Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 709
Filtrar
1.
Cell ; 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39383862

RESUMO

Aberrant expression of repeat RNAs in pancreatic ductal adenocarcinoma (PDAC) mimics viral-like responses with implications on tumor cell state and the response of the surrounding microenvironment. To better understand the relationship of repeat RNAs in human PDAC, we performed spatial molecular imaging at single-cell resolution in 46 primary tumors, revealing correlations of high repeat RNA expression with alterations in epithelial state in PDAC cells and myofibroblast phenotype in cancer-associated fibroblasts (CAFs). This loss of cellular identity is observed with dosing of extracellular vesicles (EVs) and individual repeat RNAs of PDAC and CAF cell culture models pointing to cell-cell intercommunication of these viral-like elements. Differences in PDAC and CAF responses are driven by distinct innate immune signaling through interferon regulatory factor 3 (IRF3). The cell-context-specific viral-like responses to repeat RNAs provide a mechanism for modulation of cellular plasticity in diverse cell types in the PDAC microenvironment.

2.
Discov Oncol ; 15(1): 431, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39259234

RESUMO

BACKGROUND: Colorectal cancer (CRC) is the third most prevalent cancer worldwide, with the tumor microenvironment (TME) playing a crucial role in its progression. Aggregated autophagy (AA) has been recognized as a factor that exacerbates CRC progression. This study aims to study the relationship between aggregated autophagy and CRC using single-cell sequencing techniques. Our goal is to explain the heterogeneity of the TME and to explore the potential for targeted personalized therapies. OBJECTIVE: To study the role of AA in CRC, we employed single-cell sequencing to discern distinct subpopulations within the TME. These subpopulations were characterized by their autophagy levels and further analyzed to identify specific biological processes and marker genes. RESULTS: Our study revealed significant correlations between immune factors and both clinical and biological characteristics of the tumor microenvironment (TME), particularly in cells expressing TUBA1B and HSP90AA1. These immune factors were associated with T cell depletion, a reduction in protective factors, diminished efficacy of immune checkpoint blockade (ICB), and enhanced migration of cancer-associated fibroblasts (CAFs), resulting in pronounced inflammation. In vitro experiments showd that silencing TUBA1B and HSP90AA1 using siRNA (Si-TUBA1B and Si-HSP90AA1) significantly reduced the expression of IL-6, IL-7, CXCL1, and CXCL2 and inhibition of tumor cell growth in Caco-2 and Colo-205 cell lines. This reduction led to a substantial alleviation of chronic inflammation and highlighted the heterogeneous nature of the TME. CONCLUSION: This study marks an initial foray into understanding how AA-associated processes may potentiate the TME and weaken immune function. Our findings provide insights into the complex dynamics of the TME and highlight potential targets for therapeutic intervention, suggesting a key role for AA in the advancement of colorectal cancer.

3.
Cancer Lett ; 604: 217244, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39260668

RESUMO

Cancer-associated fibroblasts (CAFs) are activated fibroblasts that play a role in numerous malignant phenotypes, including hyperproliferation, invasion, and metastasis. These phenotypes correlate with activity of the Hippo pathway oncoprotein, Yes-associated protein-1 (YAP1), and its paralog, transcriptional coactivator with PDZ-binding motif (TAZ). YAP1/TAZ are normally involved in organ growth, under the regulation of various kinases and upon phosphorylation, are retained in the cytoplasm by chaperone proteins, leading to their proteasomal degradation. In CAFs and tumor cells, however, a lack of YAP1 phosphorylation results in its translocation to the nucleus, binding to TEAD transcription factors, and activation of mitogenic pathways. In this review we summarize the literature discussing the central role of YAP1 in CAF activation, the upstream cues that promote YAP1-mediated CAF activation and extracellular matrix remodeling, and how CAFs mediate tumor-stroma crosstalk to support progression, invasion and metastasis in various cancer models. We further highlight YAP1+CAFs functions in modulating an immunosuppressive tumor microenvironment and propose evaluation of several YAP1 targets regarding their role in regulating intra-tumoral immune landscapes. Finally, we propose that co-administration of YAP1- targeted therapies with immune checkpoint inhibitors can improve therapeutic outcomes in patients with advanced tumors.

4.
J Biomed Sci ; 31(1): 90, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39261905

RESUMO

BACKGROUND: Stromal fibrosis is highly associated with therapeutic resistance and poor survival in esophageal squamous cell carcinoma (ESCC) patients. Low expression of plasma gelsolin (pGSN), a serum abundant protein, has been found to correlate with inflammation and fibrosis. Here, we evaluated pGSN expression in patients with different stages of cancer and therapeutic responses, and delineated the molecular mechanisms involved to gain insight into therapeutic strategies for ESCC. METHODS: Circulating pGSN level in ESCC patients was determined by enzyme-linked immunosorbent assay analysis, and the tissue microarray of tumors was analyzed by immunohistochemistry staining. Cell-based studies were performed to investigate cancer behaviors and molecular mechanisms, and mouse models were used to examine the pGSN-induced tumor suppressive effects in vivo. RESULTS: Circulating pGSN expression is distinctively decreased during ESCC progression, and low pGSN expression correlates with poor therapeutic responses and poor survival. Methylation-specific PCR analysis confirmed that decreased pGSN expression is partly attributed to the hypermethylation of the GSN promoter, the gene encoding pGSN. Importantly, cell-based immunoprecipitation and protein stability assays demonstrated that pGSN competes with oncogenic tenascin-C (TNC) for the binding and degradation of integrin αvß3, revealing that decreased pGSN expression leads to the promotion of oncogenic signaling transduction in cancer cells and fibroblasts. Furthermore, overexpression of pGSN caused the attenuation of TNC expression and inactivation of cancer-associated fibroblast (CAF), thereby leading to tumor growth inhibition in mice. CONCLUSIONS: Our results demonstrated that GSN methylation causes decreased secretion of pGSN, leading to integrin dysregulation, oncogenic TNC activation, and CAF formation. These findings highlight the role of pGSN in therapeutic resistance and the fibrotic tumor microenvironment of ESCC.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Gelsolina , Microambiente Tumoral , Humanos , Carcinoma de Células Escamosas do Esôfago/metabolismo , Gelsolina/genética , Gelsolina/metabolismo , Camundongos , Neoplasias Esofágicas/metabolismo , Animais , Masculino , Feminino , Quimiorradioterapia/métodos , Pessoa de Meia-Idade , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Fibrose
5.
Pathol Res Pract ; 262: 155576, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39232286

RESUMO

Cancer-associated fibroblasts are the most important cellular component of the tumor microenvironment, controlling cancer progression and therapeutic response. These cells in the tumor microenvironment regulate tumor progression and development as oncogenic or tumor suppressor agents. However, the mechanisms by which CAFs communicate with cancer cells remain to investigate. Here, we review evidence that extracellular vesicles, particularly exosomes, serve as vehicles for the intercellular transfer of bioactive cargos, notably microRNAs and long non-coding RNAs, from CAFs to cancer cells. We try to highlight molecular pathways of non-coding RNAs and the interaction among these molecules. Together, these findings elucidate a critical exosome-based communication axis by which CAFs create mostly a supportive pro-tumorigenic microenvironment and highlight therapeutic opportunities for disrupting this intercellular crosstalk.


Assuntos
Fibroblastos Associados a Câncer , Progressão da Doença , Exossomos , Neoplasias , Microambiente Tumoral , Humanos , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Exossomos/metabolismo , Exossomos/genética , Neoplasias/patologia , Neoplasias/genética , Neoplasias/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Animais , Comunicação Celular , MicroRNAs/genética , MicroRNAs/metabolismo , RNA não Traduzido/genética , RNA não Traduzido/metabolismo
6.
Adv Healthc Mater ; : e2402391, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39233539

RESUMO

Peritumoral fibrosis is known to promote cancer progression and confer treatment resistance in various solid tumors. Consequently, developing accurate cancer research and drug screening models that replicate the structure and function of a fibrosis-surrounded tumor mass is imperative. Previous studies have shown that self-assembly three-dimensional (3D) co-cultures primarily produce cancer-encapsulated fibrosis or maintain a fibrosis-encapsulated tumor mass for a short period, which is inadequate to replicate the function of fibrosis, particularly as a physical barrier. To address this limitation, a multi-layer spheroid formation method is developed to create a fibrosis-encapsulated tumoroid (FET) structure that maintains structural stability for up to 14 days. FETs exhibited faster tumor growth, higher expression of immunosuppressive cytokines, and equal or greater resistance to anticancer drugs compared to their parental tumoroids. Additionally, FETs serve as a versatile model for traditional cancer research, enabling the study of exosomal miRNA and gene functions, as well as for mechanobiology research when combined with alginate hydrogel. Our findings suggest that the FET represents an advanced model that more accurately mimics solid cancer tissue with peritumoral fibrosis. It may show potential superiority over self-assembly-based 3D co-cultures for cancer research and drug screening, and holds promise for personalized drug selection in cancer treatment.

7.
Int J Cancer ; 2024 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-39244734

RESUMO

Cancer-associated fibroblasts (CAFs) contribute to the progression of lung cancer. Four and a half LIM domain protein-2 (FHL2) is a component of focal adhesion structures. We analyzed the function of FHL2 expressed by CAFs in lung adenocarcinoma. Expression of FHL2 in fibroblast subtypes was investigated using database of single-cell RNA-sequencing of lung cancer tissue. The role of FHL2 in the proliferation and migration of CAFs was assessed. The effects of FHL2 knockout on the migration and invasion of human lung adenocarcinoma cells and tube formation of endothelial cells induced by CAF-conditioned medium (CM) were evaluated. The effect of FHL2 knockout in CAFs on metastasis was determined using a murine orthotopic lung cancer model. The prognostic significance of stromal FHL2 was assessed by immunohistochemistry in human adenocarcinoma specimens. FHL2 is highly expressed in myofibroblasts in cancer tissue. TGF-ß1 upregulated FHL2 expression in CAFs and FHL2 knockdown attenuated CAF proliferation. FHL2 knockout reduced CAF induced migration of A110L and H23 human lung adenocarcinoma cell lines, and the induction of tube formation of endothelial cells. FHL2 knockout reduced CAF-induced metastasis of lung adenocarcinomas in an orthotopic model in vivo. The concentration of Osteopontin (OPN) in CM from CAF was downregulated by FHL2 knockout. siRNA silencing and antibody blocking of OPN reduced the pro-migratory effect of CM from CAF on lung cancer cells. In resected lung adenocarcinoma specimens, positive stromal FHL2 expression was significantly associated with higher microvascular density and worse prognosis. In conclusion, FHL2 expression by CAFs enhances the progression of lung adenocarcinoma by promoting angiogenesis and metastasis.

8.
J Cancer Res Clin Oncol ; 150(9): 421, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39287633

RESUMO

PURPOSE: Cancer-associated fibroblasts (CAFs) are one of the most critical cells in the tumor environment, with crucial roles in cancer progression and metastasis. Due to Field-Effect phenomena (also called field cancerization), the adjacent cavity side area of the margin is histologically normal, but it has been entered into neoplastic transformation due to MCT4 and MCT1 pathways activated by H2O2/ROS oxidative stress agents secreted by CAF in adjacent tumor bed microenvironment. This paper specifically focused on the role of cancer-associated fibroblast in breast tumor beds and its correlation with the presence of scattered cancer cells or onco-protein-activated cells (may be high risk but not completely transformed cancer cells) in the cavity side margins. METHODS: In this study, the glycolytic behavior of non-tumoral cavity side margins was examined using carbon nanotube-based electrochemical biosensors integrated into a cancer diagnostic probe. This method enabled the detection of CAF accumulation sites in non-cancerous neighboring tissues of tumors, with a correlation to CAF concentration. Subsequently, RT-PCR, fluorescent, histopathological, and invasion assays were conducted on hyperglycolytic lesions to explore any correlation between the abundance of CAFs and the electrochemical responses of the non-cancerous tissues surrounding the tumor, as well as their neoplastic potential. RESULTS: We observed overexpression of cancer-associated transcriptomes as well as the presence and hyperactivation of CAFs in cavity-side regions in which glycolytic metabolism was recorded, independent of the histopathological state of the lesion. At mean 70.4%, 66.7%, 70.4%, and 44.5% increments were observed in GLUT-1, MMP-2, N-cadherin, and MMP-9 transcriptomes by highly glycolytic but histologically cancer-free expression samples in comparison with negative controls (histologically non-cancer lesions with low glycolytic behavior). CONCLUSION: The presence of CAFs is correlated with the presence of high glycolytic metabolism in the cavity margin lesion, high ROS level in the lesion, and finally aggressive cancer-associated proteins (such as MMP2, …) in the margin while these metabolomes, molecules, and proteins are absent in the margins with negatively scored CDP response and low ROS level. So, it seems that when we observe CAFs in glycolytic lesions with high ROS levels, some high-risk epithelial breast cells may exist while no histological trace of cancer cells was observed. Further research on CAFs could provide valuable insights into the local recurrence of malignant breast diseases. Hence, real-time sensors can be used to detect and investigate CAFs in the non-tumoral regions surrounding tumors in cancer patients, potentially aiding in the prevention of cancer recurrence.


Assuntos
Neoplasias da Mama , Fibroblastos Associados a Câncer , Humanos , Feminino , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Microambiente Tumoral , Glicólise , Margens de Excisão
9.
Biomed Eng Comput Biol ; 15: 11795972241274024, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39221174

RESUMO

Cancer-associated fibroblasts (CAFs) play critical roles in the metastasis and therapeutic response of high-grade serous ovarian cancer (HGSC). Our study intended to select HGSC patients with unfavorable prognoses and therapeutic responses based on CAF-enriched prognostic genes. The bulk RNA and single-cell RNA sequencing (scRNA-seq) data of tumor tissues were collected from the TCGA and GEO databases. The infiltrated levels of immune and stromal cells were estimated by multiple immune deconvolution algorithms and verified through immunohistochemical analysis. The univariate Cox regression analyses were used to identify prognostic genes. Gene Set Enrichment Analysis (GSEA) was conducted to annotate enriched gene sets. The Genomics of Drug Sensitivity in Cancer (GDSC) database was used to explore potential alternative drugs. We found the infiltered levels of CAFs were remarkedly elevated in advanced and metastatic HGSC tissues and identified hundreds of genes specifically enriched in CAFs. Then we selected 6 CAF-enriched prognostic genes based on which HGSC patients were reclassified into 2 subclusters with discrepancy prognoses. Further analysis revealed that the HGSC patients in cluster-2 tended to undergo poor responses to traditional chemotherapy and immunotherapy. Subsequently, we selected 24 novel potential therapeutic drugs for cluster-2 HGSC patients. Moreover, we discovered a positive correlation of infiltrated levels between CAFs and monocytes/macrophages in HGSC tissues. Collectively, our study successfully reclassified HGSC patients into 2 different subgroups that have discrepancy prognoses and responses to current therapeutic methods.

10.
In Vivo ; 38(5): 2115-2121, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39187323

RESUMO

BACKGROUND/AIM: We and others have previously shown that cell fusion plays an important role in cancer metastasis. Color coding of cancer and stromal cells with spectrally-distinct fluorescent proteins is a powerful tool, as pioneered by our laboratory to detect cell fusion. We have previously reported color-coded cell fusion between cancer cells and stromal cells in metastatic sites by using color-coded EL4 murine lymphoma cells and host mice expressing spectrally-distinct fluorescent proteins. Cell fusion occurred between cancer cells or, between cancer cells and normal cells, such as macrophages, fibroblasts, and mesenchymal stem cells. In the present study, the aim was to morphologically classify the fusion-hybrid cells observed in the primary tumor and multiple metastases EL4 formed from cells expressing red fluorescent protein (RFP) in transgenic mice expressing green fluorescent protein (GFP), in a syngeneic model. MATERIALS AND METHODS: RFP-expressing EL4 murine lymphoma cells were cultured in vitro. EL4-RFP cells were harvested and injected intraperitoneally into immunocompetent transgenic C57/BL6-GFP mice to establish a syngeneic model. Two weeks later, mice were sacrificed and each organ was harvested, cultured, and observed using confocal microscopy. RESULTS: EL4 intraperitoneal tumors (primary) and metastases in the lung, liver, blood, and bone marrow were formed. All tumors were harvested and cultured. In all specimens, RFP-EL4 cells, GFP-stromal cells, and fused yellow-fluorescent hybrid cells were observed. The fused hybrid cells showed various morphologies. Immune cell-like round-shaped yellow-fluorescent fused cells had a tendency to decrease with time in liver metastases and circulating blood. In contrast fibroblast-like spindle-shaped yellow-fluorescent fused cells increased in the intraperitoneal primary tumor, lung metastases, and bone marrow. CONCLUSION: Cell fusion between EL4-RFP cells and GFP stromal cells occurred in primary tumors and all metastatic sites. The morphology of the fused hybrid cells varied in the primary and metastatic sites. The present results suggest that fused cancer and stromal hybrid cells of varying morphology may play an important role in cancer progression.


Assuntos
Fusão Celular , Modelos Animais de Doenças , Proteínas Luminescentes , Linfoma , Camundongos Transgênicos , Proteína Vermelha Fluorescente , Células Estromais , Animais , Camundongos , Células Estromais/patologia , Células Estromais/metabolismo , Linhagem Celular Tumoral , Linfoma/patologia , Linfoma/genética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Metástase Neoplásica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células Híbridas/patologia
11.
J Ethnopharmacol ; 335: 118656, 2024 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-39121924

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The treatment options for triple-negative breast cancer (TNBC) are limited. Traditional Chinese Medicine (TCM) plays an important role in the treatment of TNBC. The herb pair Scutellaria barbata D.Don and Scleromitrion diffusum (Willd.) R.J.Wang (SH) is commonly used in clinical practice for its anti-tumor properties. It has been proven to have good therapeutic effects on tumor-related diseases, but the underlying molecular mechanisms are not yet fully explained. AIM OF STUDY: Through bioinformatics, it was validated that IL6, primarily derived from cancer-associated fibroblasts (CAFs), is associated with poor prognosis. Additionally, cell and animal experiments confirmed that SH inhibits tumor proliferation, migration, and growth in an orthotopic tumor model by suppressing the IL6/NF-κB pathway. MATERIALS AND METHODS: GEO, TCGA and HPA databases were used to analyze the prognostic value of CAFs and IL6, then IL6 resource was detected. After the bioinformatics, the influence of CAFs and CAFs-derived IL6 on TNBC was verified by experiments both in vitro and in vivo. Cell clone formation assay, wound-Healing assay, and Transwell assay were used to detect the promotion of CAFs and CAFs-derived IL6 and the inhibition of SH in vitro. TNBC model in mice was used to prove the promotion of CAFs and CAFs-derived IL6 and the inhibition of SH in vivo. The biological pathway of NF-κB was explored by western blotting through detecting unique molecules. RESULTS: Bioinformatics analysis revealed that higher proportion of CAFs and elevated level of IL6 were significantly associated with poor prognosis in TNBC. At the same time, IL6 was proved predominantly derived from CAFs. After the indication of bioinformatics, experiments in vitro demonstrated that both CAFs and IL6 could enhance the clone formation and migration ability of MDA-MD-231 cells (231), furthermore, the promotion of CAFs was related with the level of IL6. Based on these data, mechanism was detected that CAFs-derived IL6 enhancement was closely related to the activation of NF-κB signaling pathway, while the activation can be reduced by SH. In the end, the promotion of CAFs/CAFs-derived IL6/NF-κB and the efficacy of SH inhibition were both confirmed by experiments in vivo. CONCLUSIONS: Bioinformatics data indicates that higher proportion of CAFs and higher level of CAFs-derived IL6 are significantly related to poorer survival of TNBC. CAFs and CAFs-derived IL6 were proved to promote the progression of TNBC both in vitro and in vivo, and the process of which was significantly related to the activation of NF-κB. SH inhibited the progress of TNBC, which was proved to be closely related to CAFs/CAFs-derived IL6/NF-κB.


Assuntos
Interleucina-6 , NF-kappa B , Scutellaria , Neoplasias de Mama Triplo Negativas , Animais , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , NF-kappa B/metabolismo , Interleucina-6/metabolismo , Scutellaria/química , Humanos , Feminino , Linhagem Celular Tumoral , Camundongos Nus , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Camundongos Endogâmicos BALB C , Camundongos , Proliferação de Células/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Transdução de Sinais/efeitos dos fármacos
13.
Biochem Pharmacol ; 229: 116492, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39153553

RESUMO

Pancreatic adenocarcinoma (PDAC) is predicted to become the second leading cause of cancer deaths by 2030 and this is mostly due to therapy failure. Limited treatment options and resistance to standard-of-care (SoC) therapies makes PDAC one of the cancer types with poorest prognosis and survival rates [1,2]. Pancreatic tumors are renowned for their poor response to therapeutic interventions including targeted therapies, chemotherapy and radiotherapy. Herein, we review hallmarks of therapy resistance in PDAC and current strategies aiming to tackle escape mechanisms and to re-sensitize cancer cells to therapy. We will further provide insights on recent advances in the field of drug discovery, nanomedicine, and disease models that are setting the ground for future research.

14.
Front Cell Dev Biol ; 12: 1412337, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39092186

RESUMO

The functional heterogeneity and ecological niche of prostate cancer stem cells (PCSCs), which are major drivers of prostate cancer development and treatment resistance, have attracted considerable research attention. Cancer-associated fibroblasts (CAFs), which are crucial components of the tumor microenvironment (TME), substantially affect PCSC stemness. Additionally, CAFs promote PCSC growth and survival by releasing signaling molecules and modifying the surrounding environment. Conversely, PCSCs may affect the characteristics and behavior of CAFs by producing various molecules. This crosstalk mechanism is potentially crucial for prostate cancer progression and the development of treatment resistance. Using organoids to model the TME enables an in-depth study of CAF-PCSC interactions, providing a valuable preclinical tool to accurately evaluate potential target genes and design novel treatment strategies for prostate cancer. The objective of this review is to discuss the current research on the multilevel and multitarget regulatory mechanisms underlying CAF-PCSC interactions and crosstalk, aiming to inform therapeutic approaches that address challenges in prostate cancer treatment.

15.
Genome Med ; 16(1): 98, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39138551

RESUMO

BACKGROUND: Cancer-associated fibroblasts (CAFs) are the prominent cell type in the tumor microenvironment (TME), and CAF subsets have been identified in various tumors. However, how CAFs spatially coordinate other cell populations within the liver TME to promote cancer progression remains unclear. METHODS: We combined multi-region proteomics (6 patients, 24 samples), 10X Genomics Visium spatial transcriptomics (11 patients, 25 samples), and multiplexed imaging (92 patients, 264 samples) technologies to decipher the expression heterogeneity, functional diversity, spatial distribution, colocalization, and interaction of fibroblasts. The newly identified CAF subpopulation was validated by cells isolated from 5 liver cancer patients and in vitro functional assays. RESULTS: We identified a liver CAF subpopulation, marked by the expression of COL1A2, COL4A1, COL4A2, CTGF, and FSTL1, and named F5-CAF. F5-CAF is preferentially located within and around tumor nests and colocalizes with cancer cells with higher stemness in hepatocellular carcinoma (HCC). Multiplexed staining of 92 patients and the bulk transcriptome of 371 patients demonstrated that the abundance of F5-CAFs in HCC was associated with a worse prognosis. Further in vitro experiments showed that F5-CAFs isolated from liver cancer patients can promote the proliferation and stemness of HCC cells. CONCLUSIONS: We identified a CAF subpopulation F5-CAF in liver cancer, which is associated with cancer stemness and unfavorable prognosis. Our results provide potential mechanisms by which the CAF subset in the TME promotes the development of liver cancer by supporting the survival of cancer stem cells.


Assuntos
Fibroblastos Associados a Câncer , Carcinoma Hepatocelular , Neoplasias Hepáticas , Células-Tronco Neoplásicas , Microambiente Tumoral , Humanos , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Microambiente Tumoral/genética , Proteômica/métodos , Transcriptoma , Regulação Neoplásica da Expressão Gênica , Genômica/métodos , Proliferação de Células , Perfilação da Expressão Gênica , Linhagem Celular Tumoral , Prognóstico , Multiômica
16.
Pharmacol Res ; 206: 107304, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39002870

RESUMO

Over the last decade, epidermal growth factor receptor (EGFR)-targeted therapies have transformed the treatment landscape for patients with advanced solid tumors. Despite these advances, resistance to anti-EGFR therapies is still a significant clinical challenge. While cell-autonomous mechanisms of resistance are well-documented, they do not fully elucidate the complexity of drug resistance. Cancer-associated fibroblasts (CAFs), key mediators within the tumor microenvironment (TME), have emerged as pivotal players in cancer progression and chemoresistance. Recent evidence implicates CAFs in resistance to anti-EGFR therapies, suggesting they may undermine treatment efficacy. This review synthesizes current data, highlighting the critical role of CAFs in resistance pathogenesis and summarizing recent therapeutic strategies targeting CAFs. We underscore the challenges and advocate for the exploration of CAFs as a potential dual-targeted approach.


Assuntos
Antineoplásicos , Fibroblastos Associados a Câncer , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB , Neoplasias , Microambiente Tumoral , Humanos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Fibroblastos Associados a Câncer/efeitos dos fármacos , Fibroblastos Associados a Câncer/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Animais , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Microambiente Tumoral/efeitos dos fármacos
17.
Mol Med Rep ; 30(3)2024 09.
Artigo em Inglês | MEDLINE | ID: mdl-38994764

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is an extremely aggressive form of cancer with a low survival rate. A successful treatment strategy should not be limited to targeting cancer cells alone, but should adopt a more comprehensive approach, taking into account other influential factors. These include the extracellular matrix (ECM) and immune microenvironment, both of which are integral components of the tumor microenvironment. The present review describes the roles of pancreatic stellate cells, differentiated cancer­associated fibroblasts and the interleukin family, either independently or in combination, in the progression of precursor lesions in pancreatic intraepithelial neoplasia and PDAC. These elements contribute to ECM deposition and immunosuppression in PDAC. Therapeutic strategies that integrate interleukin and/or stromal blockade for PDAC immunomodulation and fibrogenesis have yielded inconsistent results. A deeper comprehension of the intricate interplay between fibrosis, and immune responses could pave the way for more effective treatment targets, by elucidating the mechanisms and causes of ECM fibrosis during PDAC progression.


Assuntos
Carcinoma Ductal Pancreático , Fibrose , Interleucinas , Neoplasias Pancreáticas , Células Estreladas do Pâncreas , Microambiente Tumoral , Humanos , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/metabolismo , Células Estreladas do Pâncreas/metabolismo , Células Estreladas do Pâncreas/patologia , Microambiente Tumoral/imunologia , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Interleucinas/metabolismo , Interleucinas/imunologia , Animais , Matriz Extracelular/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/imunologia , Fibroblastos Associados a Câncer/patologia
18.
Front Genet ; 15: 1342306, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39071777

RESUMO

Background: Squamous cell carcinomas (SCCs) across different anatomical locations possess common molecular features. Recent studies showed that stromal cells may contribute to tumor progression and metastasis of SCCs. Limited by current sequencing technology and analysis methods, it has been difficult to combine stroma expression profiles with a large number of clinical information. Methods: With the help of transfer learning on the cell line, single-cell, and bulk tumor sequencing data, we identified and validated 2 malignant gene patterns (V1 and V5) expressed by stromal cells of SCCs from head and neck (HNSCC), lung (LUSC), cervix (CESC), esophagus, and breast. Results: Pattern V5 reflected a novel malignant feature that explained the mixed signals of HNSCC molecular subtypes. Higher expression of pattern V5 was related to shorter PFI with gender and cancer-type specificity. The other stromal gene pattern V1 was associated with poor PFI in patients after surgery in all the three squamous cancer types (HNSCC p = 0.0055, LUSC p = 0.0292, CESC p = 0.0451). Cancer-associated fibroblasts could induce HNSCC cancer cells to express pattern V1. Adjuvant radiotherapy may weaken the effect of high V1 on recurrence and metastasis, depending on the tumor radiosensitivity. Conclusion: Considering the prognostic value of stromal gene patterns and its universality, we suggest that the genetic subtype classification of SCCs may be improved to a new system that integrates both malignant and non-malignant components.

19.
ACS Nano ; 18(29): 19354-19368, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38975953

RESUMO

Tumor-stromal interactions and stromal heterogeneity in the tumor microenvironment are critical factors that influence the progression, metastasis, and chemoresistance of pancreatic ductal adenocarcinoma (PDAC). Here, we used spatial transcriptome technology to profile the gene expression landscape of primary PDAC and liver metastatic PDAC after bioactive black phosphorus nanomaterial (bioactive BP) treatment using a murine model of PDAC (LSL-KrasG12D/+; LSL-Trp53R172H/+; and Pdx-1-Cre mice). Bioinformatic and biochemical analyses showed that bioactive BP contributes to the tumor-stromal interplay by suppressing cancer-associated fibroblast (CAF) activation. Our results showed that bioactive BP contributes to CAF heterogeneity by decreasing the amount of inflammatory CAFs and myofibroblastic CAFs, two CAF subpopulations. Our study demonstrates the influence of bioactive BP on tumor-stromal interactions and CAF heterogeneity and suggests bioactive BP as a potential PDAC treatment.


Assuntos
Fibroblastos Associados a Câncer , Carcinoma Ductal Pancreático , Nanoestruturas , Neoplasias Pancreáticas , Fósforo , Animais , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Camundongos , Nanoestruturas/química , Fósforo/química , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Fibroblastos Associados a Câncer/efeitos dos fármacos , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Humanos , Linhagem Celular Tumoral
20.
Pharmaceuticals (Basel) ; 17(7)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-39065684

RESUMO

BACKGROUND: Cancer-associated fibroblasts have become a new target for therapy. Fibroblasts present within malignancies express the fibroblast activation protein (FAP). Inhibitors to FAP (FAPI) are small molecules recently developed as a theranostic agents for imaging and radiotherapy. All currently used FAPI rely on a linker-chelator complex attached to the 'inhibitor'. We describe a new automated method of the direct attachment of the radioisotope to the inhibitor, resulting in a >50% MW reduction with the hope of an improved tumor-to-background ratio and tumor uptake. METHODS: [18F]FluroFAPI was developed from a Sn precursor. This allowed for subsequent automated radioflourination. We obtained the biodistribution of [18F]FluroFAPI in rats, performed estimated human radiation dosimetry, and performed a 100× expected single dose toxicology analysis for eventual first-in-human experiments. RESULTS: The synthesis of the Sn precursor for FluorFAPI and the automated synthesis of [18F]FluroFAPI was demonstrated. [18F]FluroFAPI had favorable estimated human radiation dosimetry, and demonstrated no adverse effects when injected at a dose of 100× that planned for [18F]FluroFAPI. CONCLUSIONS: With the successful development of an automated synthesis of [18F]FluroFAPI, first-in-human testing can be planned with the hope of an improved tumor-to-background performance compared to other FAPI agents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA