentration-dependent manner. Additionally, the overexpression of SOCS1 in HLCSLCs significantly mitigated their stemness. The knockdown of SOCS1 expression reversed the effect of DNMT1 inhibitor on the stemness of HLCSLCs. DNMT1 directly binds to the SOCS1 promoter. In vivo, DNMT1 inhibitors suppressed SOCS1 expression and inhibited the growth of xenograft. CONCLUSION: DNMT1 targets the promoter region of SOCS1, induces hypermethylation of its CpG islands, and silences its expression, thereby promoting the stemness of HLCSLCs.

2.
Environ Toxicol ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38924303

RESUMO

Osteosarcoma, a highly aggressive bone cancer, often develops resistance to conventional chemotherapeutics, leading to poor prognosis and survival rates. The malignancy and chemoresistance of osteosarcoma pose significant challenges in its treatment, highlighting the critical need for novel therapeutic approaches. Bruton's tyrosine kinase (BTK) plays a pivotal role in B-cell development and has been linked to various cancers, including breast, lung, and oral cancers, where it contributes to tumor growth and chemoresistance. Despite its established importance in these malignancies, the impact of BTK on osteosarcoma remains unexplored. Our study delves into the expression levels of BTK in osteosarcoma tissues by data from the GEO and TCGA database, revealing a marked increase in BTK expression compared with primary osteoblasts and a potential correlation with primary site progression. Through our investigations, we identified a subset of osteosarcoma cells, named cis-HOS, which exhibited resistance to cisplatin. These cells displayed characteristics of cancer stem cells (CSCs), demonstrated a higher angiogenesis effect, and had an increased migration ability. Notably, an upregulation of BTK was observed in these cisplatin-resistant cells. The application of ibrutinib, a BTK inhibitor, significantly mitigated these aggressive traits. Our study demonstrates that BTK plays a crucial role in conferring chemoresistance in osteosarcoma. The upregulation of BTK in cisplatin-resistant cells was effectively countered by ibrutinib. These findings underscore the potential of targeting BTK as an effective strategy to overcome chemoresistance in osteosarcoma treatment.

3.
Expert Rev Clin Immunol ; : 1-14, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38712535

RESUMO

INTRODUCTION: Vasculogenic mimicry (VM) alludes to the ability of cancer cells to organize on three-dimensional channel-like structures to obtain nutrients and oxygen. This mechanism confers an aggressive phenotype, metastatic potential, and resistance to chemotherapy resulting in a poor prognosis. Recent studies have been focused on the identification of microRNAs (miRNAs) that regulate the VM representing potential therapeutic targets in cancer. AREAS COVERED: An overview of the roles of miRNAs on VM development and their functional relationships with tumor microenvironment. The functions of cancer stem-like cells in VM, and resistance to therapy are also discussed. Moreover, the modulation of VM by natural compounds is explored. The clinical significance of deregulated miRNAs as potential therapeutic targets in tumors showing VM is further highlighted. EXPERT OPINION: The miRNAs are regulators of protein-encoding genes involved in VM; however, their specific expression signatures with clinical value in large cohorts of patients have not been established yet. We considered that genomic profiling of miRNAs could be useful to define some hallmarks of tumors such as stemness, drug resistance, and VM in cancer patients. However, additional studies are needed to establish the relevant role of miRNAs as effective therapeutic targets in tumors that have developed VM.

4.
Biochim Biophys Acta Rev Cancer ; 1879(3): 189104, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38701937

RESUMO

Uveal melanoma (UM) is the most common primary ocular tumor in the adult population. Even though these primary tumors are successfully treated in 90% of cases, almost 50% of patients ultimately develop metastasis, mainly in the liver, via hematological dissemination, with a median survival spanning from 6 to 12 months after diagnosis. In this context, chemotherapy regimens and molecular targeted therapies have demonstrated poor response rates and failed to improve survival. Among the multiple reasons for therapy failure, the presence of cancer stem-like cells (CSCs) represents the main cause of resistance to anticancer therapies. In the last few years, the existence of CSCs in UM has been demonstrated both in preclinical and clinical studies, and new molecular pathways and mechanisms have been described for this subpopulation of UM cells. Here, we will discuss the state of the art of CSC biology and their potential exploitation as therapeutic target in UM.


Assuntos
Melanoma , Células-Tronco Neoplásicas , Neoplasias Uveais , Neoplasias Uveais/patologia , Neoplasias Uveais/tratamento farmacológico , Neoplasias Uveais/metabolismo , Humanos , Melanoma/patologia , Melanoma/tratamento farmacológico , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Animais , Resistencia a Medicamentos Antineoplásicos , Terapia de Alvo Molecular , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia
5.
Cell Biosci ; 14(1): 32, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38462600

RESUMO

BACKGROUND: Cancer stem-like capacities are major factors contributing to unfavorable prognosis. However, the associated molecular mechanisms underlying cancer stem-like cells (CSCs) maintain remain unclear. This study aimed to investigate the role of the ubiquitin E3 ligase membrane-associated RING-CH 7 (MARCH7) in bladder cancer cell CSCs. METHODS: Male BALB/c nude mice aged 4-5 weeks were utilized to generate bladder xenograft model. The expression levels of MARCHs were checked in online databases and our collected bladder tumors by quantitative real-time PCR (q-PCR) and immunohistochemistry (IHC). Next, we evaluated the stem-like capacities of bladder cancer cells with knockdown or overexpression of MARCH7 by assessing their spheroid-forming ability and spheroid size. Additionally, we conducted proliferation, colony formation, and transwell assays to validate the effects of MARCH7 on bladder cancer CSCs. The detailed molecular mechanism of MARCH7/NOD1 was validated by immunoprecipitation, dual luciferase, and in vitro ubiquitination assays. Co-immunoprecipitation experiments revealed that nucleotide-binding oligomerization domain-containing 1 (NOD1) is a substrate of MARCH7. RESULTS: We found that MARCH7 interacts with NOD1, leading to the ubiquitin-proteasome degradation of NOD1. Furthermore, our data suggest that NOD1 significantly enhances stem-like capacities such as proliferation and invasion abilities. The overexpressed MARCH7 counteracts the effects of NOD1 on bladder cancer CSCs in both in vivo and in vitro models. CONCLUSION: Our findings indicate that MARCH7 functions as a tumor suppressor and inhibits the stem-like capacities of bladder tumor cells by promoting the ubiquitin-proteasome degradation of NOD1. Targeting the MARCH7/NOD1 pathway could be a promising therapeutic strategy for bladder cancer patients.

6.
Methods Mol Biol ; 2777: 99-122, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38478339

RESUMO

Cancer stem-like cells (CSC) are a major contributing factor to chemoresistance, tumor recurrence, and poor survival outcomes in patients across cancer types. Signaling from non-tumor cells in the tumor microenvironment (TME) enriches for and supports CSC. This complex cell-cell signaling in the heterogeneous TME presents a challenge for patient survival; however, it also presents an opportunity to develop new targeted therapies that can inhibit survival of CSC. In this chapter, we report a multicellular tumoroid model which can be used to investigate the interactions between cancer cells and non-tumor cells in the TME to better understand the contribution of various cell types to cancer cell phenotypes, as well as the underlying mechanisms involved. The following methods allow for each cell type to be distinguished using FACS and studied individually. Gene expression can be analyzed for cancer cells, as well as the other non-tumor cells using qPCR following sorting. The response to chemotherapeutic agents and expression of stem markers can be determined for cancer cells using flow cytometry, excluding the other cell types to get an accurate view of the cancer cells. Furthermore, the viability of non-tumor cells can be analyzed as well to determine if there are cytotoxic effects of the drugs on non-tumor cells. Thus, the multicellular tumoroid model will reveal the interactions between the CSC and non-tumor cells in the heterogenous TME, resulting in discoveries in the fields of cancer biology, novel targeted therapies, and personalized drug screening for precision medicine.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Microambiente Tumoral , Neoplasias/genética , Neoplasias/patologia , Transdução de Sinais , Antineoplásicos/farmacologia , Comunicação Celular , Células-Tronco Neoplásicas/patologia
7.
World J Clin Oncol ; 15(2): 317-328, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38455137

RESUMO

BACKGROUND: Limonin is one of the most abundant active ingredients of Tetradium ruticarpum. It exerts antitumor effects on several kinds of cancer cells. However, whether limonin exerts antitumor effects on colorectal cancer (CRC) cells and cancer stem-like cells (CSCs), a subpopulation responsible for a poor prognosis, is unclear. AIM: To evaluate the effects of limonin on CSCs derived from CRC cells. METHODS: CSCs were collected by culturing CRC cells in serum-free medium. The cytotoxicity of limonin against CSCs and parental cells (PCs) was determined by cholecystokinin octapeptide-8 assay. The effects of limonin on stemness were detected by measuring stemness hallmarks and sphere formation ability. RESULTS: As expected, limonin exerted inhibitory effects on CRC cell behaviors, including cell proliferation, migration, invasion, colony formation and tumor formation in soft agar. A relatively low concentration of limonin decreased the expression stemness hallmarks, including Nanog and ß-catenin, the proportion of aldehyde dehydrogenase 1-positive CSCs, and the sphere formation rate, indicating that limonin inhibits stemness without presenting cytotoxicity. Additionally, limonin treatment inhibited invasion and tumor formation in soft agar and in nude mice. Moreover, limonin treatment significantly inhibited the phosphorylation of STAT3 at Y705 but not S727 and did not affect total STAT3 expression. Inhibition of Nanog and ß-catenin expression and sphere formation by limonin was obviously reversed by pretreatment with 2 µmol/L colievlin. CONCLUSION: Taken together, these results indicate that limonin is a promising compound that targets CSCs and could be used to combat CRC recurrence and metastasis.

8.
Mol Cancer ; 23(1): 60, 2024 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-38520019

RESUMO

BACKGROUND: Cancer stem-like cell is a key barrier for therapeutic resistance and metastasis in various cancers, including breast cancer, yet the underlying mechanisms are still elusive. Through a genome-wide lncRNA expression profiling, we identified that LINC00115 is robustly upregulated in chemoresistant breast cancer stem-like cells (BCSCs). METHODS: LncRNA microarray assay was performed to document abundance changes of lncRNAs in paclitaxel (PTX)-resistant MDA-MB-231 BCSC (ALDH+) and non-BCSC (ALDH-). RNA pull-down and RNA immunoprecipitation (RIP) assays were performed to determine the binding proteins of LINC00115. The clinical significance of the LINC00115 pathway was examined in TNBC metastatic lymph node tissues. The biological function of LINC00115 was investigated through gain- and loss-of-function studies. The molecular mechanism was explored through RNA sequencing, mass spectrometry, and the CRISPR/Cas9-knockout system. The therapeutic potential of LINC00115 was examined through xenograft animal models. RESULTS: LINC00115 functions as a scaffold lncRNA to link SETDB1 and PLK3, leading to enhanced SETDB1 methylation of PLK3 at both K106 and K200 in drug-resistant BCSC. PLK3 methylation decreases PLK3 phosphorylation of HIF1α and thereby increases HIF1α stability. HIF1α, in turn, upregulates ALKBH5 to reduce m6A modification of LINC00115, resulting in attenuated degradation of YTHDF2-dependent m6A-modified RNA and enhanced LINC00115 stability. Thus, this positive feedback loop provokes BCSC phenotypes and enhances chemoresistance and metastasis in triple-negative breast cancer. SETDB1 inhibitor TTD-IN with LINC00115 ASO sensitizes PTX-resistant cell response to chemotherapy in a xenograft animal model. Correlative expression of LINC00115, methylation PLK3, SETDB1, and HIF1α are prognostic for clinical triple-negative breast cancers. CONCLUSIONS: Our findings uncover LINC00115 as a critical regulator of BCSC and highlight targeting LINC00115 and SETDB1 as a potential therapeutic strategy for chemotherapeutic resistant breast cancer.


Assuntos
RNA Longo não Codificante , Neoplasias de Mama Triplo Negativas , Animais , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Linhagem Celular Tumoral , Mama/metabolismo , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Paclitaxel/farmacologia , Modelos Animais de Doenças , Células-Tronco Neoplásicas/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Quinases Polo-Like , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo
9.
Cell Signal ; 118: 111126, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38453126

RESUMO

Cancer stem-like cells (CSLCs) and anoikis resistance play crucial roles in the metastasis of cancers. However, it remains unclear whether CSLCs are related to anoikis resistance in intrahepatic cholangiocarcinoma (ICC). Here we identified a group of stemness-related anoikis genes (SRAGs) via bioinformatic analysis of public data. Accordingly, a novel anoikis-related classification was established and it divided ICC into C1 and C2 type. Different type ICC displayed distinct prognosis, molecular as well immune characteristics. Furthermore, we found one key SRAGs via several machine learning algorithms. HK2 was up-regulated in tumor-repopulating cells (TRCs) of ICC, a kind of CSLCs with a potent resistance to anoikis. Its up-regulation may be caused by the activation of MTORC1 signaling in ICC-TRCs. And inhibition of HK2 significantly increased anoikis and decreased migration as well invasion in ICC-TRCs. Our studies provide an insight into the molecular mechanism underlying the resistance of ICC-TRCs to anoikis and enhance the evidences for targeting HK2 in ICC.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Anoikis , Linhagem Celular Tumoral , Colangiocarcinoma/genética , Ductos Biliares Intra-Hepáticos/patologia , Neoplasias dos Ductos Biliares/genética , Proliferação de Células/genética
10.
J Biomol Struct Dyn ; : 1-16, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38345058

RESUMO

Gamma secretase (GS) is an important therapeutic target in anticancer drug discovery. Increased GS activity activates notch signaling pathway which is associated with cancer stemness and drug resistance in cancer cells. A total of 69,075 natural and their derivative compounds were screened to identify the lead compound on the basis of in silico GS catalytic domain binding potential and in vitro selective anticancer efficacy. STOCK1N-23234 showed higher dock score (-11.82) compared to DAPT (-9.2) in molecular docking experiment and formed hydrogen bond with the key amino acid (Asp385) involve in catalysis process. Molecular dynamics (MD) simulation parameters (RMSD, RMSF, Rg, SASA and hydrogen bond formation) revealed that the STOTCK1N-23234 formed structurally and energetically stable complex with the GS catalytic domain with lower binding energy (-22.79 kcal/mol) compared to DAPT (-16.22 kcal/mol). STOCK1N-23234 showed better toxicity (up to 60%) against colon and breast cancer cells (HCT-116 and MDA-MB-453) at 1-70 µM concentration. Interestingly, STOCK1N-23234 did not showed cytotoxicity against human normal breast cells (MCF-10A). STOCK1N-23234 treatment significantly decreased sphere formation, notch promoter activity, and transcription of notch target genes (Hes-1 and Hey-1) in HCT-116 cells derived colonosphere. Confocal microscopy revealed that STOTCK1N-23234 treatment at test concentration induced apoptosis related morphological changes, reduced mitochondria membrane potential and increased reactive oxygen species production in HCT-116 cells compared to non-treated cells. In conclusion, STOCK1N-23234 is a novel lead natural anticancer compound which requires in depth validation in cancer preclinical models.Communicated by Ramaswamy H. Sarma.

11.
Noncoding RNA ; 10(1)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38392969

RESUMO

Tumors have high requirements in terms of nutrients and oxygen. Angiogenesis is the classical mechanism for vessel formation. Tumoral vascularization has the function of nourishing the cancer cells to support tumor growth. Vasculogenic mimicry, a novel intratumoral microcirculation system, alludes to the ability of cancer cells to organize in three-dimensional (3D) channel-like architectures. It also supplies the tumors with nutrients and oxygen. Both mechanisms operate in a coordinated way; however, their functions in breast cancer stem-like cells and their regulation by microRNAs remain elusive. In the present study, we investigated the functional role of microRNA-204 (miR-204) on angiogenesis and vasculogenic mimicry in breast cancer stem-like cells. Using flow cytometry assays, we found that 86.1% of MDA-MB-231 and 92% of Hs-578t breast cancer cells showed the CD44+/CD24- immunophenotype representative of cancer stem-like cells (CSCs). The MDA-MB-231 subpopulation of CSCs exhibited the ability to form mammospheres, as expected. Interestingly, we found that the restoration of miR-204 expression in CSCs significantly inhibited the number and size of the mammospheres. Moreover, we found that MDA-MB-231 and Hs-578t CSCs efficiently undergo angiogenesis and hypoxia-induced vasculogenic mimicry in vitro. The transfection of precursor miR-204 in both CSCs was able to impair the angiogenesis in the HUVEC cell model, which was observed as a diminution in the number of polygons and sprouting cells. Remarkably, miR-204 mimics also resulted in the inhibition of vasculogenic mimicry formation in MDA-MB-231 and Hs-578t CSCs, with a significant reduction in the number of channel-like structures and branch points. Mechanistically, the effects of miR-204 were associated with a diminution of pro-angiogenic VEGFA and ß-catenin protein levels. In conclusion, our findings indicated that miR-204 abrogates the angiogenesis and vasculogenic mimicry development in breast cancer stem-like cells, suggesting that it could be a potential tool for breast cancer intervention based on microRNA replacement therapies.

12.
Genes Dis ; 11(3): 101043, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38292177

RESUMO

There are few tumor cell subpopulations with stem cell characteristics in tumor tissue, defined as cancer stem cells (CSCs) or cancer stem-like cells (CSLCs), which can reconstruct neoplasms with malignant biological behaviors such as invasiveness via self-renewal and unlimited generation. The microenvironment that CSCs depend on consists of various cellular components and corresponding medium components. Among these factors existing at a variety of levels and forms, cytokine networks and numerous signal pathways play an important role in signaling transduction. These factors promote or maintain cancer cell stemness, and participate in cancer recurrence, metastasis, and resistance. This review aims to summarize the recent molecular data concerning the multilayered relationship between CSCs and CSC-favorable microenvironments. We also discuss the therapeutic implications of targeting this synergistic interplay, hoping to give an insight into targeting cancer cell stemness for tumor therapy and prognosis.

13.
Hum Cell ; 37(1): 323-336, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37759147

RESUMO

The development of efficient treatments for laryngeal squamous cell carcinoma (LSCC) is hindered by the lack of applicable tumor cell lines and animal models of the disease, especially those related to cancer stem-like cells (CSCs). CSCs play critical roles in tumor propagation and pathogenesis whereas no CSCs lines have been developed to date. In this study, we establish an LSCC cell line (FD-LS-6) from primary LSCC tumor tissue (not experienced single-cell cloning) and adapted a culturing condition for the expansion of potential stem cells (EPSCs) to isolate CSCs from FD-LS-6. We successfully derived novel CSCs and named them as LSCC sphere-forming cells (LSCSCs) which were subsequently characterized for their CSC properties. We showed that LSCSCs shared many properties of CSCs, including CSC marker, robust self-renewal capacity, tumorigenesis ability, potential to generate other cell types such as adipocytes and osteoblasts, and resistance to chemotherapy. Compared to parental cells, LSCSCs were significantly more potent in forming tumors in vivo in mice and more resistant to chemotherapy. LSCSCs have higher expressions of epithelial-mesenchymal transition proteins and chemotherapy resistance factors, and exhibit an activated COX2/PEG2 signaling pathway. Altogether, our work establishes the first CSCs of LSCC (FD-LS-6) and provides a tool to study tumorigenesis and metastasis of LSCC and help the development of anticancer therapies.


Assuntos
Transição Epitelial-Mesenquimal , Neoplasias de Cabeça e Pescoço , Camundongos , Animais , Carcinoma de Células Escamosas de Cabeça e Pescoço , Linhagem Celular Tumoral , Neoplasias de Cabeça e Pescoço/patologia , Carcinogênese/patologia , Células-Tronco Neoplásicas/patologia , Regulação Neoplásica da Expressão Gênica , Proliferação de Células
14.
Cancers (Basel) ; 15(23)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38067224

RESUMO

Very Small Embryonic-like Stem Cells (VSELSCs) and Very Small Cancer Stem Cells (VSCSCs) are fields of intensive research. Although the presence in vitro of VSELSC and VSCSC cellular stage analogs appear probable, it has yet to be published. Utilizing established human cell cultures with varying populations of primitive cells, stained with CD markers specific to primitive stages, in addition to a fluorescent DNA dye, and following histochemical processing, we have developed a cytological method for detecting Very Small Leukemic Stem-like Cells (VSLSLCs), Very Small Cancer Stem-like Cells (VSCSLCs), and VSELSCs. This detection provides an opportunity to advance research in these areas.

15.
Comput Struct Biotechnol J ; 21: 5174-5185, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37920816

RESUMO

The senescence-associated secretory phenotype (SASP) is closely associated with the tumorigenesis and progression of intrahepatic cholangiocarcinoma (ICC). However, it remains unclear its relation to stemness of ICC. In the study, the stemness indices of ICC were calculated using one-class linear regression (OCLR) and single-sample gene set enrichment analysis (ssGSEA) algorithms. A total of 14 senescence-related stemness genes (SRSGs) were identified using Pearson correlation analysis in ICC. Subsequently, a SRSGs-related classification was established using a consensus clustering for ICC. Different types of ICC exhibit distinct prognosis, immunity, metabolisms, and oncogenic signatures. Additionally, we constructed a risk score model for ICC using principal component analysis (PCA). The risk score was positively correlated with stemness, immune infiltration, metabolisms and oncogenic signatures, but negatively with prognosis in ICC. Patients with a high risk score may respond well to immunotherapy. Furthermore, we employed 3D fibrin gels to select tumor-repopulating cells (TRC) with stemness features. We found that HELLS, belonging to the 14 SRSGs, was up-regulated in ICC-TRC. And silencing HELLS significantly reduced the colony size, inhibited migration and invasion, and attenuated SASP in ICC-TRC. In summary, we provided a novel classification and risk score for ICC and uncovered a molecular mechanism via which CSLCs could obtain an active SASP.

16.
Metabolites ; 13(11)2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37999228

RESUMO

Cancer stem cells (CSCs) are considered to play a key role in the development and progression of pancreatic ductal adenocarcinoma (PDAC). However, little is known about lipid metabolism reprogramming in PDAC CSCs. Here, we assigned stemness indices, which were used to describe and quantify CSCs, to every patient from the Cancer Genome Atlas (TCGA-PAAD) database and observed differences in lipid metabolism between patients with high and low stemness indices. Then, tumor-repopulating cells (TRCs) cultured in soft 3D (three-dimensional) fibrin gels were demonstrated to be an available PDAC cancer stem-like cell (CSLCs) model. Comprehensive transcriptome and lipidomic analysis results suggested that fatty acid metabolism, glycerophospholipid metabolism, and, especially, the sphingolipid metabolism pathway were mostly associated with CSLCs properties. SPHK1 (sphingosine kinases 1), one of the genes involved in sphingolipid metabolism and encoding the key enzyme to catalyze sphingosine to generate S1P (sphingosine-1-phosphate), was identified to be the key gene in promoting the stemness of PDAC. In summary, we explored the characteristics of lipid metabolism both in patients with high stemness indices and in novel CSLCs models, and unraveled a molecular mechanism via which sphingolipid metabolism maintained tumor stemness. These findings may contribute to the development of a strategy for targeting lipid metabolism to inhibit CSCs in PDAC treatment.

17.
Front Cell Dev Biol ; 11: 1250215, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38020927

RESUMO

Cholangiocarcinoma is a malignancy of the bile ducts that is driven by activities of cancer stem-like cells and characterized by a heterogeneous tumor microenvironment. To better understand the transcriptional profiles of cancer stem-like cells and dynamics in the tumor microenvironment during the progression of cholangiocarcinoma, we performed single-cell RNA analysis on cells collected from three different timepoints of tumorigenesis in a YAP/AKT mouse model. Bulk RNA sequencing data from TCGA (The Cancer Genome Atlas program) and ICGC cohorts were used to verify and support the finding. In vitro and in vivo experiments were performed to assess the stemness of cancer stem-like cells. We identified Tm4sf1high malignant cells as cancer stem-like cells. Across timepoints of cholangiocarcinoma formation in YAP/AKT mice, we found dynamic change in cancer stem-like cell/stromal/immune cell composition. Nevertheless, the dynamic interaction among cancer stem-like cells, immune cells, and stromal cells at different timepoints was elaborated. Collectively, these data serve as a useful resource for better understanding cancer stem-like cell and malignant cell heterogeneity, stromal cell remodeling, and immune cell reprogramming. It also sheds new light on transcriptomic dynamics during cholangiocarcinoma progression at single-cell resolution.

18.
BMC Cancer ; 23(1): 935, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37789316

RESUMO

BACKGROUND: Leucine-rich pentatricopeptide repeat containing (LRPPRC) is a potential oncogene in multiple tumor types, including lung adenocarcinoma, esophageal squamous cell carcinoma and gastric cancer. LRPPRC exerts its tumor-promoting effects mainly by regulating mitochondrial homeostasis and inducing oxidative stress. However, the exact role and mechanisms by which LRPPRC acts in osteosarcoma and osteosarcoma-derived cancer stem-like cells (CSCs), which potentially critically contribute to recurrence, metastasis and chemoresistance, are still largely unclear. METHODS: LRPPRC level in osteosarcoma cells and CSCs were detected by western blot. Effects of LRPPRC on CSCs were accessed after LRPPRC knockdown by introducing lentivirus containing shRNA targeting to LRPPRC mRNA. RESULTS: we found that LRPPRC was highly expressed in several osteosarcoma cell lines and that LRPPRC knockdown inhibited malignant behaviors, including proliferation, invasion, colony formation and tumor formation, in MG63 and U2OS cells. Enriched CSCs derived from MG63 and U2OS cells presented upregulated LRPPRC levels compared to parental cells (PCs), and LRPPRC knockdown markedly decreased the sphere-forming capacity. These findings demonstrate that LRPPRC knockdown decreased stemness in CSCs. Consistent with a previous report, LRPPRC knockdown decreased the expression levels of FOXM1 and its downstream target genes, including PRDX3, MnSOD and catalase, which are responsible for scavenging reactive oxygen species (ROS). Expectedly, LRPPRC knockdown increased the accumulation of ROS in osteosarcoma and osteosarcoma-derived CSCs under hypoxic conditions due to the decrease in ROS scavenging proteins. Moreover, LRPPRC knockdown sensitized osteosarcomas and CSCs against carboplatin, a ROS-inducing chemoagent, and promoted apoptosis. Furthermore, LRPPRC knockdown significantly decreased the mitochondrial membrane potential, disturbed mitochondrial homeostasis and led to mitochondrial dysfunction. CONCLUSION: Taken together, these findings indicated that LRPPRC exerts critical roles in regulating mitochondrial homeostasis, mitochondrial function and tumorigenesis in osteosarcomas and osteosarcoma-derived CSCs. This suggests that LRPPRC might be a promising therapeutic target for osteosarcomas.


Assuntos
Neoplasias Ósseas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Neoplasias Pulmonares , Osteossarcoma , Humanos , Espécies Reativas de Oxigênio/metabolismo , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/patologia , Mitocôndrias/metabolismo , Osteossarcoma/patologia , Neoplasias Pulmonares/patologia , Neoplasias Ósseas/patologia , Homeostase , Linhagem Celular Tumoral , Proliferação de Células , Células-Tronco Neoplásicas/metabolismo , Proteínas de Neoplasias/genética
19.
Cells ; 12(18)2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37759448

RESUMO

Emerging evidence indicates that intracellular calcium (Ca2+) levels and their regulatory proteins play essential roles in normal stem cell proliferation and differentiation. Cancer stem-like cells (CSCs) are subpopulations of cancer cells that retain characteristics similar to stem cells and play an essential role in cancer progression. Recent studies have reported that the Orai3 calcium channel plays an oncogenic role in human cancer. However, its role in CSCs remains underexplored. In this study, we explored the effects of Orai3 in the progression and stemness of oral/oropharyngeal squamous cell carcinoma (OSCC). During the course of OSCC progression, the expression of Orai3 exhibited a stepwise augmentation. Notably, Orai3 was highly enriched in CSC populations of OSCC. Ectopic Orai3 expression in non-tumorigenic immortalized oral epithelial cells increased the intracellular Ca2+ levels, acquiring malignant growth and CSC properties. Conversely, silencing of the endogenous Orai3 in OSCC cells suppressed the CSC phenotype, indicating a pivotal role of Orai3 in CSC regulation. Moreover, Orai3 markedly increased the expression of inhibitor of DNA binding 1 (ID1), a stemness transcription factor. Orai3 and ID1 exhibited elevated expression within CSCs compared to their non-CSC counterparts, implying the functional importance of the Orai3/ID1 axis in CSC regulation. Furthermore, suppression of ID1 abrogated the CSC phenotype in the cell with ectopic Orai3 overexpression and OSCC. Our study reveals that Orai3 is a novel functional CSC regulator in OSCC and further suggests that Orai3 plays an oncogenic role in OSCC by promoting cancer stemness via ID1 upregulation.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Neoplasias Orofaríngeas , Humanos , Neoplasias Bucais/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço , Canais de Cálcio , Hiperplasia , Proteína 1 Inibidora de Diferenciação
20.
Explor Target Antitumor Ther ; 4(4): 630-656, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37720349

RESUMO

Cancer stem-like cells (CSCs) identified by self-renewal ability and tumor-initiating potential are responsible for tumor recurrence and metastasis in many cancers. Conventional chemotherapy fails to eradicate CSCs that hold a state of dormancy and possess multi-drug resistance. Spurred by the progress of nanotechnology for drug delivery and biomedical applications, nanomedicine has been increasingly developed to tackle stemness-associated chemotherapeutic resistance for cancer therapy. This review focuses on advances in nanomedicine-mediated therapeutic strategies to overcome chemoresistance by specifically targeting CSCs, the combination of chemotherapeutics with chemopotentiators, and programmable controlled drug release. Perspectives from materials and formulations at the nano-scales are specifically surveyed. Future opportunities and challenges are also discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...