Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Heliyon ; 10(2): e24600, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38312663

RESUMO

Human cardiac microvascular endothelial cells (HCMECs) are sensitive to ischemia and vulnerable to damage during reperfusion. The release of damage-associated molecular patterns (DAMPs) during reperfusion induces additional tissue damage. The current study aimed to identify early protein DAMPs in human cardiac microvascular endothelial cells subjected to ischemia-reperfusion injury (IRI) using a proteomic approach and their effect on endothelial cell injury. HCMECs were subjected to 60 min of simulated ischemia and 6 h of reperfusion, which can cause lethal damage. DAMPs in the culture media were subjected to liquid chromatography-tandem mass spectrometry proteomic analysis. The cells were treated with endothelial IRI-derived DAMP medium for 24 h. Endothelial injury was assessed by measuring lactate dehydrogenase activity, morphological features, and the expression of endothelial cadherin, nitric oxide synthase (eNOS), and caveolin-1. The top two upregulated proteins, DNAJ homolog subfamily B member 11 and pyrroline-5-carboxylate reductase 2, are promising and sensitive predictors of cardiac microvascular endothelial damage. HCMECs expose to endothelial IRI-derived DAMP, the lactate dehydrogenase activity was significantly increased compared with the control group (10.15 ± 1.03 vs 17.67 ± 1.19, respectively). Following treatment with endothelial IRI-derived DAMPs, actin-filament dysregulation, and downregulation of vascular endothelial cadherin, caveolin-1, and eNOS expressions were observed, along with cell death. In conclusion, the early protein DAMPs released during cardiac microvascular endothelial IRI could serve as novel candidate biomarkers for acute myocardial IRI. Distinct features of impaired plasma membrane integrity can help identify therapeutic targets to mitigate the detrimental consequences mediated of endothelial IRI-derived DAMPs.

2.
Folia Morphol (Warsz) ; 83(1): 125-138, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-36688407

RESUMO

BACKGROUND: C1q/TNF-related protein 3 (CTRP3) has been clarified to display its protective roles in cardiac function. The current study is concentrated on exploring the impacts of CTRP3 on myocardial ischaemia. MATERIALS AND METHODS: Oxygen and glucose hypoxia/reoxygenation (OGD/R) model was constructed in human cardiac microvascular endothelial cells (HCMECs). Reverse transcription-quantitative polymerase chain reaction and western blot analysis of CTRP3 expression were conducted. CCK-8 assay was to estimate cell activity and lactate dehydrogenase (LDH) assay kit was to test LDH release. TUNEL assay and western blot were to judge apoptosis. Endothelial barrier function was detected by in vitro vascular permeability assay kit. Zonula occludens-1 (ZO-1) expression was evaluated by immunofluorescence assay. The interaction between CTRP3 promoter and Forkhead Box O6 (FOXO6) was predicted by JASPAR database and verified by chromatin immunoprecipitation and luciferase reporter assays. After OGD/R-induced HCMECs were co-transfected with CTRP3 overexpression and FOXO6 overexpression plasmids, the above functional experiments above were conducted again. Lastly, the expression of sirtuin 1 (SIRT1)/nuclear factor erythroid 2-related factor 2 (Nrf2) signalling-related proteins was examined by western blot. RESULTS: CTRP3 was down-regulated in OGD/R-induced HCMECs. CTRP3 enhanced the viability and barrier integrity while reduced the apoptosis and permeability of OGD/R-insulted HCMECs. This process may be regulated by FOXO6 transcription. Also, FOXO6 inhibition-mediated CTRP3 up-regulation activated the SIRT1/Nrf2 signalling. CONCLUSIONS: FOXO6 transcription inhibition of CTRP3 promotes OGD/R-triggered cardiac microvascular endothelial barrier disruption via SIRT1/Nrf2 signalling.


Assuntos
Células Endoteliais , Sirtuína 1 , Humanos , Células Endoteliais/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais , Sirtuína 1/genética , Sirtuína 1/metabolismo , Fatores de Necrose Tumoral
3.
Folia Morphol (Warsz) ; 83(1): 92-101, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37144848

RESUMO

BACKGROUND: The complex process of atherosclerosis is thought to begin with endothelial cell dysfunction, and advanced atherosclerosis is the underlying cause of coronary artery disease (CAD). Uncovering the underlying mechanisms of CAD-related endothelial cell injury may contribute to the treatment. MATERIALS AND METHODS: Cardiac microvascular endothelial cells (CMVECs) were treated with oxidised low-density lipoprotein (ox-LDL) to mimic an injury model. The involvement of Talin-1 (TLN1) and integrin alpha 5 (ITGA5) in the proliferation, apoptosis, angiogenesis, inflammatory response, and oxidative stress in CMVECs were assessed. RESULTS: TLN1 overexpression assisted CMVECs in resistance to ox-LDL stimulation, with alleviated cell proliferation and angiogenesis, reduced apoptosis, inflammatory response, and oxidative stress. TLN1 overexpression triggered increased ITGA5, and ITGA5 knockdown reversed the effects of TLN1 overexpression on the abovementioned aspects. Together, TLN1 synergized with ITGA5 to ameliorate the dysfunction in CMVECs. CONCLUSIONS: This finding suggests their probable involvement in CAD, and increasing their levels is beneficial to disease relief.


Assuntos
Aterosclerose , Células Endoteliais , Humanos , Coração , Integrinas , Estresse Oxidativo , Talina
4.
Eur J Pharmacol ; 959: 176081, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37797674

RESUMO

Cardiac microvascular dysfunction contributes to cardiac hypertrophy (CH) and can progress to heart failure. Lutein is a carotenoid with various pharmacological properties, such as anti-apoptotic, anti-inflammatory, and antioxidant effects. Limited research has been conducted on the effects of lutein on pressure overload-induced CH. Studies have shown that CH is accompanied by ferroptosis in the cardiac microvascular endothelial cells (CMECs). This study aimed to investigate the effect of lutein on ferroptosis of CMECs in CH. The transcription factor interferon regulatory factor (IRF) is associated with immune system function, tumor suppression, and apoptosis. The results of this study suggested that pressure overload primarily inhibits IRF expression, resulting in endothelial ferroptosis. Administration of lutein increased the expression of IRF, providing protection to endothelial cells during pressure overload. IRF silencing downregulated solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase 4 (GPX4) expression, leading to the induction of ferroptosis in CMECs. Lutein supplementation suppressed endothelial ferroptosis by upregulating IRF. These data suggest that IRF may function as a transcription factor for SLC7A11 and that lutein represses ferroptosis in CMECs by upregulating IRF expression. Therefore, targeting IRF may be a promising therapeutic strategy for effective cardioprotection in patients with CH and heart failure.


Assuntos
Ferroptose , Insuficiência Cardíaca , Humanos , Células Endoteliais , Luteína/farmacologia , Fatores Reguladores de Interferon/metabolismo , Fatores Reguladores de Interferon/farmacologia , Células Cultivadas , Cardiomegalia/metabolismo , Insuficiência Cardíaca/patologia
5.
J Diabetes ; 15(12): 1081-1094, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37596940

RESUMO

INTRODUCTION: The role of cardiac microvascular endothelial cells (CMECs) in diabetic cardiomyopathy is not fully understood. We aimed to investigate whether a glucagon receptor (GCGR) monoclonal antibody (mAb) ameliorated diabetic cardiomyopathy and clarify whether and how CMECs participated in the process. RESEARCH DESIGN AND METHODS: The db/db mice were treated with GCGR mAb or immunoglobulin G (as control) for 4 weeks. Echocardiography was performed to evaluate cardiac function. Immunofluorescent staining was used to determine microvascular density. The proteomic signature in isolated primary CMECs was analyzed by using tandem mass tag-based quantitative proteomic analysis. Some target proteins were verified by using western blot. RESULTS: Compared with db/m mice, cardiac microvascular density and left ventricular diastolic function were significantly reduced in db/db mice, and this reduction was attenuated by GCGR mAb treatment. A total of 199 differentially expressed proteins were upregulated in db/db mice versus db/m mice and downregulated in GCGR mAb-treated db/db mice versus db/db mice. The enrichment analysis demonstrated that fatty acid ß-oxidation and mitochondrial fusion were the key pathways. The changes of the related proteins carnitine palmitoyltransferase 1B, optic atrophy type 1, and mitofusin-1 were further verified by using western blot. The levels of these three proteins were upregulated in db/db mice, whereas this upregulation was attenuated by GCGR mAb treatment. CONCLUSION: GCGR antagonism has a protective effect on CMECs and cardiac diastolic function in diabetic mice, and this beneficial effect may be mediated via inhibiting fatty acid ß-oxidation and mitochondrial fusion in CMECs.


Assuntos
Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas , Camundongos , Animais , Receptores de Glucagon/metabolismo , Células Endoteliais , Cardiomiopatias Diabéticas/prevenção & controle , Cardiomiopatias Diabéticas/metabolismo , Dinâmica Mitocondrial , Proteômica , Anticorpos Monoclonais/farmacologia , Ácidos Graxos
6.
Cardiovasc Diabetol ; 22(1): 216, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37592255

RESUMO

BACKGROUND: Myocardial microvascular injury is the key event in early diabetic heart disease. The injury of myocardial microvascular endothelial cells (CMECs) is the main cause and trigger of myocardial microvascular disease. Mitochondrial calcium homeostasis plays an important role in maintaining the normal function, survival and death of endothelial cells. Considering that mitochondrial calcium uptake 1 (MICU1) is a key molecule in mitochondrial calcium regulation, this study aimed to investigate the role of MICU1 in CMECs and explore its underlying mechanisms. METHODS: To examine the role of endothelial MICU1 in diabetic cardiomyopathy (DCM), we used endothelial-specific MICU1ecKO mice to establish a diabetic mouse model and evaluate the cardiac function. In addition, MICU1 overexpression was conducted by injecting adeno-associated virus 9 carrying MICU1 (AAV9-MICU1). Transcriptome sequencing technology was used to explore underlying molecular mechanisms. RESULTS: Here, we found that MICU1 expression is decreased in CMECs of diabetic mice. Moreover, we demonstrated that endothelial cell MICU1 knockout exacerbated the levels of cardiac hypertrophy and interstitial myocardial fibrosis and led to a further reduction in left ventricular function in diabetic mice. Notably, we found that AAV9-MICU1 specifically upregulated the expression of MICU1 in CMECs of diabetic mice, which inhibited nitrification stress, inflammatory reaction, and apoptosis of the CMECs, ameliorated myocardial hypertrophy and fibrosis, and promoted cardiac function. Further mechanistic analysis suggested that MICU1 deficiency result in excessive mitochondrial calcium uptake and homeostasis imbalance which caused nitrification stress-induced endothelial damage and inflammation that disrupted myocardial microvascular endothelial barrier function and ultimately promoted DCM progression. CONCLUSIONS: Our findings demonstrate that MICU1 expression was downregulated in the CMECs of diabetic mice. Overexpression of endothelial MICU1 reduced nitrification stress induced apoptosis and inflammation by inhibiting mitochondrial calcium uptake, which improved myocardial microvascular function and inhibited DCM progression. Our findings suggest that endothelial MICU1 is a molecular intervention target for the potential treatment of DCM.


Assuntos
Proteínas de Ligação ao Cálcio , Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas , Proteínas de Transporte da Membrana Mitocondrial , Animais , Camundongos , Cálcio , Dependovirus , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/prevenção & controle , Células Endoteliais , Inflamação
7.
Clin Exp Pharmacol Physiol ; 50(10): 789-805, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37430476

RESUMO

Diosmetin-7-O-ß-D-glucopyranoside (Diosmetin-7-O-glucoside) is a natural flavonoid glycoside known to have a therapeutic application for cardiovascular diseases. Cardiac fibrosis is the main pathological change in the end stage of cardiovascular diseases. Endothelial-mesenchymal transformation (EndMT) induced by endoplasmic reticulum stress (ER stress) via Src pathways is involved in the process of cardiac fibrosis. However, it is unclear whether and how diosmetin-7-O-glucoside regulates EndMT and ER stress to treat cardiac fibrosis. In this study, molecular docking results showed that diosmetin-7-O-glucoside bound well to ER stress and Src pathway markers. Diosmetin-7-O-glucoside suppressed cardiac fibrosis induced by isoprenaline (ISO) and reduced the levels of EndMT, ER stress in mice heart. Primary cardiac microvascular endothelial cells (CMECs) were induced by transforming growth factor-ß1 (TGF-ß1) to perform EndMT. Diosmetin-7-O-glucoside could effectively regulate EndMT and diminish the accumulation of collagen I and collagen III. We also showed that the tube formation in CMECs was restored, and the capacity of migration was partially inhibited. Diosmetin-7-O-glucoside also ameliorated ER stress through the three unfolded protein response branches, as evidenced by organelle structure in transmission electron microscopy images and the expression of protein biomarkers like the glucose-regulated protein 78 (GRP78) and C/EBP homologous protein (CHOP). Further analysis showed that diosmetin-7-O-glucoside could suppress the expression level of Src phosphorylation, then block EndMT with the maintenance of endothelial appearance and endothelial marker expression. These results suggested that the diosmetin-7-O-glucoside can regulate EndMT through ER stress, at least in part via Src-dependent pathways.


Assuntos
Cardiomiopatias , Doenças Cardiovasculares , Animais , Camundongos , Células Endoteliais/metabolismo , Doenças Cardiovasculares/metabolismo , Simulação de Acoplamento Molecular , Transição Epitelial-Mesenquimal , Cardiomiopatias/metabolismo , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Estresse do Retículo Endoplasmático , Colágeno , Fibrose , Glucosídeos/farmacologia , Glucosídeos/uso terapêutico
8.
BMC Cardiovasc Disord ; 23(1): 74, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36755219

RESUMO

BACKGROUND: Chronic kidney disease (CKD) patients sustain a fairly high prevalence of cardiovascular disease (CVD). Microvascular inflammation is an early manifestation of CVD, and the released mitochondrial DNA (MtDNA) has been proposed to be a crucial integrator of inflammatory signals. Herein, the aim of this study was to determine the relationship between CVD, microvessel, and circulating MtDNA in the settings of uremia. METHODS: Forty-two maintenance hemodialysis (MHD) patients and 36 health controls were enrolled in this study. Plasma cell-free MtDNA was detected by TaqMan-based qPCR assay. CVD risk markers including high-sensitive C-reactive protein (Hs-CRP), monocyte chemoattractant protein-1 (MCP-1), fibrinogen, and erythrocyte sedimentation rate (ESR) were measured by standard assays. Ten-year CVD risk was calculated from the Framingham risk score (FRS) model. In vitro study, human cardiac microvascular endothelial cells (HCMECs) were incubated with normal or uremic serum, with or without exogenous MtDNA. Intracellular toll-like receptor 9 (TLR9), adhesion molecule 1 (ICAM-1), MCP-1 and tumor necrosis factor-α (TNF-α) and cytosolic MtDNA were detected by qPCR. RESULTS: Plasma MtDNA in MHD patients was significantly higher than healthy controls (4.74 vs. 2.41 × 105 copies/mL; p = 0.000). Subsequently, the MHD patients were classified into two groups based on the MtDNA median (4.34 × 105 copies/mL). In stratified analyses, the levels of Hs-CRP (5.02 vs. 3.73 mg/L; p = 0.042) and MCP-l (99.97 vs. 64.72 pg/mL; p = 0.008) and FRS (21.80 vs. 16.52; p = 0.016) in the high plasma MtDNA group were higher than those in the low plasma MtDNA group. In vitro study, we found that exogenous MtDNA aggravated uremic serum-induced microvascular inflammation (ICAM-1 and TNF-α) in HCMECs (all p < 0.05). Besides, the addition of MtDNA to the medium resulted in a further increase in cytosolic MtDNA and TLR9 levels in uremic serum-treated cells (all p < 0.05). In patients with MHD, MtDNA levels in plasma were significantly reduced after a single routine hemodialysis (pre 4.47 vs. post 3.45 × 105 copies/mL; p = 0.001) or hemodiafiltration (pre 4.85 vs. post 4.09 × 105 copies/mL; p = 0.001). These two approaches seem similar in terms of MtDNA clearance rate (21.26% vs. 11.94%; p = 0.172). CONCLUSIONS: Overall, the present study suggests that MtDNA released into the circulation under the uremic toxin environment may adversely affect the cardiovascular system by exacerbating microvascular inflammation, and that reducing circulating MtDNA might be a future therapeutic strategy for the prevention of MHD-related CVD.


Assuntos
Doenças Cardiovasculares , Humanos , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/genética , Proteína C-Reativa , Molécula 1 de Adesão Intercelular , Receptor Toll-Like 9 , DNA Mitocondrial/genética , Fator de Necrose Tumoral alfa , Células Endoteliais , Diálise Renal/efeitos adversos , Inflamação , Arritmias Cardíacas/etiologia , Biomarcadores
9.
Int J Mol Med ; 50(6)2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36331027

RESUMO

Rapid recovery of blocked coronary artery blood flow after myocardial infarction (MI) is the key to reducing the size of the infarcted area, improving clinical outcome and decreasing mortality. However, ischemia/reperfusion (I/R) injury has a complicated pathological mechanism and is an inevitable complication of coronary artery blood flow recovery. Growth arrest and DNA damage­inducible α (GADD45A) serves a vital role in myocardial injury induced by I/R. The present study aimed to explore the role and mechanisms of GADD45A in cardiac microvascular endothelial cells (CMEC)­I/R injury in vivo and in vitro. An I/R injury rat model and a hypoxia/reoxygenation (H/R) cellular model were established, and myocardial tissues were collected for GADD45A detection, 2,3,5­triphenyltetrazolium chloride staining, H&E staining, and dual staining of CD31 and TUNEL. Serum was also collected for the analysis of creatine kinase and lactate dehydrogenase in I/R rats following GADD45A silencing. Additionally, the protein expression levels of CD31, phosphorylated­endothelial nitric oxide synthase (p­eNOS), endothelin­1 (ET­1), JNK, p38 MAPK, STAT3 and VEGF were assessed by western blotting. The JNK and p38 MAPK activator, anisomycin, and the JAK2­STAT3 pathway inhibitor, AG490, were used to determine the involvement of JNK/p38 MAPK pathway and STAT3/VEGF pathway. GADD45A was highly expressed in I/R injury rat and cell models. GADD45A silencing reduced the ischemic area and improved myocardial pathological damage in vivo. Furthermore, the levels of CD31 and p­eNOS were increased, whereas ET­1 was decreased by GADD45A silencing in the I/R injury rats. Mechanistically, GADD45A silencing reduced JNK/p38 MAPK expression but activated STAT3/VEGF expression. GADD45A silencing inhibited H/R­induced viability reduction and apoptosis through MAPK signaling and suppressed angiogenesis via STAT3/VEGF in H/R­induced CMECs. Overall, GADD45A ameliorated apoptosis and functional injury of CMECs via the JNK/p38 MAPK and STAT3/VEGF pathways.


Assuntos
Infarto do Miocárdio , Isquemia Miocárdica , Traumatismo por Reperfusão Miocárdica , Ratos , Animais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Células Endoteliais/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais , Apoptose/genética , Infarto do Miocárdio/genética , Reperfusão , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
10.
In Vitro Cell Dev Biol Anim ; 58(8): 669-678, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36006589

RESUMO

We aimed to explore the effects of myeloid-derived growth factor (Mydgf) on the regulation of hypoxia/reoxygenation (HR)-induced apoptosis of cardiac microvascular endothelial cells (CMECs). CMECs were exposed to hypoxia for 24 h and reoxygenation for 6 h to establish an HR cell model. Subsequently, an adenovirus was used to overexpress Mydgf in CMECs. Flow cytometry and TUNEL staining were used to detect the extent of apoptosis, whereas qPCR was used to detect the relative expression of Mydgf mRNA. Western blotting was also performed to detect the expression of apoptosis-related proteins and endoplasmic reticulum stress (ERS)-related proteins, including C/EBP Homologous Protein (CHOP), glucose-regulated protein 78 (GRP 78), and cleaved Caspase-12. The endoplasmic reticulum stress agonist tunicamycin (TM) was used to stimulate CMECs for 24 h as a rescue experiment for Mydgf. Flow cytometry revealed that the HR model effectively induced endothelial cell apoptosis, whereas qPCR and western blotting showed that Mydgf mRNA and protein levels decreased significantly after HR treatment (P < 0.05). Overexpression of Mydgf in cells effectively reduced apoptosis after HR. Furthermore, western blotting showed that HR induced a significant upregulation of CHOP, GRP78, and cleaved-Caspase-12 expression in CMECs, whereas HR-treated cells downregulated the expression of CHOP, GRP78, and cleaved-Caspase-12 after Mydgf overexpression. Under HR conditions, TM significantly reversed the protective effect of Mydgf on CMECs. Mydgf may reduce CMEC apoptosis induced by HR by regulating oxidative stress in ERS.


Assuntos
Células Endoteliais , Animais , Apoptose/genética , Caspase 12/genética , Caspase 12/metabolismo , Hipóxia Celular/genética , Estresse do Retículo Endoplasmático , Hipóxia/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , RNA Mensageiro/metabolismo , Tunicamicina
11.
Int J Mol Sci ; 23(15)2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-35955642

RESUMO

Endothelial cells derived from human induced pluripotent stem cells (hiPSC-ECs) provide a new opportunity for mechanistic research on vascular regeneration and drug screening. However, functions of hiPSC-ECs still need to be characterized. The objective of this study was to investigate electrophysiological and functional properties of hiPSC-ECs compared with primary human cardiac microvascular endothelial cells (HCMECs), mainly focusing on ion channels and membrane receptor signaling, as well as specific cell functions. HiPSC-ECs were derived from hiPS cells that were generated from human skin fibroblasts of three independent healthy donors. Phenotypic and functional comparison to HCMECs was performed by flow cytometry, immunofluorescence staining, quantitative reverse-transcription polymerase chain reaction (qPCR), enzyme-linked immunosorbent assay (ELISA), tube formation, LDL uptake, exosome release assays and, importantly, patch clamp techniques. HiPSC-ECs were successfully generated from hiPS cells and were identified by endothelial markers. The mRNA levels of KCNN2, KCNN4, KCNMA1, TRPV2, and SLC8A1 in hiPSC-ECs were significantly higher than HCMECs. AT1 receptor mRNA level in hiPSC-ECs was higher than in HCMECs. AT2 receptor mRNA level was the highest among all receptors. Adrenoceptor ADRA2 expression in hiPSC-ECs was lower than in HCMECs, while ADRA1, ADRB1, ADRB2, and G-protein GNA11 and Gai expression were similar in both cell types. The expression level of muscarinic and dopamine receptors CHRM3, DRD2, DRD3, and DRD4 in hiPSC-ECs were significantly lower than in HCMECs. The functional characteristics of endothelial cells, such as tube formation and LDL uptake assay, were not statistically different between hiPSC-ECs and HCMECs. Phenylephrine similarly increased the release of the vasoconstrictor endothelin-1 (ET-1) in hiPSC-ECs and HCMECs. Acetylcholine also similarly increased nitric oxide generation in hiPSC-ECs and HCMECs. The resting potentials (RPs), ISK1-3, ISK4 and IK1 were similar in hiPSC-ECs and HCMECs. IBK was larger and IKATP was smaller in hiPSC-ECs. In addition, we also noted a higher expression level of exosomes marker CD81 in hiPSC-ECs and a higher expression of CD9 and CD63 in HCMECs. However, the numbers of exosomes extracted from both types of cells did not differ significantly. The study demonstrates that hiPSC-ECs are similar to native endothelial cells in ion channel function and membrane receptor-coupled signaling and physiological cell functions, although some differences exist. This information may be helpful for research using hiPSC-ECs.


Assuntos
Células-Tronco Pluripotentes Induzidas , Biomarcadores/metabolismo , Diferenciação Celular/genética , Células Endoteliais , Fibroblastos/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , RNA Mensageiro/metabolismo , Receptor Muscarínico M3/metabolismo
12.
J Nutr Biochem ; 104: 108972, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35227883

RESUMO

The molecular characteristics of ferroptosis in cardiac hypertrophy have been rarely studied. Especially, there have been no studies to investigate the regulatory mechanisms of docosahexaenoic acid (DHA) on ferroptosis in cardiac hypertrophy. This study was designed to determine the role of ferroptosis in microvascular injury, and investigate the contribution of DHA in suppressing ferroptosis and preventing pressure overload-mediated endothelial damage. Our results indicated that the expression of interferon regulating factor 3 (IRF3) was primarily inhibited by pressure overload and consequently caused endothelial ferroptosis. Nevertheless, administration of DHA increased IRF3 expression and provided a pro-survival advantage for the endothelial system in the context of pressure overload. Experimental studies clearly showed that inhibition of IRF3 down-regulated SLC7A11 expression, and the latter leaded to the increase in the activities of arachidonate 12-lipoxygenase, which obligated cardiac microvascular endothelial cells to undergo ferroptosis via augmenting lipid peroxides. Interestingly, DHA supplementation suppressed endothelial ferroptosis via up-regulation of IRF3. Taken together, our studies identified the IRF3-SLC7A11-arachidonate 12-lipoxygenase axis as a new pathway responsible for pressure overload-mediated microvascular damage via initiating endothelial ferroptosis. In contrast, DHA treatment up-regulated the expression of IRF3 and thus reduced cellular ferroptosis, conferring a protective advantage to the endothelial system in pressure overload. These findings revealed that targeting IRF3 might be a useful therapeutic strategy for cardioprotection in cardiac hypertrophy and heart failure.


Assuntos
Ferroptose , Animais , Araquidonato 12-Lipoxigenase , Cardiomegalia/tratamento farmacológico , Ácidos Docosa-Hexaenoicos/farmacologia , Células Endoteliais , Interferons , Ratos , Regulação para Cima
13.
Free Radic Biol Med ; 181: 130-142, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35122997

RESUMO

Hypertension-mediated pathological cardiac remodeling often progresses to heart failure. Elabela, mainly expressed in the cardiac microvascular endothelial cells (CMVECs), functions as a new endogenous ligand for apelin receptor. However, the exact roles of elabela in hypertension remain largely unclear. In this study, 10-week-old male C57BL/6 mice were randomly subjected to infusion of angiotensin (Ang) II (1.5 mg/kg/d) or saline for 2 weeks. Ang II infusion led to marked increases in systolic blood pressure levels and reduction of elabela levels in hypertensive mice with augmented myocardial hypertrophy and fibrosis. Furthermore, administration of elabela or ferroptosis inhibitor ferrostatin-1 significantly prevented Ang II-mediated pathological myocardial remodeling, dysfunction, and ultrastructural injury in hypertensive mice with downregulated expression of inflammation-, hypertrophy-, and fibrosis-related genes. Notably, elabela strikingly alleviated Ang II-induced upregulation of iron levels and lipid peroxidation in hypertensive mice by suppressing cardiac interleukin-6 (IL-6)/STAT3 signaling and activating the xCT/glutathione peroxidase (GPX4) signaling. In cultured CMVECs, exposure to Ang II resulted in a marked decrease in elabela levels and obvious increases in cellular ferroptosis, proliferation, inflammation, and superoxide production, which were rescued by elabela or ferrostatin-1 while were blocked by co-treatment with rhIL-6. Furthermore, knockdown of elabela by siRNA in CMVECs contributed to Ang II-mediated augmentations in cellular proliferation, migration, and oxidative stress in cultured cardiac fibroblasts and cardiomyocytes, respectively. In conclusion, elabela antagonizes Ang II-mediated promotion of CMVECs ferroptosis, adverse myocardial remodeling, fibrosis and heart dysfunction through modulating the IL-6/STAT3/GPX4 signaling pathway. Targeting elabela-APJ axis serves as a novel strategy for hypertensive heart diseases.


Assuntos
Ferroptose , Hipertensão , Angiotensina II/metabolismo , Animais , Células Endoteliais/metabolismo , Fibrose , Glutationa Peroxidase/metabolismo , Hipertensão/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Transdução de Sinais
14.
Cell Signal ; 91: 110223, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34954392

RESUMO

BACKGROUND: The apoptosis and inflammation in cardiac microvascular endothelial cells (CMECs) promote the development of coronary microvascular dysfunction (CMD). The present study aimed to explore the role of E3 ubiquitin ligase mind bomb 1 (MIB1) in the apoptosis and inflammation in CMECs during CMD. METHODS: In vivo, CMD in rats was induced by sodium laurate injection. In vitro, rat primary CMECs were stimulated by homocysteine (Hcy). The apoptosis of CMECs was measured using flow cytometry. The inflammation of CMECs was evaluated by the level of tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1ß). The interplay between MIB1 and mitogen-activated protein kinase kinase kinase 5 (map3k5, also called ASK1) was measured using Co-immunoprecipitation. RESULTS: MIB1 expression was decreased and ASK1 expression was increased in the heart tissues of CMD rats and Hcy-treated CMECs. MIB1 overexpression decreased fibrinogen-like protein 2 (FGL2) secretion, inflammation, and apoptosis induced by Hcy in CMECs. Meanwhile, MIB1 overexpression decreased the protein levels of ASK1 and p38, while not affected ASK1 mRNA levels. The following mechanism experiments revealed that MIB1 downregulated ASK1 expression by increasing its ubiquitination. ASK1 overexpression reversed the inhibitory effect of MIB1 on FGL2 secretion, apoptosis, inflammation, and p38 activation in Hcy-treated CMECs. In CMD rats, MIB1 overexpression partly retarded CMD progression, manifesting as increased coronary capillary density and decreased microthrombi formation. CONCLUSION: MIB1 overexpression relieved apoptosis and inflammation of CMECs during CMD by targeting the ASK1/p38 pathway.


Assuntos
Apoptose , Células Endoteliais , Ubiquitina-Proteína Ligases/genética , Animais , Apoptose/genética , Células Cultivadas , Células Endoteliais/metabolismo , Coração , Inflamação/metabolismo , Ratos , Ratos Sprague-Dawley , Ubiquitina-Proteína Ligases/metabolismo
15.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-933470

RESUMO

Objective:To investigate the effect of interleukin-33 (IL-33) on lipopolysaccharide (LPS)-induced permeability of rat cardiac microvascular endothelial cells (RCMECs).Methods:RCMECs were cultured in vitro to be divided into control group, LPS group, IL-33 group and LPS+IL-33 group. The effect of IL-33 on the proliferation of RCMECs was detected by cell counting reagent (CCK8). Fluorescein isothiocyanate (FITC)-dextran assay was used to evaluate the permeability of RCMECs. The expression of vascular endothelial calmodulin, ras homologous gene family (Rho) member A (RhoA) and phosphorylated Rho-associated coiled-coil-containing protein kinase (p-ROCK2) proteins were tested by western blot. High-throughput sequencing and gene ontology (GO) were performed for gene expression in LPS and LPS+IL-33 groups.Results:No significant effect of IL-33 at 10-50 ng/ml on the proliferation of RCMECs was observed ( P>0.05). Compared with the control group, the permeability of RCMECs (permeability coefficient ratio 1.404±0.029 vs. 1.000±0.200, P<0.05) was significantly increased in LPS group and the expression of vascular endothelial calmodulin (relative gray value 0.429 5±0.012 9 vs. 0.594 9±0.014 2, P<0.05) was down-regulated, while the permeability of monolayers (permeability coefficient ratio, 0.948±0.013, P<0.01) was decreased in LPS+IL-33 group and the expression of vascular endothelial calmodulin (relative grayscale value 0.549 1±0.012 0, P<0.005) was up-regulated compared with the LPS group. High-throughput sequencing data revealed that the differential genes downregulated in the LPS and LPS+IL-33 groups were associated with cytoskeleton and Rho signaling pathway. Compared with the control group, RhoA (relative gray value 0.211 4±0.009 9 vs. 0.135 0±0.007 6, P<0.000 1) and p-ROCK (relative gray value 0.656 3±0.013 2 vs. 0.503 6±0.036 2, P<0.000 1) protein expression was upregulated in the LPS group. When compared with LPS group, RhoA (relative gray value 0.157 7±0.010 7, P=0.000 2), p-ROCK (relative gray value 0.427 7±0.003 8, P<0.000 1) protein expression was decreased in LPS+IL-33 group. Conclusion:IL-33 may improve LPS-induced hyperpermeability of RCMECs by inhibiting RhoA and p-ROCK protein expression in Rho/Rho-associated coiled-coil-containing protein kinase signaling pathway.

16.
Nan Fang Yi Ke Da Xue Xue Bao ; 41(10): 1527-1533, 2021 Oct 20.
Artigo em Chinês | MEDLINE | ID: mdl-34755668

RESUMO

OBJECTIVE: To investigate the effect of dissipating phlegm and blood stasis simultaneously for protecting cardiac microvascular endothelial cells (CMECs) against high glucose-induced injury and the role of AGEs/RAGE axis in the underlying mechanism. METHODS: The primary CMECs were isolated from rat heart by enzymatic digestion and identified by immunofluorescence assay. The CMECs exposed to 33 mmol/L glucose for 48 h were divided into model group (MC), resolving phlegm (RP) group, dissipating blood stasis (DBS) group, dissipating phlegm and blood stasis (RPDBS) group and ALT-711 group. After treatment with 10% drug-containing serum and ALT-711 for 48 h, the content of AGEs in the cells were measured with ELISA. The expressions of RAGE mRNA and protein were measured with real-time quantitative PCR, immunofluorescence assay and Western blotting; The activity of NADPH oxidase and ROS level were measured by cytochrome c reduction and fluorescent probe DHE. RESULTS: High glucose exposure significantly increased the content of AGEs, RAGE expressions at the protein and mRNA levels, NADPH oxidase activity and ROS level in the CMECs (P < 0.01). These changes were significantly mitigated by treatments with RP, DBS, RPDBS and ALT-711 (P < 0.01), among which RPDBS caused the most significant decrements in AGEs content, RAGE expression and NADPH oxidase activity (P < 0.01, P < 0.05). The reduction of ROS level in the RPDBS group was significantly greater than that in RP group (P < 0.01), but similar to that in DBS group (P > 0.05). CONCLUSION: Dissipating phlegm and blood stasis simultaneously can be helpful for prevention and treatment of diabetic myocardial microangiopathy by suppressing the excessive activation of AGEs-RAGE signal axis and oxidative stress, thus protecting CMECs against high glucose-induced damage. Dissipating phlegm and blood stasis simultaneously is better than either of the therapy alone.


Assuntos
Diabetes Mellitus , Angiopatias Diabéticas , Células Endoteliais , Animais , Glucose , Produtos Finais de Glicação Avançada/metabolismo , Miocárdio , Estresse Oxidativo , Ratos , Receptor para Produtos Finais de Glicação Avançada/metabolismo
17.
Bioengineered ; 12(1): 7872-7881, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34612779

RESUMO

Restoration of blood supply through medical or surgical intervention is a commonly adopted method for acute myocardial ischemia, but is also a trigger for cardiac ischemia/reperfusion injury. Studies have shown that remifentanil (REM) displays cardioprotective effects. In this study, the effects of REM on HCMEC viability were examined before and after the induction of H/R using Cell Counting Kit-8 assays. Wound healing and Matrigel angiogenesis assays were performed to assess HCMEC migration and angiogenesis, respectively. Commercial kits and western blotting were used to determine the endothelial barrier function of H/R-stimulated HCMECs with or without REM treatment. The expression of PI3K/Akt/hypoxia-inducible factor-1α (HIF-1α) pathway-related proteins was detected by western blotting. After pre-treatment with PI3K/Akt, the effects of REM on H/R-induced HCMEC injury were examined. We found that pre-treatment with REM displayed no impact on HCMEC viability under normal conditions but noticeably improved cell viability following H/R. The migratory abilities and tube-like structure formations of H/R-stimulated HCMECs were both enhanced by REM in a concentration-dependent manner. REM also decreased the permeability of H/R-stimulated HCMECs and upregulated the expression of tight junction proteins. Furthermore REM increased the expression of PI3K/Akt/HIF-1α signaling-related proteins in HCMECs. Inhibition of PI3K/Akt rescued REM-enhanced HCMEC function under H/R condition. Therefore, the present study demonstrated that REM pretreatment ameliorated H/R-induced HCMEC dysfunction by regulating the PI3K/Akt/HIF-1α signaling pathway.


Assuntos
Cardiotônicos/farmacologia , Hipóxia Celular/efeitos dos fármacos , Células Endoteliais , Miocárdio/citologia , Remifentanil/farmacologia , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos
18.
Int J Cardiol ; 344: 13-24, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34534604

RESUMO

Microvascular dysfunction caused by cardiac ischemia-reperfusion (I/R) leads to multiple severe cardiac adverse events, such as heart failure and ventricular modeling, which plays a critical role in outcomes. Though marrow mesenchymal stem cell (MSC) therapy has been proven effective for attenuating I/R injury, the limitations of clinical feasibility cannot be ignored. Since exosomes are recognized as the main vehicles for MSCs paracrine effects, we assumed that MSC-derived exosomes could prevent microvascular dysfunction and further protect cardiac function. By establishing a rat cardiac I/R model in vivo and a cardiac microvascular endothelial cells (CMECs) hypoxia-reperfusion (H/R) model in vitro, we demonstrated that MSC-derived exosomes enhanced microvascular regeneration under stress, inhibited fibrosis development, and eventually improved cardiac function through platelet-derived growth factor receptor-ß (PDGFR-ß) modulation. Furthermore, we found that MSC-derived exosomes possessed better therapeutic effects than MSCs themselves.


Assuntos
Cardiomiopatias , Exossomos , Receptor beta de Fator de Crescimento Derivado de Plaquetas , Animais , Medula Óssea , Células Endoteliais , Fibrose , Isquemia , Células-Tronco Mesenquimais , Microcirculação , Ratos , Receptor beta de Fator de Crescimento Derivado de Plaquetas/fisiologia , Reperfusão
19.
Antioxidants (Basel) ; 10(7)2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34356317

RESUMO

Diabetes is characterized by high glucose (HG) levels in the blood circulation, leading to exposure of the vascular endothelium to HG conditions. Hyperglycemia causes oxidative stress via excessive reactive oxygen species (ROS) production in the endothelium, which leads to cellular dysfunction and the development of diabetic vascular diseases. Substance-P (SP) is an endogenous peptide involved in cell proliferation and migration by activating survival-related signaling pathways. In this study, we evaluated the role of SP in cardiac microvascular endothelial cells (CMECs) in HG-induced oxidative stress. CMECs were treated with diverse concentrations of glucose, and then the optimal dose was determined. Treatment of CMECs with HG reduced their viability and induced excessive ROS secretion, inactivation of PI3/Akt signaling, and loss of vasculature-forming ability in vitro. Notably, HG treatment altered the cytokine profile of CMECs. However, SP treatment inhibited the HG-mediated aggravation of CMECs by restoring viability, free radical balance, and paracrine potential. SP-treated CMECs retained the capacity to form compact and long stretching-tube structures. Collectively, our data provide evidence that SP treatment can block endothelial dysfunction in hyperglycemia and suggest the possibility of using SP for treating diabetic complications as an antioxidant.

20.
IUBMB Life ; 73(7): 927-940, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33890394

RESUMO

To explore the impact and mechanism of human mesenchymal stem cells (hMSCs) on the angiogenesis of cardiac microvascular endothelial cells (CMECs) after ischemia insult. Exosomes derived from hMSCs (hMSCs-Exo) were identified by Western blotting and labeled by PHK-67. CMECs were isolated from rat myocardial tissues. After hypoxic treatment, CMECs were cultured with hMSCs and exosome inhibitor (GW4869) or transfected with si-COL4A1 + miR-543 inhibitor. CMEC proliferation, migration, invasion, and angiogenesis were examined. Target genes of miR-543 were predicted and then were identified by dual luciferase assay. Myocardial infarction (MI) rat model established by suture occlusion was intravenously injected with hMSCs-Exo. Fluorescence microscope was applied to visualize exosomes in myocardial tissues. Infarction volume and pathologies of myocardial tissues were observed. Ki-67 and miR-543 expressions were detected. The isolated hMSC-Exo expressed TSG101, HSP70, and CD63. Hypoxia-treated CMECs cultured with hMSCs exhibited high proliferation, migration, invasion, and angiogenesis ability, while incubation with exosome inhibitor GW4969 offset the promoting effects of hMSCs on the proliferation, migration, invasion, and angiogenesis of CMECs. hMSCs transfected with miR-543 inhibitor brought CMECs weak viability and angiogenesis ability. CMECs transfected with si-COL4A1 and miR-543 inhibitor showed low proliferation, migration, invasion, and angiogenesis compared to those transfected with si-COL4A1 alone. hMSCs-Exo entered the myocardial tissues of MI rats. Injection of hMSCs-Exo in MI rats diminished infarction size, attenuated MI-induced injuries, and increased Ki-67 expression. hMSCs-Exo facilitates the proliferation, migration, invasion, and angiogenesis of CMECs through transferring miR-543 and downregulating COL4A1 expression.


Assuntos
Colágeno Tipo IV/genética , Exossomos/genética , Células-Tronco Mesenquimais/citologia , MicroRNAs/genética , Infarto do Miocárdio/terapia , Indutores da Angiogênese/farmacologia , Animais , Hipóxia Celular , Movimento Celular/genética , Proliferação de Células/genética , Células Cultivadas , Colágeno Tipo IV/metabolismo , Células Endoteliais , Endotélio Vascular , Exossomos/transplante , Humanos , Masculino , MicroRNAs/farmacologia , Infarto do Miocárdio/patologia , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...