Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
1.
Development ; 151(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38984541

RESUMO

The cardiac extracellular matrix (cECM) is fundamental for organ morphogenesis and maturation, during which time it undergoes remodeling, yet little is known about whether mechanical forces generated by the heartbeat regulate this remodeling process. Using zebrafish as a model and focusing on stages when cardiac valves and trabeculae form, we found that altering cardiac contraction impairs cECM remodeling. Longitudinal volumetric quantifications in wild-type animals revealed region-specific dynamics: cECM volume decreases in the atrium but not in the ventricle or atrioventricular canal. Reducing cardiac contraction resulted in opposite effects on the ventricular and atrial ECM, whereas increasing the heart rate affected the ventricular ECM but had no effect on the atrial ECM, together indicating that mechanical forces regulate the cECM in a chamber-specific manner. Among the ECM remodelers highly expressed during cardiac morphogenesis, we found one that was upregulated in non-contractile hearts, namely tissue inhibitor of matrix metalloproteinase 2 (timp2). Loss- and gain-of-function analyses of timp2 revealed its crucial role in cECM remodeling. Altogether, our results indicate that mechanical forces control cECM remodeling in part through timp2 downregulation.


Assuntos
Matriz Extracelular , Coração , Inibidor Tecidual de Metaloproteinase-2 , Peixe-Zebra , Animais , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Matriz Extracelular/metabolismo , Inibidor Tecidual de Metaloproteinase-2/metabolismo , Inibidor Tecidual de Metaloproteinase-2/genética , Coração/embriologia , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Contração Miocárdica/fisiologia , Miocárdio/metabolismo , Morfogênese , Átrios do Coração/embriologia , Átrios do Coração/metabolismo , Fenômenos Biomecânicos , Regulação da Expressão Gênica no Desenvolvimento , Ventrículos do Coração/metabolismo , Ventrículos do Coração/embriologia
2.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000221

RESUMO

The traditional description of cardiac development involves progression from a cardiac crescent to a linear heart tube, which in the phase of transformation into a mature heart forms a cardiac loop and is divided with the septa into individual cavities. Cardiac morphogenesis involves numerous types of cells originating outside the initial cardiac crescent, including neural crest cells, cells of the second heart field origin, and epicardial progenitor cells. The development of the fetal heart and circulatory system is subject to regulatation by both genetic and environmental processes. The etiology for cases with congenital heart defects (CHDs) is largely unknown, but several genetic anomalies, some maternal illnesses, and prenatal exposures to specific therapeutic and non-therapeutic drugs are generally accepted as risk factors. New techniques for studying heart development have revealed many aspects of cardiac morphogenesis that are important in the development of CHDs, in particular transposition of the great arteries.


Assuntos
Cardiopatias Congênitas , Coração , Humanos , Cardiopatias Congênitas/patologia , Cardiopatias Congênitas/etiologia , Animais , Coração/embriologia , Coração/crescimento & desenvolvimento , Crista Neural , Morfogênese , Organogênese
3.
Environ Toxicol Pharmacol ; 109: 104479, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38821154

RESUMO

Plant growth regulators (PGRs) are increasingly used to promote sustainable agriculture, but their unregulated use raises concerns about potential environmental risks. Indole-3-acetic acid (IAA), a commonly used PGR, has been the subject of research on its developmental toxicity in the in-vivo zebrafish model. IAA exposure to zebrafish embryos caused oxidative stress, lipid peroxidation, and cellular apoptosis. The study also revealed that critical antioxidant genes including sod, cat, and bcl2 were downregulated, while pro-apoptotic genes such as bax and p53 were upregulated. IAA exposure also hampered normal cardiogenesis by downregulating myl7, amhc, and vmhc genes and potentially influencing zebrafish neurobehavior. The accumulation of IAA was confirmed by HPLC analysis of IAA-exposed zebrafish tissues. These findings underscore the need for further study on the potential ecological consequences of IAA use and the need for sustainable agricultural practices.


Assuntos
Regulação para Baixo , Embrião não Mamífero , Ácidos Indolacéticos , Estresse Oxidativo , Peixe-Zebra , Animais , Estresse Oxidativo/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Embrião não Mamífero/efeitos dos fármacos , Coração/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Reguladores de Crescimento de Plantas/toxicidade , Peroxidação de Lipídeos/efeitos dos fármacos , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
4.
Adv Biol (Weinh) ; 8(6): e2400026, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38640919

RESUMO

In vitro studies have demonstrated that the differentiation of embryonic stem cells (ESCs) into cardiomyocytes requires activation of caspases through the mitochondrial pathway. These studies have relied on synthetic substrates for activity measurements, which can be misleading due to potential none-specific hydrolysis of these substrates by proteases other than caspases. Hence, caspase-9 and caspase-3 activation are investigated during the differentiation of human ESCs (hESCs) by directly assessing caspase-9 and -3 cleavage. Western blot reveals the presence of the cleaved caspase-9 prior to and during the differentiation of human ESCs (hESCs) into cardiomyocytes at early stages, which diminishes as the differentiation progresses, without cleavage and activation of endogenous procaspase-3. Activation of exogenous procaspase-3 by endogenous caspase-9 and subsequent cleavage of chromogenic caspase-3 substrate i.e. DEVD-pNA during the course of differentiation confirmes that endogenous caspase-9 has the potency to recognize and activate procaspase-3, but for reasons that are unknown to us fails to do so. These observations suggest the existence of distinct mechanisms of caspase regulation in differentiation as compared to apoptosis. Bioinformatics analysis suggests the presence of caspase-9 regulators, which may influence proteolytic function under specific conditions.


Assuntos
Caspase 3 , Caspase 9 , Diferenciação Celular , Células-Tronco Embrionárias Humanas , Miócitos Cardíacos , Humanos , Apoptose/fisiologia , Caspase 3/metabolismo , Caspase 9/metabolismo , Caspase 9/genética , Linhagem Celular , Ativação Enzimática , Células-Tronco Embrionárias Humanas/enzimologia , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/citologia
5.
BMC Biomed Eng ; 6(1): 3, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654382

RESUMO

Compared to classical techniques of morphological analysis, micro-CT (µ-CT) has become an effective approach allowing rapid screening of morphological changes. In the present work, we aimed to provide an optimized micro-CT dense agent perfusion protocol and µ-CT guidelines for different stages of chick embryo cardiogenesis. Our study was conducted over a period of 10 embryonic days (Hamburger-Hamilton HH36) in chick embryo hearts. During the perfusion of the micro-CT dense agent at different developmental stages (HH19, HH24, HH27, HH29, HH31, HH34, HH35, and HH36), we demonstrated that durations and volumes of the injected contrast agent gradually increased with the heart developmental stages contrary to the flow rate that was unchanged during the whole experiment. Analysis of the CT imaging confirmed the efficiency of the optimized parameters of the heart perfusion.

6.
J Mol Cell Cardiol ; 188: 90-104, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38382296

RESUMO

The role of erythropoietin (EPO) has extended beyond hematopoiesis to include cytoprotection, inotropy, and neurogenesis. Extra-renal EPO has been reported for multiple tissue/cell types, but the physiological relevance remains unknown. Although the EPO receptor is expressed by multiple cardiac cell types and human recombinant EPO increases contractility and confers cytoprotection against injury, whether the heart produces physiologically meaningful amounts of EPO in vivo is unclear. We show a distinct circadian rhythm of cardiac EPO mRNA expression in adult mice and increased mRNA expression during embryogenesis, suggesting physiological relevance to cardiac EPO production throughout life. We then generated constitutive, cardiomyocyte-specific EPO knockout mice driven by the Mlc2v promoter (EPOfl/fl:Mlc2v-cre+/-; EPOΔ/Δ-CM). During cardiogenesis, cardiac EPO mRNA expression and cellular proliferation were reduced in EPOΔ/Δ-CM hearts. However, in adult EPOΔ/Δ- CM mice, total heart weight was preserved through increased cardiomyocyte cross-sectional area, indicating the reduced cellular proliferation was compensated for by cellular hypertrophy. Echocardiography revealed no changes in cardiac dimensions, with modest reductions in ejection fraction, stroke volume, and tachycardia, whereas invasive hemodynamics showed increased cardiac contractility and lusitropy. Paradoxically, EPO mRNA expression in the heart was elevated in adult EPOΔ/Δ-CM, along with increased serum EPO protein content and hematocrit. Using RNA fluorescent in situ hybridization, we found that Epo RNA colocalized with endothelial cells in the hearts of adult EPOΔ/Δ-CM mice, identifying the endothelial cells as a cell responsible for the EPO hyper-expression. Collectively, these data identify the first physiological roles for cardiomyocyte-derived EPO. We have established cardiac EPO mRNA expression is a complex interplay of multiple cell types, where loss of embryonic cardiomyocyte EPO production results in hyper-expression from other cells within the adult heart.


Assuntos
Células Endoteliais , Eritropoetina , Animais , Camundongos , Hiperplasia , Hibridização in Situ Fluorescente , Miócitos Cardíacos , RNA , RNA Mensageiro/genética
7.
BMC Cancer ; 23(1): 1245, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110859

RESUMO

BACKGROUND: Cardiac Myxoma is a primary tumor of heart. Its origins, rarity of the occurrence of primary cardiac tumors and how it may be related to limited cardiac regenerative potential, are not yet entirely known. This study investigates the key cardiac genes/ transcription factors (TFs) and signaling pathways to understand these important questions. METHODS: Databases including PubMed, MEDLINE, and Google Scholar were searched for published articles without any date restrictions, involving cardiac myxoma, cardiac genes/TFs/signaling pathways and their roles in cardiogenesis, proliferation, differentiation, key interactions and tumorigenesis, with focus on cardiomyocytes. RESULTS: The cardiac genetic landscape is governed by a very tight control between proliferation and differentiation-related genes/TFs/pathways. Cardiac myxoma originates possibly as a consequence of dysregulations in the gene expression of differentiation regulators including Tbx5, GATA4, HAND1/2, MYOCD, HOPX, BMPs. Such dysregulations switch the expression of cardiomyocytes into progenitor-like state in cardiac myxoma development by dysregulating Isl1, Baf60 complex, Wnt, FGF, Notch, Mef2c and others. The Nkx2-5 and MSX2 contribute predominantly to both proliferation and differentiation of Cardiac Progenitor Cells (CPCs), may possibly serve roles based on the microenvironment and the direction of cell circuitry in cardiac tumorigenesis. The Nkx2-5 in cardiac myxoma may serve to limit progression of tumorigenesis as it has massive control over the proliferation of CPCs. The cardiac cell type-specific genetic programming plays governing role in controlling the tumorigenesis and regenerative potential. CONCLUSION: The cardiomyocytes have very limited proliferative and regenerative potential. They survive for long periods of time and tightly maintain the gene expression of differentiation genes such as Tbx5, GATA4 that interact with tumor suppressors (TS) and exert TS like effect. The total effect such gene expression exerts is responsible for the rare occurrence and benign nature of primary cardiac tumors. This prevents the progression of tumorigenesis. But this also limits the regenerative and proliferative potential of cardiomyocytes. Cardiac Myxoma develops as a consequence of dysregulations in these key genes which revert the cells towards progenitor-like state, hallmark of CM. The CM development in carney complex also signifies the role of TS in cardiac cells.


Assuntos
Neoplasias Cardíacas , Mixoma , Humanos , Fatores de Transcrição/metabolismo , Miócitos Cardíacos/fisiologia , Diferenciação Celular/genética , Neoplasias Cardíacas/genética , Neoplasias Cardíacas/patologia , Mixoma/genética , Mixoma/metabolismo , Mixoma/patologia , Carcinogênese/genética , Carcinogênese/metabolismo , Microambiente Tumoral
8.
Int J Mol Sci ; 24(22)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38003449

RESUMO

Congenital heart defects (CHDs) are the most common form of birth defects in humans. They occur in 9 out of 1000 live births and are defined as structural abnormalities of the heart. Understanding CHDs is difficult due to the heterogeneity of the disease and its multifactorial etiology. Advances in genomic sequencing have made it possible to identify the genetic factors involved in CHDs. However, genetic origins have only been found in a minority of CHD cases, suggesting the contribution of non-inherited (environmental) risk factors to the etiology of CHDs. Maternal pregestational diabetes is associated with a three- to five-fold increased risk of congenital cardiopathies, but the underlying molecular mechanisms are incompletely understood. According to current hypotheses, hyperglycemia is the main teratogenic agent in diabetic pregnancies. It is thought to induce cell damage, directly through genetic and epigenetic dysregulations and/or indirectly through production of reactive oxygen species (ROS). The purpose of this review is to summarize key findings on the molecular mechanisms altered in cardiac development during exposure to hyperglycemic conditions in utero. It also presents the various in vivo and in vitro techniques used to experimentally model pregestational diabetes. Finally, new approaches are suggested to broaden our understanding of the subject and develop new prevention strategies.


Assuntos
Diabetes Gestacional , Cardiopatias Congênitas , Hiperglicemia , Gravidez em Diabéticas , Gravidez , Feminino , Humanos , Diabetes Gestacional/genética , Fatores de Risco , Cardiopatias Congênitas/genética , Gravidez em Diabéticas/genética , Hiperglicemia/complicações , Hiperglicemia/genética
9.
bioRxiv ; 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37873297

RESUMO

During heart development, a well-characterized network of transcription factors initiates cardiac gene expression and defines the precise timing and location of cardiac progenitor specification. However, our understanding of the post-initiation transcriptional events that regulate cardiac gene expression is still incomplete. The PAF1C component Rtf1 is a transcription regulatory protein that modulates pausing and elongation of RNA Pol II, as well as cotranscriptional histone modifications. Here we report that Rtf1 is essential for cardiogenesis in fish and mammals, and that in the absence of Rtf1 activity, cardiac progenitors arrest in an immature state. We found that Rtf1's Plus3 domain, which confers interaction with the transcriptional pausing and elongation regulator Spt5, was necessary for cardiac progenitor formation. ChIP-seq analysis further revealed changes in the occupancy of RNA Pol II around the transcription start site (TSS) of cardiac genes in rtf1 morphants reflecting a reduction in transcriptional pausing. Intriguingly, inhibition of pause release in rtf1 morphants and mutants restored the formation of cardiac cells and improved Pol II occupancy at the TSS of key cardiac genes. Our findings highlight the crucial role that transcriptional pausing plays in promoting normal gene expression levels in a cardiac developmental context.

10.
Cells ; 12(17)2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37681854

RESUMO

Desmosomes play a vital role in providing structural integrity to tissues that experience significant mechanical tension, including the heart. Deficiencies in desmosomal proteins lead to the development of arrhythmogenic cardiomyopathy (AC). The limited availability of preventative measures in clinical settings underscores the pressing need to gain a comprehensive understanding of desmosomal proteins not only in cardiomyocytes but also in non-myocyte residents of the heart, as they actively contribute to the progression of cardiomyopathy. This review focuses specifically on the impact of desmosome deficiency on epi- and endocardial cells. We highlight the intricate cross-talk between desmosomal proteins mutations and signaling pathways involved in the regulation of epicardial cell fate transition. We further emphasize that the consequences of desmosome deficiency differ between the embryonic and adult heart leading to enhanced erythropoiesis during heart development and enhanced fibrogenesis in the mature heart. We suggest that triggering epi-/endocardial cells and fibroblasts that are in different "states" involve the same pathways but lead to different pathological outcomes. Understanding the details of the different responses must be considered when developing interventions and therapeutic strategies.


Assuntos
Cardiomiopatias , Desmossomos , Adulto , Humanos , Diferenciação Celular , Epirubicina , Miócitos Cardíacos
11.
Development ; 150(18)2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37680191

RESUMO

During zebrafish heart formation, cardiac progenitor cells converge at the embryonic midline where they form the cardiac cone. Subsequently, this structure transforms into a heart tube. Little is known about the molecular mechanisms that control these morphogenetic processes. Here, we use light-sheet microscopy and combine genetic, molecular biological and pharmacological tools to show that the paralogous genes wnt9a/b are required for the assembly of the nascent heart tube. In wnt9a/b double mutants, cardiomyocyte progenitor cells are delayed in their convergence towards the embryonic midline, the formation of the heart cone is impaired and the transformation into an elongated heart tube fails. The same cardiac phenotype occurs when both canonical and non-canonical Wnt signaling pathways are simultaneously blocked by pharmacological inhibition. This demonstrates that Wnt9a/b and canonical and non-canonical Wnt signaling regulate the migration of cardiomyocyte progenitor cells and control the formation of the cardiac tube. This can be partly attributed to their regulation of the timing of cardiac progenitor cell differentiation. Our study demonstrates how these morphogens activate a combination of downstream pathways to direct cardiac morphogenesis.


Assuntos
Miócitos Cardíacos , Peixe-Zebra , Animais , Peixe-Zebra/genética , Via de Sinalização Wnt/genética , Diferenciação Celular/genética , Microscopia , Proteínas de Peixe-Zebra/genética , Proteínas Wnt/genética
12.
J Exp Biol ; 226(13)2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37306013

RESUMO

Drosophila, like all insects, has an open circulatory system for the distribution of haemolymph and its components. The circulation of the haemolymph is essentially driven by the pumping activity of the linear heart. The heart is constructed as a tube into which the haemolymph is sucked and pumped forward by rhythmic contractions running from the posterior to the anterior, where it leaves the heart tube. The heart harbours cardiac valves to regulate flow directionality, with a single heart valve differentiating during larval development to separate the heart tube into two chambers. During metamorphosis, the heart is partially restructured, with the linear heart tube with one terminal wide-lumen heart chamber being converted into a linear four-chambered heart tube with three valves. As in all metazoan circulatory systems, the cardiac valves play an essential role in regulating the direction of blood flow. We provide evidence that the valves in adult flies arise via transdifferentiation, converting lumen-forming contractile cardiomyocytes into differently structured valve cells. Interestingly, adult cardiac valves exhibit a similar morphology to their larval counterparts, but act differently upon heart beating. Applying calcium imaging in living specimens to analyse activity in valve cells, we show that adult cardiac valves operate owing to muscle contraction. However, valve cell shape dynamics are altered compared with larval valves, which led us to propose our current model of the opening and closing mechanisms in the fly heart.


Assuntos
Drosophila , Coração , Animais , Coração/anatomia & histologia , Valvas Cardíacas/fisiologia , Miócitos Cardíacos/fisiologia , Diferenciação Celular , Hemodinâmica
13.
Comput Struct Biotechnol J ; 21: 2717-2731, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37181659

RESUMO

Current transcriptomics technologies, including bulk RNA-seq, single-cell RNA sequencing (scRNA-seq), single-nucleus RNA-sequencing (snRNA-seq), and spatial transcriptomics (ST), provide novel insights into the spatial and temporal dynamics of gene expression during cardiac development and disease processes. Cardiac development is a highly sophisticated process involving the regulation of numerous key genes and signaling pathways at specific anatomical sites and developmental stages. Exploring the cell biological mechanisms involved in cardiogenesis also contributes to congenital heart disease research. Meanwhile, the severity of distinct heart diseases, such as coronary heart disease, valvular disease, cardiomyopathy, and heart failure, is associated with cellular transcriptional heterogeneity and phenotypic alteration. Integrating transcriptomic technologies in the clinical diagnosis and treatment of heart diseases will aid in advancing precision medicine. In this review, we summarize applications of scRNA-seq and ST in the cardiac field, including organogenesis and clinical diseases, and provide insights into the promise of single-cell and spatial transcriptomics in translational research and precision medicine.

14.
Bol Med Hosp Infant Mex ; 80(2): 79-93, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37155719

RESUMO

Development and formation of the heart, the central organ of the circulatory system in vertebrates, starts early during embryonic development (second week), reaching maturity during the first few postnatal months. Cardiogenesis is a highly complex process that requires the active and orderly participation of different cardiac and non-cardiac cell populations. Thus, this process is sensitive to errors that may trigger a variety of heart-development defects, called congenital heart defects, which have a worldwide incidence of 8-10/1000 live births. A good understanding of normal cardiogenesis is required for better diagnosis and treatment of congenital heart diseases. This article reviews normal cardiogenesis by comparing information from classic studies with more recent findings. Information from descriptive anatomical studies of histological sections and selective in vivo marking of chicken embryos were emphasized. In addition, the discovery of heart fields has fueled the investigation of cardiogenic events that were believed to be understood and has contributed to proposals for new models of heart development.


El corazón, órgano central del aparato circulatorio de los vertebrados, comienza a formarse muy temprano en el desarrollo embrionario (segunda semana de gestación) y alcanza su forma madura durante los primeros meses posteriores al nacimiento. La cardiogénesis se caracteriza por ser un proceso altamente complejo, dependiente de la participación activa y ordenada de diferentes poblaciones celulares cardiacas y no cardiacas. Lo anterior hace que este proceso sea sensible a errores que pueden desencadenar una variedad de defectos del desarrollo cardiaco, llamados cardiopatías congénitas, con una incidencia mundial de 8 a 10/1000 nacidos vivos. Para mejorar el diagnóstico y el tratamiento de las cardiopatías congénitas es necesario comprender adecuadamente los eventos implicados en la cardiogénesis normal. En este artículo se revisa el desarrollo cardiaco normal, contrastando la información de los estudios clásicos con la de hallazgos recientes. Se hace hincapié en la información obtenida de los estudios de anatomía descriptiva de cortes histológicos y marcaje selectivo in vivo en embriones de pollo. Adicionalmente, el descubrimiento de los campos cardiogénicos ha estimulado la investigación de eventos cardiogénicos que se creían comprendidos, contribuyendo con propuestas de nuevos modelos del desarrollo del corazón.


Assuntos
Cardiopatias Congênitas , Coração , Animais , Feminino , Gravidez , Embrião de Galinha , Humanos , Cardiopatias Congênitas/diagnóstico
15.
Int J Mol Sci ; 24(7)2023 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-37047216

RESUMO

Cardiac organoids are in vitro self-organizing and three-dimensional structures composed of multiple cardiac cells (i.e., cardiomyocytes, endothelial cells, cardiac fibroblasts, etc.) with or without biological scaffolds. Since cardiac organoids recapitulate structural and functional characteristics of the native heart to a higher degree compared to the conventional two-dimensional culture systems, their applications, in combination with pluripotent stem cell technologies, are being widely expanded for the investigation of cardiogenesis, cardiac disease modeling, drug screening and development, and regenerative medicine. In this mini-review, recent advances in cardiac organoid technologies are summarized in chronological order, with a focus on the methodological points for each organoid formation. Further, the current limitations and the future perspectives in these promising systems are also discussed.


Assuntos
Células Endoteliais , Células-Tronco Pluripotentes , Organoides , Medicina Regenerativa/métodos , Fibroblastos
16.
Bol. méd. Hosp. Infant. Méx ; 80(2): 79-93, Mar.-Apr. 2023. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1447525

RESUMO

Abstract Development and formation of the heart, the central organ of the circulatory system in vertebrates, starts early during embryonic development (second week), reaching maturity during the first few postnatal months. Cardiogenesis is a highly complex process that requires the active and orderly participation of different cardiac and non-cardiac cell populations. Thus, this process is sensitive to errors that may trigger a variety of heart-development defects, called congenital heart defects, which have a worldwide incidence of 8-10/1000 live births. A good understanding of normal cardiogenesis is required for better diagnosis and treatment of congenital heart diseases. This article reviews normal cardiogenesis by comparing information from classic studies with more recent findings. Information from descriptive anatomical studies of histological sections and selective in vivo marking of chicken embryos were emphasized. In addition, the discovery of heart fields has fueled the investigation of cardiogenic events that were believed to be understood and has contributed to proposals for new models of heart development.


Resumen El corazón, órgano central del aparato circulatorio de los vertebrados, comienza a formarse muy temprano en el desarrollo embrionario (segunda semana de gestación) y alcanza su forma madura durante los primeros meses posteriores al nacimiento. La cardiogénesis se caracteriza por ser un proceso altamente complejo, dependiente de la participación activa y ordenada de diferentes poblaciones celulares cardiacas y no cardiacas. Lo anterior hace que este proceso sea sensible a errores que pueden desencadenar una variedad de defectos del desarrollo cardiaco, llamados cardiopatías congénitas, con una incidencia mundial de 8 a 10/1000 nacidos vivos. Para mejorar el diagnóstico y el tratamiento de las cardiopatías congénitas es necesario comprender adecuadamente los eventos implicados en la cardiogénesis normal. En este artículo se revisa el desarrollo cardiaco normal, contrastando la información de los estudios clásicos con la de hallazgos recientes. Se hace hincapié en la información obtenida de los estudios de anatomía descriptiva de cortes histológicos y marcaje selectivo in vivo en embriones de pollo. Adicionalmente, el descubrimiento de los campos cardiogénicos ha estimulado la investigación de eventos cardiogénicos que se creían comprendidos, contribuyendo con propuestas de nuevos modelos del desarrollo del corazón.

17.
Cell ; 186(3): 479-496.e23, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36736300

RESUMO

Using four-dimensional whole-embryo light sheet imaging with improved and accessible computational tools, we longitudinally reconstruct early murine cardiac development at single-cell resolution. Nascent mesoderm progenitors form opposing density and motility gradients, converting the temporal birth sequence of gastrulation into a spatial anterolateral-to-posteromedial arrangement. Migrating precardiac mesoderm does not strictly preserve cellular neighbor relationships, and spatial patterns only become solidified as the cardiac crescent emerges. Progenitors undergo a mesenchymal-to-epithelial transition, with a first heart field (FHF) ridge apposing a motile juxta-cardiac field (JCF). Anchored along the ridge, the FHF epithelium rotates the JCF forward to form the initial heart tube, along with push-pull morphodynamics of the second heart field. In Mesp1 mutants that fail to make a cardiac crescent, mesoderm remains highly motile but directionally incoherent, resulting in density gradient inversion. Our practicable live embryo imaging approach defines spatial origins and behaviors of cardiac progenitors and identifies their unanticipated morphological transitions.


Assuntos
Coração , Mesoderma , Camundongos , Animais , Diferenciação Celular , Morfogênese , Embrião de Mamíferos , Mamíferos
18.
Development ; 150(3)2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36620995

RESUMO

The transcription factor HAND2 plays essential roles during cardiogenesis. Hand2 endocardial deletion (H2CKO) results in tricuspid atresia or double inlet left ventricle with accompanying intraventricular septum defects, hypo-trabeculated ventricles and an increased density of coronary lumens. To understand the regulatory mechanisms of these phenotypes, single cell transcriptome analysis of mouse E11.5 H2CKO hearts was performed revealing a number of disrupted endocardial regulatory pathways. Using HAND2 DNA occupancy data, we identify several HAND2-dependent enhancers, including two endothelial enhancers for the shear-stress master regulator KLF2. A 1.8 kb enhancer located 50 kb upstream of the Klf2 TSS imparts specific endothelial/endocardial expression within the vasculature and endocardium. This enhancer is HAND2-dependent for ventricular endocardium expression but HAND2-independent for Klf2 vascular and valve expression. Deletion of this Klf2 enhancer results in reduced Klf2 expression within ventricular endocardium. These data reveal that HAND2 functions within endocardial gene regulatory networks including shear-stress response.


Assuntos
Endocárdio , Redes Reguladoras de Genes , Animais , Camundongos , Endocárdio/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Morfogênese/genética , Fatores de Transcrição/metabolismo
19.
Life (Basel) ; 13(1)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36676114

RESUMO

Despite the extensive information available on the different genetic, epigenetic, and molecular features of cardiogenesis, the origin of congenital heart defects remains unknown. Most genetic and molecular studies have been conducted outside the context of the progressive anatomical and histological changes in the embryonic heart, which is one of the reasons for the limited knowledge of the origins of congenital heart diseases. We integrated the findings of descriptive studies on human embryos and experimental studies on chick, rat, and mouse embryos. This research is based on the new dynamic concept of heart development and the existence of two heart fields. The first field corresponds to the straight heart tube, into which splanchnic mesodermal cells from the second heart field are gradually recruited. The overall aim was to create a new vision for the analysis, diagnosis, and regionalized classification of congenital defects of the heart and great arteries. In addition to highlighting the importance of genetic factors in the development of congenital heart disease, this study provides new insights into the composition of the straight heart tube, the processes of twisting and folding, and the fate of the conus in the development of the right ventricle and its outflow tract. The new vision, based on in vivo labeling and cell tracking and enhanced by models such as gastruloids and organoids, has contributed to a better understanding of important errors in cardiac morphogenesis, which may lead to several congenital heart diseases.

20.
Anat Rec (Hoboken) ; 306(1): 193-212, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35808951

RESUMO

Cardiogenesis is similar in all vertebrates, but differences in the valvuloseptal morphogenesis among non-crocodilian reptiles, birds, and mammals are noted. The origin of mesenchymal structures such as valves that regulate the passage of blood and the formation of partial septa that prevent the complete mixing of oxygen-rich and low-oxygen blood present in adult chelonians are essential in the evolutionary understanding of complete septation, endothermy and malformations, even in mammals. In this context, this study analyzed the heart morphogenesis of Podocnemis unifilis (Testudines: Podocnemididae) from the 4th to the 60th day of incubation. We identified the tubular heart stage, folding of the cardiac tube and expansion of the atrial and ventricular compartments followed by atrial septation by the septum primum, ventricle septation by partial septa, outflow tract septation and the formation of bicuspid valves with cartilage differentiation at the base. The formation of the first atrial septum with the mesenchymal cap is noted during the development of the atrial septum, joining the atrioventricular cushion on the 17th day and completely dividing the atria. Small secondary perforations appeared in the mid-cranial part, observed up to the 45th day. Partial ventricle septation into the pulmonary, venous, and arterial subcompartments takes place by trabeculae carneae thickening and grouping on the 15th day. The outflow tract forms the aorticopulmonary and interaortic septa on the 16th day and the bicuspid valves, on the 20th day. Therefore, after the first 20 days, the heart exhibits a general anatomical conformation similar to that of adult turtles.


Assuntos
Fibrilação Atrial , Humanos , Desenvolvimento Embrionário
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...